(************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) (* ([`NF],'b) Proofview.Goal.t -> bool (** {6 Primitive tactics. } *) val introduction : ?check:bool -> Id.t -> unit Proofview.tactic val refine : constr -> tactic val convert_concl : ?check:bool -> types -> cast_kind -> unit Proofview.tactic val convert_hyp : ?check:bool -> Context.Named.Declaration.t -> unit Proofview.tactic val convert_concl_no_check : types -> cast_kind -> unit Proofview.tactic val convert_hyp_no_check : Context.Named.Declaration.t -> unit Proofview.tactic val thin : Id.t list -> tactic val mutual_fix : Id.t -> int -> (Id.t * int * constr) list -> int -> tactic val fix : Id.t option -> int -> tactic val mutual_cofix : Id.t -> (Id.t * constr) list -> int -> tactic val cofix : Id.t option -> tactic val convert : constr -> constr -> unit Proofview.tactic val convert_leq : constr -> constr -> unit Proofview.tactic (** {6 Introduction tactics. } *) val fresh_id_in_env : Id.t list -> Id.t -> env -> Id.t val fresh_id : Id.t list -> Id.t -> goal sigma -> Id.t val find_intro_names : Context.Rel.t -> goal sigma -> Id.t list val intro : unit Proofview.tactic val introf : unit Proofview.tactic val intro_move : Id.t option -> Id.t move_location -> unit Proofview.tactic val intro_move_avoid : Id.t option -> Id.t list -> Id.t move_location -> unit Proofview.tactic (** [intro_avoiding idl] acts as intro but prevents the new Id.t to belong to [idl] *) val intro_avoiding : Id.t list -> unit Proofview.tactic val intro_replacing : Id.t -> unit Proofview.tactic val intro_using : Id.t -> unit Proofview.tactic val intro_mustbe_force : Id.t -> unit Proofview.tactic val intro_then : (Id.t -> unit Proofview.tactic) -> unit Proofview.tactic val intros_using : Id.t list -> unit Proofview.tactic val intros_replacing : Id.t list -> unit Proofview.tactic val intros_possibly_replacing : Id.t list -> unit Proofview.tactic val intros : unit Proofview.tactic (** [depth_of_quantified_hypothesis b h g] returns the index of [h] in the conclusion of goal [g], up to head-reduction if [b] is [true] *) val depth_of_quantified_hypothesis : bool -> quantified_hypothesis -> ([`NF],'b) Proofview.Goal.t -> int val intros_until : quantified_hypothesis -> unit Proofview.tactic val intros_clearing : bool list -> unit Proofview.tactic (** Assuming a tactic [tac] depending on an hypothesis Id.t, [try_intros_until tac arg] first assumes that arg denotes a quantified hypothesis (denoted by name or by index) and try to introduce it in context before to apply [tac], otherwise assume the hypothesis is already in context and directly apply [tac] *) val try_intros_until : (Id.t -> unit Proofview.tactic) -> quantified_hypothesis -> unit Proofview.tactic (** Apply a tactic on a quantified hypothesis, an hypothesis in context or a term with bindings *) val onInductionArg : (clear_flag -> constr with_bindings -> unit Proofview.tactic) -> constr with_bindings induction_arg -> unit Proofview.tactic (** Tell if a used hypothesis should be cleared by default or not *) val use_clear_hyp_by_default : unit -> bool (** {6 Introduction tactics with eliminations. } *) val intro_patterns : intro_patterns -> unit Proofview.tactic val intro_patterns_to : Id.t move_location -> intro_patterns -> unit Proofview.tactic val intro_patterns_bound_to : int -> Id.t move_location -> intro_patterns -> unit Proofview.tactic val intro_pattern_to : Id.t move_location -> delayed_open_constr intro_pattern_expr -> unit Proofview.tactic (** Implements user-level "intros", with [] standing for "**" *) val intros_patterns : intro_patterns -> unit Proofview.tactic (** {6 Exact tactics. } *) val assumption : unit Proofview.tactic val exact_no_check : constr -> tactic val vm_cast_no_check : constr -> tactic val native_cast_no_check : constr -> tactic val exact_check : constr -> unit Proofview.tactic val exact_proof : Constrexpr.constr_expr -> tactic (** {6 Reduction tactics. } *) type tactic_reduction = env -> evar_map -> constr -> constr type change_arg = patvar_map -> constr Sigma.run val make_change_arg : constr -> change_arg val reduct_in_hyp : ?check:bool -> tactic_reduction -> hyp_location -> unit Proofview.tactic val reduct_option : ?check:bool -> tactic_reduction * cast_kind -> goal_location -> unit Proofview.tactic val reduct_in_concl : tactic_reduction * cast_kind -> unit Proofview.tactic val change_in_concl : (occurrences * constr_pattern) option -> change_arg -> unit Proofview.tactic val change_concl : constr -> unit Proofview.tactic val change_in_hyp : (occurrences * constr_pattern) option -> change_arg -> hyp_location -> unit Proofview.tactic val red_in_concl : unit Proofview.tactic val red_in_hyp : hyp_location -> unit Proofview.tactic val red_option : goal_location -> unit Proofview.tactic val hnf_in_concl : unit Proofview.tactic val hnf_in_hyp : hyp_location -> unit Proofview.tactic val hnf_option : goal_location -> unit Proofview.tactic val simpl_in_concl : unit Proofview.tactic val simpl_in_hyp : hyp_location -> unit Proofview.tactic val simpl_option : goal_location -> unit Proofview.tactic val normalise_in_concl : unit Proofview.tactic val normalise_in_hyp : hyp_location -> unit Proofview.tactic val normalise_option : goal_location -> unit Proofview.tactic val normalise_vm_in_concl : unit Proofview.tactic val unfold_in_concl : (occurrences * evaluable_global_reference) list -> unit Proofview.tactic val unfold_in_hyp : (occurrences * evaluable_global_reference) list -> hyp_location -> unit Proofview.tactic val unfold_option : (occurrences * evaluable_global_reference) list -> goal_location -> unit Proofview.tactic val change : constr_pattern option -> change_arg -> clause -> tactic val pattern_option : (occurrences * constr) list -> goal_location -> unit Proofview.tactic val reduce : red_expr -> clause -> unit Proofview.tactic val unfold_constr : global_reference -> unit Proofview.tactic (** {6 Modification of the local context. } *) val clear : Id.t list -> tactic val clear_body : Id.t list -> unit Proofview.tactic val unfold_body : Id.t -> unit Proofview.tactic val keep : Id.t list -> unit Proofview.tactic val apply_clear_request : clear_flag -> bool -> constr -> unit Proofview.tactic val specialize : constr with_bindings -> unit Proofview.tactic val move_hyp : Id.t -> Id.t move_location -> tactic val rename_hyp : (Id.t * Id.t) list -> unit Proofview.tactic val revert : Id.t list -> unit Proofview.tactic (** {6 Resolution tactics. } *) val apply_type : constr -> constr list -> unit Proofview.tactic val bring_hyps : Context.Named.t -> unit Proofview.tactic val apply : constr -> unit Proofview.tactic val eapply : constr -> unit Proofview.tactic val apply_with_bindings_gen : advanced_flag -> evars_flag -> (clear_flag * constr with_bindings located) list -> unit Proofview.tactic val apply_with_delayed_bindings_gen : advanced_flag -> evars_flag -> (clear_flag * delayed_open_constr_with_bindings located) list -> unit Proofview.tactic val apply_with_bindings : constr with_bindings -> unit Proofview.tactic val eapply_with_bindings : constr with_bindings -> unit Proofview.tactic val cut_and_apply : constr -> unit Proofview.tactic val apply_in : advanced_flag -> evars_flag -> Id.t -> (clear_flag * constr with_bindings located) list -> intro_pattern option -> unit Proofview.tactic val apply_delayed_in : advanced_flag -> evars_flag -> Id.t -> (clear_flag * delayed_open_constr_with_bindings located) list -> intro_pattern option -> unit Proofview.tactic val run_delayed : Environ.env -> evar_map -> 'a delayed_open -> 'a * evar_map (** {6 Elimination tactics. } *) (* The general form of an induction principle is the following: forall prm1 prm2 ... prmp, (induction parameters) forall Q1...,(Qi:Ti_1 -> Ti_2 ->...-> Ti_ni),...Qq, (predicates) branch1, branch2, ... , branchr, (branches of the principle) forall (x1:Ti_1) (x2:Ti_2) ... (xni:Ti_ni), (induction arguments) (HI: I prm1..prmp x1...xni) (optional main induction arg) -> (Qi x1...xni HI (f prm1...prmp x1...xni)).