(************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) (* constr * constr -> constr bindings -> constr val string_of_inductive : constr -> string val head_constr : constr -> constr list val head_constr_bound : constr -> constr list -> constr list val is_quantified_hypothesis : identifier -> goal sigma -> bool exception Bound (*s Primitive tactics. *) val introduction : identifier -> tactic val refine : constr -> tactic val convert_concl : constr -> tactic val convert_hyp : named_declaration -> tactic val thin : identifier list -> tactic val mutual_fix : identifier -> int -> (identifier * int * constr) list -> tactic val fix : identifier option -> int -> tactic val mutual_cofix : identifier -> (identifier * constr) list -> tactic val cofix : identifier option -> tactic (*s Introduction tactics. *) val fresh_id : identifier list -> identifier -> goal sigma -> identifier val intro : tactic val introf : tactic val intro_force : bool -> tactic val intro_move : identifier option -> identifier option -> tactic val intro_replacing : identifier -> tactic val intro_using : identifier -> tactic val intro_mustbe_force : identifier -> tactic val intros_using : identifier list -> tactic val intro_erasing : identifier -> tactic val intros_replacing : identifier list -> tactic val intros : tactic (* [depth_of_quantified_hypothesis b h g] returns the index of [h] in the conclusion of goal [g], up to head-reduction if [b] is [true] *) val depth_of_quantified_hypothesis : bool -> quantified_hypothesis -> goal sigma -> int val intros_until_n_wored : int -> tactic val intros_until : quantified_hypothesis -> tactic val intros_clearing : bool list -> tactic (* Assuming a tactic [tac] depending on an hypothesis identifier, [try_intros_until tac arg] first assumes that arg denotes a quantified hypothesis (denoted by name or by index) and try to introduce it in context before to apply [tac], otherwise assume the hypothesis is already in context and directly apply [tac] *) val try_intros_until : (identifier -> tactic) -> quantified_hypothesis -> tactic (*s Introduction tactics with eliminations. *) val intro_pattern : identifier option -> intro_pattern_expr -> tactic val intro_patterns : intro_pattern_expr list -> tactic val intros_pattern : identifier option -> intro_pattern_expr list -> tactic (*s Exact tactics. *) val assumption : tactic val exact_no_check : constr -> tactic val exact_check : constr -> tactic val exact_proof : Topconstr.constr_expr -> tactic (*s Reduction tactics. *) type tactic_reduction = env -> evar_map -> constr -> constr val reduct_in_hyp : tactic_reduction -> hyp_location -> tactic val reduct_option : tactic_reduction -> simple_clause -> tactic val reduct_in_concl : tactic_reduction -> tactic val change_in_concl : constr occurrences option -> constr -> tactic val change_in_hyp : constr occurrences option -> constr -> hyp_location -> tactic val red_in_concl : tactic val red_in_hyp : hyp_location -> tactic val red_option : simple_clause -> tactic val hnf_in_concl : tactic val hnf_in_hyp : hyp_location -> tactic val hnf_option : simple_clause -> tactic val simpl_in_concl : tactic val simpl_in_hyp : hyp_location -> tactic val simpl_option : simple_clause -> tactic val normalise_in_concl: tactic val normalise_in_hyp : hyp_location -> tactic val normalise_option : simple_clause -> tactic val unfold_in_concl : (int list * evaluable_global_reference) list -> tactic val unfold_in_hyp : (int list * evaluable_global_reference) list -> hyp_location -> tactic val unfold_option : (int list * evaluable_global_reference) list -> simple_clause -> tactic val reduce : red_expr -> clause -> tactic val change : constr occurrences option -> constr -> clause -> tactic val unfold_constr : global_reference -> tactic val pattern_option : (int list * constr) list -> simple_clause -> tactic (*s Modification of the local context. *) val clear : identifier list -> tactic val clear_body : identifier list -> tactic val keep : identifier list -> tactic val new_hyp : int option -> constr with_bindings -> tactic val move_hyp : bool -> identifier -> identifier -> tactic val rename_hyp : identifier -> identifier -> tactic (*s Resolution tactics. *) val apply_type : constr -> constr list -> tactic val apply_term : constr -> constr list -> tactic val bring_hyps : named_context -> tactic val apply : constr -> tactic val apply_without_reduce : constr -> tactic val apply_list : constr list -> tactic val apply_with_bindings : constr with_bindings -> tactic val cut_and_apply : constr -> tactic (*s Elimination tactics. *) val general_elim : constr with_bindings -> constr with_bindings -> ?allow_K:bool -> tactic val general_elim_in : identifier -> constr with_bindings -> constr with_bindings -> tactic val default_elim : constr with_bindings -> tactic val simplest_elim : constr -> tactic val elim : constr with_bindings -> constr with_bindings option -> tactic val simple_induct : quantified_hypothesis * (bool ref * intro_pattern_expr list ref list) list ref -> tactic val new_induct : constr induction_arg -> constr with_bindings option -> intro_pattern_expr option * (bool ref * intro_pattern_expr list ref list) list ref -> tactic (*s Case analysis tactics. *) val general_case_analysis : constr with_bindings -> tactic val simplest_case : constr -> tactic val simple_destruct : quantified_hypothesis -> tactic val new_destruct : constr induction_arg -> constr with_bindings option -> intro_pattern_expr option * (bool ref * intro_pattern_expr list ref list) list ref -> tactic (*s Eliminations giving the type instead of the proof. *) val case_type : constr -> tactic val elim_type : constr -> tactic (*s Some eliminations which are frequently used. *) val impE : identifier -> tactic val andE : identifier -> tactic val orE : identifier -> tactic val dImp : clause -> tactic val dAnd : clause -> tactic val dorE : bool -> clause ->tactic (*s Introduction tactics. *) val constructor_tac : int option -> int -> constr bindings -> tactic val one_constructor : int -> constr bindings -> tactic val any_constructor : tactic option -> tactic val left : constr bindings -> tactic val simplest_left : tactic val right : constr bindings -> tactic val simplest_right : tactic val split : constr bindings -> tactic val simplest_split : tactic (*s Logical connective tactics. *) val register_setoid_reflexivity : tactic -> unit val reflexivity : tactic val intros_reflexivity : tactic val register_setoid_symmetry : tactic -> unit val symmetry : tactic val register_setoid_symmetry_in : (identifier -> tactic) -> unit val symmetry_in : identifier -> tactic val intros_symmetry : clause -> tactic val register_setoid_transitivity : (constr -> tactic) -> unit val transitivity : constr -> tactic val intros_transitivity : constr -> tactic val cut : constr -> tactic val cut_intro : constr -> tactic val cut_replacing : identifier -> constr -> (tactic -> tactic) -> tactic val cut_in_parallel : constr list -> tactic val assert_tac : bool -> name -> constr -> tactic val true_cut : name -> constr -> tactic val letin_tac : bool -> name -> constr -> clause -> tactic val forward : bool -> name -> constr -> tactic val generalize : constr list -> tactic val generalize_dep : constr -> tactic val tclABSTRACT : identifier option -> tactic -> tactic