(************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) (* string val head_constr : constr -> constr * constr list val head_constr_bound : constr -> constr * constr list val is_quantified_hypothesis : Id.t -> goal sigma -> bool exception Bound (** {6 Primitive tactics. } *) val introduction : Id.t -> tactic val refine : constr -> tactic val convert_concl : constr -> cast_kind -> tactic val convert_hyp : named_declaration -> tactic val thin : Id.t list -> tactic val mutual_fix : Id.t -> int -> (Id.t * int * constr) list -> int -> tactic val fix : Id.t option -> int -> tactic val mutual_cofix : Id.t -> (Id.t * constr) list -> int -> tactic val cofix : Id.t option -> tactic (** {6 Introduction tactics. } *) val fresh_id_in_env : Id.t list -> Id.t -> env -> Id.t val fresh_id : Id.t list -> Id.t -> goal sigma -> Id.t val find_intro_names : rel_context -> goal sigma -> Id.t list val intro : tactic val introf : tactic val intro_move : Id.t option -> Id.t move_location -> tactic (** [intro_avoiding idl] acts as intro but prevents the new Id.t to belong to [idl] *) val intro_avoiding : Id.t list -> tactic val intro_replacing : Id.t -> tactic val intro_using : Id.t -> tactic val intro_mustbe_force : Id.t -> tactic val intro_then : (Id.t -> tactic) -> tactic val intros_using : Id.t list -> tactic val intro_erasing : Id.t -> tactic val intros_replacing : Id.t list -> tactic val intros : tactic (** [depth_of_quantified_hypothesis b h g] returns the index of [h] in the conclusion of goal [g], up to head-reduction if [b] is [true] *) val depth_of_quantified_hypothesis : bool -> quantified_hypothesis -> goal sigma -> int val intros_until_n_wored : int -> tactic val intros_until : quantified_hypothesis -> tactic val intros_clearing : bool list -> tactic (** Assuming a tactic [tac] depending on an hypothesis identifier, [try_intros_until tac arg] first assumes that arg denotes a quantified hypothesis (denoted by name or by index) and try to introduce it in context before to apply [tac], otherwise assume the hypothesis is already in context and directly apply [tac] *) val try_intros_until : (Id.t -> tactic) -> quantified_hypothesis -> tactic (** Apply a tactic on a quantified hypothesis, an hypothesis in context or a term with bindings *) val onInductionArg : (constr with_bindings -> tactic) -> constr with_bindings induction_arg -> tactic (** {6 Introduction tactics with eliminations. } *) val intro_pattern : Id.t move_location -> intro_pattern_expr -> tactic val intro_patterns : intro_pattern_expr located list -> tactic val intros_pattern : Id.t move_location -> intro_pattern_expr located list -> tactic (** {6 Exact tactics. } *) val assumption : tactic val exact_no_check : constr -> tactic val vm_cast_no_check : constr -> tactic val exact_check : constr -> tactic val exact_proof : Constrexpr.constr_expr -> tactic (** {6 Reduction tactics. } *) type tactic_reduction = env -> evar_map -> constr -> constr val reduct_in_hyp : tactic_reduction -> hyp_location -> tactic val reduct_option : tactic_reduction * cast_kind -> goal_location -> tactic val reduct_in_concl : tactic_reduction * cast_kind -> tactic val change_in_concl : (occurrences * constr_pattern) option -> constr -> tactic val change_in_hyp : (occurrences * constr_pattern) option -> constr -> hyp_location -> tactic val red_in_concl : tactic val red_in_hyp : hyp_location -> tactic val red_option : goal_location -> tactic val hnf_in_concl : tactic val hnf_in_hyp : hyp_location -> tactic val hnf_option : goal_location -> tactic val simpl_in_concl : tactic val simpl_in_hyp : hyp_location -> tactic val simpl_option : goal_location -> tactic val normalise_in_concl : tactic val normalise_in_hyp : hyp_location -> tactic val normalise_option : goal_location -> tactic val normalise_vm_in_concl : tactic val unfold_in_concl : (occurrences * evaluable_global_reference) list -> tactic val unfold_in_hyp : (occurrences * evaluable_global_reference) list -> hyp_location -> tactic val unfold_option : (occurrences * evaluable_global_reference) list -> goal_location -> tactic val change : constr_pattern option -> constr -> clause -> tactic val pattern_option : (occurrences * constr) list -> goal_location -> tactic val reduce : red_expr -> clause -> tactic val unfold_constr : global_reference -> tactic (** {6 Modification of the local context. } *) val clear : Id.t list -> tactic val clear_body : Id.t list -> tactic val keep : Id.t list -> tactic val specialize : int option -> constr with_bindings -> tactic val move_hyp : bool -> Id.t -> Id.t move_location -> tactic val rename_hyp : (Id.t * Id.t) list -> tactic val revert : Id.t list -> tactic (** {6 Resolution tactics. } *) val apply_type : constr -> constr list -> tactic val apply_term : constr -> constr list -> tactic val bring_hyps : named_context -> tactic val apply : constr -> tactic val eapply : constr -> tactic val apply_with_bindings_gen : advanced_flag -> evars_flag -> constr with_bindings located list -> tactic val apply_with_bindings : constr with_bindings -> tactic val eapply_with_bindings : constr with_bindings -> tactic val cut_and_apply : constr -> tactic val apply_in : advanced_flag -> evars_flag -> Id.t -> constr with_bindings located list -> intro_pattern_expr located option -> tactic val simple_apply_in : Id.t -> constr -> tactic (** {6 Elimination tactics. } *) (* The general form of an induction principle is the following: forall prm1 prm2 ... prmp, (induction parameters) forall Q1...,(Qi:Ti_1 -> Ti_2 ->...-> Ti_ni),...Qq, (predicates) branch1, branch2, ... , branchr, (branches of the principle) forall (x1:Ti_1) (x2:Ti_2) ... (xni:Ti_ni), (induction arguments) (HI: I prm1..prmp x1...xni) (optional main induction arg) -> (Qi x1...xni HI (f prm1...prmp x1...xni)).(conclusion) ^^ ^^^^^^^^^^^^^^^^^^^^^^^^ optional optional even if HI argument added if principle present above generated by functional induction [indarg] [farg] HI is not present when the induction principle does not come directly from an inductive type (like when it is generated by functional induction for example). HI is present otherwise BUT may not appear in the conclusion (dependent principle). HI and (f...) cannot be both present. Principles taken from functional induction have the final (f...). *) (** [rel_contexts] and [rel_declaration] actually contain triples, and lists are actually in reverse order to fit [compose_prod]. *) type elim_scheme = { elimc: constr with_bindings option; elimt: types; indref: global_reference option; index: int; (** index of the elimination type in the scheme *) params: rel_context; (** (prm1,tprm1);(prm2,tprm2)...(prmp,tprmp) *) nparams: int; (** number of parameters *) predicates: rel_context; (** (Qq, (Tq_1 -> Tq_2 ->...-> Tq_nq)), (Q1,...) *) npredicates: int; (** Number of predicates *) branches: rel_context; (** branchr,...,branch1 *) nbranches: int; (** Number of branches *) args: rel_context; (** (xni, Ti_ni) ... (x1, Ti_1) *) nargs: int; (** number of arguments *) indarg: rel_declaration option; (** Some (H,I prm1..prmp x1...xni) if HI is in premisses, None otherwise *) concl: types; (** Qi x1...xni HI (f...), HI and (f...) are optional and mutually exclusive *) indarg_in_concl: bool; (** true if HI appears at the end of conclusion *) farg_in_concl: bool; (** true if (f...) appears at the end of conclusion *) } val compute_elim_sig : ?elimc: constr with_bindings -> types -> elim_scheme val rebuild_elimtype_from_scheme: elim_scheme -> types (** elim principle with the index of its inductive arg *) type eliminator = { elimindex : int option; (** None = find it automatically *) elimbody : constr with_bindings } val elimination_clause_scheme : evars_flag -> ?flags:unify_flags -> int -> clausenv -> clausenv -> tactic val elimination_in_clause_scheme : evars_flag -> ?flags:unify_flags -> Id.t -> int -> clausenv -> clausenv -> tactic val general_elim_clause_gen : (int -> Clenv.clausenv -> 'a -> tactic) -> 'a -> eliminator -> tactic val general_elim : evars_flag -> constr with_bindings -> eliminator -> tactic val general_elim_in : evars_flag -> Id.t -> constr with_bindings -> eliminator -> tactic val default_elim : evars_flag -> constr with_bindings -> tactic val simplest_elim : constr -> tactic val elim : evars_flag -> constr with_bindings -> constr with_bindings option -> tactic val simple_induct : quantified_hypothesis -> tactic val new_induct : evars_flag -> (evar_map * constr with_bindings) induction_arg list -> constr with_bindings option -> intro_pattern_expr located option * intro_pattern_expr located option -> clause option -> tactic (** {6 Case analysis tactics. } *) val general_case_analysis : evars_flag -> constr with_bindings -> tactic val simplest_case : constr -> tactic val simple_destruct : quantified_hypothesis -> tactic val new_destruct : evars_flag -> (evar_map * constr with_bindings) induction_arg list -> constr with_bindings option -> intro_pattern_expr located option * intro_pattern_expr located option -> clause option -> tactic (** {6 Generic case analysis / induction tactics. } *) val induction_destruct : rec_flag -> evars_flag -> ((evar_map * constr with_bindings) induction_arg * (intro_pattern_expr located option * intro_pattern_expr located option)) list * constr with_bindings option * clause option -> tactic (** {6 Eliminations giving the type instead of the proof. } *) val case_type : constr -> tactic val elim_type : constr -> tactic (** {6 Some eliminations which are frequently used. } *) val impE : Id.t -> tactic val andE : Id.t -> tactic val orE : Id.t -> tactic val dImp : clause -> tactic val dAnd : clause -> tactic val dorE : bool -> clause ->tactic (** {6 Introduction tactics. } *) val constructor_tac : evars_flag -> int option -> int -> constr bindings -> tactic val any_constructor : evars_flag -> tactic option -> tactic val one_constructor : int -> constr bindings -> tactic val left : constr bindings -> tactic val right : constr bindings -> tactic val split : constr bindings -> tactic val left_with_bindings : evars_flag -> constr bindings -> tactic val right_with_bindings : evars_flag -> constr bindings -> tactic val split_with_bindings : evars_flag -> constr bindings list -> tactic val simplest_left : tactic val simplest_right : tactic val simplest_split : tactic (** {6 Logical connective tactics. } *) val setoid_reflexivity : tactic Hook.t val reflexivity_red : bool -> tactic val reflexivity : tactic val intros_reflexivity : tactic val setoid_symmetry : tactic Hook.t val symmetry_red : bool -> tactic val symmetry : tactic val setoid_symmetry_in : (Id.t -> tactic) Hook.t val symmetry_in : Id.t -> tactic val intros_symmetry : clause -> tactic val setoid_transitivity : (constr option -> tactic) Hook.t val transitivity_red : bool -> constr option -> tactic val transitivity : constr -> tactic val etransitivity : tactic val intros_transitivity : constr option -> tactic val cut : constr -> tactic val cut_intro : constr -> tactic val assert_replacing : Id.t -> types -> tactic -> tactic val cut_replacing : Id.t -> types -> tactic -> tactic val cut_in_parallel : constr list -> tactic val assert_as : bool -> intro_pattern_expr located option -> constr -> tactic val forward : tactic option -> intro_pattern_expr located option -> constr -> tactic val letin_tac : (bool * intro_pattern_expr located) option -> Name.t -> constr -> types option -> clause -> tactic val letin_pat_tac : (bool * intro_pattern_expr located) option -> Name.t -> evar_map * constr -> types option -> clause -> tactic val assert_tac : Name.t -> types -> tactic val assert_by : Name.t -> types -> tactic -> tactic val pose_proof : Name.t -> constr -> tactic val generalize : constr list -> tactic val generalize_gen : ((occurrences * constr) * Name.t) list -> tactic val generalize_dep : ?with_let:bool (** Don't lose let bindings *) -> constr -> tactic val unify : ?state:Names.transparent_state -> constr -> constr -> tactic val resolve_classes : tactic val tclABSTRACT : Id.t option -> tactic -> tactic val admit_as_an_axiom : tactic val abstract_generalize : ?generalize_vars:bool -> ?force_dep:bool -> Id.t -> tactic val specialize_eqs : Id.t -> tactic val general_multi_rewrite : (bool -> evars_flag -> constr with_bindings -> clause -> tactic) Hook.t val subst_one : (bool -> Id.t -> Id.t * constr * bool -> tactic) Hook.t