Require Import BinPos. Inductive expr : Type := Var : nat -> expr | App : expr -> expr -> expr | Abs : unit -> expr -> expr. Inductive expr_acc : expr -> expr -> Prop := acc_App_l : forall f a : expr, expr_acc f (App f a) | acc_App_r : forall f a : expr, expr_acc a (App f a) | acc_Abs : forall (t : unit) (e : expr), expr_acc e (Abs t e). Theorem wf_expr_acc : well_founded expr_acc. Proof. red. refine (fix rec a : Acc expr_acc a := match a as a return Acc expr_acc a with | Var v => Acc_intro _ (fun y (_H : expr_acc y (Var v)) => match _H in expr_acc z Z return match Z return Prop with | Var _ => Acc _ y | _ => True end with | acc_App_l _ _ => I | _ => I end) | App f x => Acc_intro _ (fun y (pf : expr_acc y (App f x)) => match pf in expr_acc z Z return match Z return Prop with | App a b => f = a -> x = b -> Acc expr_acc z | _ => True end with | acc_App_l f' x' => fun pf _ => match pf in _ = z return Acc expr_acc z with | eq_refl => rec f end | acc_App_r f' x' => fun _ pf => match pf in _ = z return Acc expr_acc z with | eq_refl => rec x end | _ => I end eq_refl eq_refl) | Abs t e => Acc_intro _ (fun y (pf : expr_acc y (Abs t e)) => match pf in expr_acc z Z return match Z return Prop with | Abs a b => e = b -> Acc expr_acc z | _ => True end with | acc_Abs f x => fun pf => match pf in _ = z return Acc expr_acc z with | eq_refl => rec e end | _ => I end eq_refl) end). Defined. Theorem wf_expr_acc_delay : well_founded expr_acc. Proof. red. refine (fix rec a : Acc expr_acc a := match a as a return Acc expr_acc a with | Var v => Acc_intro _ (fun y (_H : expr_acc y (Var v)) => match _H in expr_acc z Z return match Z return Prop with | Var _ => Acc _ y | _ => True end with | acc_App_l _ _ => I | _ => I end) | App f x => Acc_intro _ (fun y (pf : expr_acc y (App f x)) => match pf in expr_acc z Z return match Z return Prop with | App a b => (unit -> Acc expr_acc a) -> (unit -> Acc expr_acc b) -> Acc expr_acc z | _ => True end with | acc_App_l f' x' => fun pf _ => pf tt | acc_App_r f' x' => fun _ pf => pf tt | _ => I end (fun _ => rec f) (fun _ => rec x)) | Abs t e => Acc_intro _ (fun y (pf : expr_acc y (Abs t e)) => match pf in expr_acc z Z return match Z return Prop with | Abs a b => (unit -> Acc expr_acc b) -> Acc expr_acc z | _ => True end with | acc_Abs f x => fun pf => pf tt | _ => I end (fun _ => rec e)) end); try solve [ inversion _H ]. Defined. Fixpoint build_large (n : nat) : expr := match n with | 0 => Var 0 | S n => let e := build_large n in App e e end. Section guard. Context {A : Type} {R : A -> A -> Prop}. Fixpoint guard (n : nat) (wfR : well_founded R) : well_founded R := match n with | 0 => wfR | S n0 => fun x : A => Acc_intro x (fun (y : A) (_ : R y x) => guard n0 (guard n0 wfR) y) end. End guard. Definition sizeF_delay : expr -> positive. refine (@Fix expr (expr_acc) (wf_expr_acc_delay) (fun _ => positive) (fun e => match e as e return (forall l, expr_acc l e -> positive) -> positive with | Var _ => fun _ => 1 | App l r => fun rec => @rec l _ + @rec r _ | Abs _ e => fun rec => 1 + @rec e _ end%positive)). eapply acc_App_l. eapply acc_App_r. eapply acc_Abs. Defined. Definition sizeF_guard : expr -> positive. refine (@Fix expr (expr_acc) (guard 5 wf_expr_acc) (fun _ => positive) (fun e => match e as e return (forall l, expr_acc l e -> positive) -> positive with | Var _ => fun _ => 1 | App l r => fun rec => @rec l _ + @rec r _ | Abs _ e => fun rec => 1 + @rec e _ end%positive)). eapply acc_App_l. eapply acc_App_r. eapply acc_Abs. Defined. Time Eval native_compute in sizeF_delay (build_large 2). Time Eval native_compute in sizeF_guard (build_large 2).