(************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) (* string val head_constr : constr -> constr * constr list val head_constr_bound : constr -> constr * constr list val is_quantified_hypothesis : Id.t -> goal sigma -> bool exception Bound (** {6 Primitive tactics. } *) val introduction : Id.t -> tactic val refine : constr -> tactic val convert_concl : constr -> cast_kind -> tactic val convert_hyp : named_declaration -> tactic val thin : Id.t list -> tactic val mutual_fix : Id.t -> int -> (Id.t * int * constr) list -> int -> tactic val fix : Id.t option -> int -> tactic val mutual_cofix : Id.t -> (Id.t * constr) list -> int -> tactic val cofix : Id.t option -> tactic (** {6 Introduction tactics. } *) val fresh_id_in_env : Id.t list -> Id.t -> env -> Id.t val fresh_id : Id.t list -> Id.t -> goal sigma -> Id.t val find_intro_names : rel_context -> goal sigma -> Id.t list val intro : unit Proofview.tactic val introf : unit Proofview.tactic val intro_move : Id.t option -> Id.t move_location -> unit Proofview.tactic (** [intro_avoiding idl] acts as intro but prevents the new Id.t to belong to [idl] *) val intro_avoiding : Id.t list -> unit Proofview.tactic val intro_replacing : Id.t -> tactic val intro_using : Id.t -> unit Proofview.tactic val intro_mustbe_force : Id.t -> unit Proofview.tactic val intro_then : (Id.t -> unit Proofview.tactic) -> unit Proofview.tactic val intros_using : Id.t list -> unit Proofview.tactic val intro_erasing : Id.t -> tactic val intros_replacing : Id.t list -> unit Proofview.tactic val intros : unit Proofview.tactic (** [depth_of_quantified_hypothesis b h g] returns the index of [h] in the conclusion of goal [g], up to head-reduction if [b] is [true] *) val depth_of_quantified_hypothesis : bool -> quantified_hypothesis -> goal sigma -> int val intros_until_n_wored : int -> unit Proofview.tactic val intros_until : quantified_hypothesis -> unit Proofview.tactic val intros_clearing : bool list -> unit Proofview.tactic (** Assuming a tactic [tac] depending on an hypothesis Id.t, [try_intros_until tac arg] first assumes that arg denotes a quantified hypothesis (denoted by name or by index) and try to introduce it in context before to apply [tac], otherwise assume the hypothesis is already in context and directly apply [tac] *) val try_intros_until : (Id.t -> unit Proofview.tactic) -> quantified_hypothesis -> unit Proofview.tactic (** Apply a tactic on a quantified hypothesis, an hypothesis in context or a term with bindings *) val onInductionArg : (constr with_bindings -> unit Proofview.tactic) -> constr with_bindings induction_arg -> unit Proofview.tactic (** Complete intro_patterns up to some length; fails if more patterns than required *) val adjust_intro_patterns : int -> intro_pattern_expr located list -> intro_pattern_expr located list (** {6 Introduction tactics with eliminations. } *) val intro_pattern : Id.t move_location -> intro_pattern_expr -> unit Proofview.tactic val intro_patterns : intro_pattern_expr located list -> unit Proofview.tactic val intros_pattern : Id.t move_location -> intro_pattern_expr located list -> unit Proofview.tactic (** {6 Exact tactics. } *) val assumption : unit Proofview.tactic val exact_no_check : constr -> tactic val vm_cast_no_check : constr -> tactic val exact_check : constr -> tactic val exact_proof : Constrexpr.constr_expr -> tactic (** {6 Reduction tactics. } *) type tactic_reduction = env -> evar_map -> constr -> constr val reduct_in_hyp : tactic_reduction -> hyp_location -> tactic val reduct_option : tactic_reduction * cast_kind -> goal_location -> tactic val reduct_in_concl : tactic_reduction * cast_kind -> tactic val change_in_concl : (occurrences * constr_pattern) option -> constr -> tactic val change_in_hyp : (occurrences * constr_pattern) option -> constr -> hyp_location -> tactic val red_in_concl : tactic val red_in_hyp : hyp_location -> tactic val red_option : goal_location -> tactic val hnf_in_concl : tactic val hnf_in_hyp : hyp_location -> tactic val hnf_option : goal_location -> tactic val simpl_in_concl : tactic val simpl_in_hyp : hyp_location -> tactic val simpl_option : goal_location -> tactic val normalise_in_concl : tactic val normalise_in_hyp : hyp_location -> tactic val normalise_option : goal_location -> tactic val normalise_vm_in_concl : tactic val unfold_in_concl : (occurrences * evaluable_global_reference) list -> tactic val unfold_in_hyp : (occurrences * evaluable_global_reference) list -> hyp_location -> tactic val unfold_option : (occurrences * evaluable_global_reference) list -> goal_location -> tactic val change : constr_pattern option -> constr -> clause -> tactic val pattern_option : (occurrences * constr) list -> goal_location -> tactic val reduce : red_expr -> clause -> tactic val unfold_constr : global_reference -> tactic (** {6 Modification of the local context. } *) val clear : Id.t list -> tactic val clear_body : Id.t list -> tactic val keep : Id.t list -> tactic val clear_if_overwritten : constr -> intro_pattern_expr located list -> tactic val specialize : int option -> constr with_bindings -> tactic val move_hyp : bool -> Id.t -> Id.t move_location -> tactic val rename_hyp : (Id.t * Id.t) list -> tactic val revert : Id.t list -> tactic (** {6 Resolution tactics. } *) val apply_type : constr -> constr list -> tactic val apply_term : constr -> constr list -> tactic val bring_hyps : named_context -> tactic val apply : constr -> tactic val eapply : constr -> tactic val apply_with_bindings_gen : advanced_flag -> evars_flag -> constr with_bindings located list -> tactic val apply_with_bindings : constr with_bindings -> tactic val eapply_with_bindings : constr with_bindings -> tactic val cut_and_apply : constr -> tactic val apply_in : advanced_flag -> evars_flag -> Id.t -> constr with_bindings located list -> intro_pattern_expr located option -> unit Proofview.tactic val simple_apply_in : Id.t -> constr -> unit Proofview.tactic (** {6 Elimination tactics. } *) (* The general form of an induction principle is the following: forall prm1 prm2 ... prmp, (induction parameters) forall Q1...,(Qi:Ti_1 -> Ti_2 ->...-> Ti_ni),...Qq, (predicates) branch1, branch2, ... , branchr, (branches of the principle) forall (x1:Ti_1) (x2:Ti_2) ... (xni:Ti_ni), (induction arguments) (HI: I prm1..prmp x1...xni) (optional main induction arg) -> (Qi x1...xni HI (f prm1...prmp x1...xni)).(conclusion) ^^ ^^^^^^^^^^^^^^^^^^^^^^^^ optional optional even if HI argument added if principle present above generated by functional induction [indarg] [farg] HI is not present when the induction principle does not come directly from an inductive type (like when it is generated by functional induction for example). HI is present otherwise BUT may not appear in the conclusion (dependent principle). HI and (f...) cannot be both present. Principles taken from functional induction have the final (f...). *) (** [rel_contexts] and [rel_declaration] actually contain triples, and lists are actually in reverse order to fit [compose_prod]. *) type elim_scheme = { elimc: constr with_bindings option; elimt: types; indref: global_reference option; index: int; (** index of the elimination type in the scheme *) params: rel_context; (** (prm1,tprm1);(prm2,tprm2)...(prmp,tprmp) *) nparams: int; (** number of parameters *) predicates: rel_context; (** (Qq, (Tq_1 -> Tq_2 ->...-> Tq_nq)), (Q1,...) *) npredicates: int; (** Number of predicates *) branches: rel_context; (** branchr,...,branch1 *) nbranches: int; (** Number of branches *) args: rel_context; (** (xni, Ti_ni) ... (x1, Ti_1) *) nargs: int; (** number of arguments *) indarg: rel_declaration option; (** Some (H,I prm1..prmp x1...xni) if HI is in premisses, None otherwise *) concl: types; (** Qi x1...xni HI (f...), HI and (f...) are optional and mutually exclusive *) indarg_in_concl: bool; (** true if HI appears at the end of conclusion *) farg_in_concl: bool; (** true if (f...) appears at the end of conclusion *) } val compute_elim_sig : ?elimc: constr with_bindings -> types -> elim_scheme val rebuild_elimtype_from_scheme: elim_scheme -> types (** elim principle with the index of its inductive arg *) type eliminator = { elimindex : int option; (** None = find it automatically *) elimbody : constr with_bindings } val elimination_clause_scheme : evars_flag -> ?flags:unify_flags -> int -> clausenv -> clausenv -> tactic val elimination_in_clause_scheme : evars_flag -> ?flags:unify_flags -> Id.t -> int -> clausenv -> clausenv -> tactic val general_elim_clause_gen : (int -> Clenv.clausenv -> 'a -> tactic) -> 'a -> eliminator -> tactic val general_elim : evars_flag -> constr with_bindings -> eliminator -> tactic val general_elim_in : evars_flag -> Id.t -> constr with_bindings -> eliminator -> tactic val default_elim : evars_flag -> constr with_bindings -> unit Proofview.tactic val simplest_elim : constr -> unit Proofview.tactic val elim : evars_flag -> constr with_bindings -> constr with_bindings option -> unit Proofview.tactic val simple_induct : quantified_hypothesis -> unit Proofview.tactic val new_induct : evars_flag -> (evar_map * constr with_bindings) induction_arg list -> constr with_bindings option -> intro_pattern_expr located option * intro_pattern_expr located option -> clause option -> unit Proofview.tactic (** {6 Case analysis tactics. } *) val general_case_analysis : evars_flag -> constr with_bindings -> unit Proofview.tactic val simplest_case : constr -> unit Proofview.tactic val simple_destruct : quantified_hypothesis -> unit Proofview.tactic val new_destruct : evars_flag -> (evar_map * constr with_bindings) induction_arg list -> constr with_bindings option -> intro_pattern_expr located option * intro_pattern_expr located option -> clause option -> unit Proofview.tactic (** {6 Generic case analysis / induction tactics. } *) val induction_destruct : rec_flag -> evars_flag -> ((evar_map * constr with_bindings) induction_arg * (intro_pattern_expr located option * intro_pattern_expr located option)) list * constr with_bindings option * clause option -> unit Proofview.tactic (** {6 Eliminations giving the type instead of the proof. } *) val case_type : constr -> tactic val elim_type : constr -> tactic (** {6 Some eliminations which are frequently used. } *) val impE : Id.t -> unit Proofview.tactic val andE : Id.t -> unit Proofview.tactic val orE : Id.t -> unit Proofview.tactic val dImp : clause -> unit Proofview.tactic val dAnd : clause -> unit Proofview.tactic val dorE : bool -> clause -> unit Proofview.tactic (** {6 Introduction tactics. } *) val constructor_tac : evars_flag -> int option -> int -> constr bindings -> unit Proofview.tactic val any_constructor : evars_flag -> unit Proofview.tactic option -> unit Proofview.tactic val one_constructor : int -> constr bindings -> unit Proofview.tactic val left : constr bindings -> unit Proofview.tactic val right : constr bindings -> unit Proofview.tactic val split : constr bindings -> unit Proofview.tactic val left_with_bindings : evars_flag -> constr bindings -> unit Proofview.tactic val right_with_bindings : evars_flag -> constr bindings -> unit Proofview.tactic val split_with_bindings : evars_flag -> constr bindings list -> unit Proofview.tactic val simplest_left : unit Proofview.tactic val simplest_right : unit Proofview.tactic val simplest_split : unit Proofview.tactic (** {6 Logical connective tactics. } *) val setoid_reflexivity : unit Proofview.tactic Hook.t val reflexivity_red : bool -> unit Proofview.tactic val reflexivity : unit Proofview.tactic val intros_reflexivity : unit Proofview.tactic val setoid_symmetry : unit Proofview.tactic Hook.t val symmetry_red : bool -> unit Proofview.tactic val symmetry : unit Proofview.tactic val setoid_symmetry_in : (Id.t -> unit Proofview.tactic) Hook.t val symmetry_in : Id.t -> unit Proofview.tactic val intros_symmetry : clause -> unit Proofview.tactic val setoid_transitivity : (constr option -> unit Proofview.tactic) Hook.t val transitivity_red : bool -> constr option -> unit Proofview.tactic val transitivity : constr -> unit Proofview.tactic val etransitivity : unit Proofview.tactic val intros_transitivity : constr option -> unit Proofview.tactic val cut : constr -> tactic val cut_intro : constr -> unit Proofview.tactic val assert_replacing : Id.t -> types -> tactic -> tactic val cut_replacing : Id.t -> types -> tactic -> tactic val cut_in_parallel : constr list -> tactic val assert_as : bool -> intro_pattern_expr located option -> constr -> unit Proofview.tactic val forward : unit Proofview.tactic option -> intro_pattern_expr located option -> constr -> unit Proofview.tactic val letin_tac : (bool * intro_pattern_expr located) option -> Name.t -> constr -> types option -> clause -> unit Proofview.tactic val letin_pat_tac : (bool * intro_pattern_expr located) option -> Name.t -> evar_map * constr -> types option -> clause -> unit Proofview.tactic val assert_tac : Name.t -> types -> unit Proofview.tactic val assert_by : Name.t -> types -> unit Proofview.tactic -> unit Proofview.tactic val pose_proof : Name.t -> constr -> unit Proofview.tactic val generalize : constr list -> tactic val generalize_gen : ((occurrences * constr) * Name.t) list -> tactic val generalize_dep : ?with_let:bool (** Don't lose let bindings *) -> constr -> tactic val unify : ?state:Names.transparent_state -> constr -> constr -> tactic val resolve_classes : tactic val tclABSTRACT : Id.t option -> unit Proofview.tactic -> tactic val admit_as_an_axiom : unit Proofview.tactic val abstract_generalize : ?generalize_vars:bool -> ?force_dep:bool -> Id.t -> unit Proofview.tactic val specialize_eqs : Id.t -> tactic val general_multi_rewrite : (bool -> evars_flag -> constr with_bindings -> clause -> unit Proofview.tactic) Hook.t val subst_one : (bool -> Id.t -> Id.t * constr * bool -> unit Proofview.tactic) Hook.t val declare_intro_decomp_eq : ((int -> unit Proofview.tactic) -> Coqlib.coq_eq_data * types * (types * constr * constr) -> clausenv -> unit Proofview.tactic) -> unit val emit_side_effects : Declareops.side_effects -> tactic module Simple : sig (** Simplified version of some of the above tactics *) val intro : Id.t -> unit Proofview.tactic val generalize : constr list -> tactic val generalize_gen : (constr Locus.with_occurrences * Name.t) list -> tactic val apply : constr -> tactic val eapply : constr -> tactic val elim : constr -> unit Proofview.tactic val case : constr -> unit Proofview.tactic end (** Tacticals defined directly in term of Proofview *) module New : sig val refine : Evd.open_constr -> unit Proofview.tactic open Proofview val exact_proof : Constrexpr.constr_expr -> unit tactic end