(conclusion) ^^ ^^^^^^^^^^^^^^^^^^^^^^^^ optional optional even if HI argument added if principle present above generated by functional induction [indarg] [farg] HI is not present when the induction principle does not come directly from an inductive type (like when it is generated by functional induction for example). HI is present otherwise BUT may not appear in the conclusion (dependent principle). HI and (f...) cannot be both present. Principles taken from functional induction have the final (f...). *) (** [rel_contexts] and [rel_declaration] actually contain triples, and lists are actually in reverse order to fit [compose_prod]. *) type elim_scheme = { elimc: constr with_bindings option; elimt: types; indref: global_reference option; params: Context.Rel.t; (** (prm1,tprm1);(prm2,tprm2)...(prmp,tprmp) *) nparams: int; (** number of parameters *) predicates: Context.Rel.t; (** (Qq, (Tq_1 -> Tq_2 ->...-> Tq_nq)), (Q1,...) *) npredicates: int; (** Number of predicates *) branches: Context.Rel.t; (** branchr,...,branch1 *) nbranches: int; (** Number of branches *) args: Context.Rel.t; (** (xni, Ti_ni) ... (x1, Ti_1) *) nargs: int; (** number of arguments *) indarg: Context.Rel.Declaration.t option; (** Some (H,I prm1..prmp x1...xni) if HI is in premisses, None otherwise *) concl: types; (** Qi x1...xni HI (f...), HI and (f...) are optional and mutually exclusive *) indarg_in_concl: bool; (** true if HI appears at the end of conclusion *) farg_in_concl: bool; (** true if (f...) appears at the end of conclusion *) } val compute_elim_sig : ?elimc: constr with_bindings -> types -> elim_scheme (** elim principle with the index of its inductive arg *) type eliminator = { elimindex : int option; (** None = find it automatically *) elimrename : (bool * int array) option; (** None = don't rename Prop hyps with H-names *) elimbody : constr with_bindings } val general_elim : evars_flag -> clear_flag -> constr with_bindings -> eliminator -> unit Proofview.tactic val general_elim_clause : evars_flag -> unify_flags -> identifier option -> clausenv -> eliminator -> unit Proofview.tactic val default_elim : evars_flag -> clear_flag -> constr with_bindings -> unit Proofview.tactic val simplest_elim : constr -> unit Proofview.tactic val elim : evars_flag -> clear_flag -> constr with_bindings -> constr with_bindings option -> unit Proofview.tactic val simple_induct : quantified_hypothesis -> unit Proofview.tactic val induction : evars_flag -> clear_flag -> constr -> or_and_intro_pattern option -> constr with_bindings option -> unit Proofview.tactic (** {6 Case analysis tactics. } *) val general_case_analysis : evars_flag -> clear_flag -> constr with_bindings -> unit Proofview.tactic val simplest_case : constr -> unit Proofview.tactic val simple_destruct : quantified_hypothesis -> unit Proofview.tactic val destruct : evars_flag -> clear_flag -> constr -> or_and_intro_pattern option -> constr with_bindings option -> unit Proofview.tactic (** {6 Generic case analysis / induction tactics. } *) (** Implements user-level "destruct" and "induction" *) val induction_destruct : rec_flag -> evars_flag -> (delayed_open_constr_with_bindings induction_arg * (intro_pattern_naming option * or_and_intro_pattern option) * clause option) list * constr with_bindings option -> unit Proofview.tactic (** {6 Eliminations giving the type instead of the proof. } *) val case_type : types -> unit Proofview.tactic val elim_type : types -> unit Proofview.tactic (** {6 Constructor tactics. } *) val constructor_tac : evars_flag -> int option -> int -> constr bindings -> unit Proofview.tactic val any_constructor : evars_flag -> unit Proofview.tactic option -> unit Proofview.tactic val one_constructor : int -> constr bindings -> unit Proofview.tactic val left : constr bindings -> unit Proofview.tactic val right : constr bindings -> unit Proofview.tactic val split : constr bindings -> unit Proofview.tactic val left_with_bindings : evars_flag -> constr bindings -> unit Proofview.tactic val right_with_bindings : evars_flag -> constr bindings -> unit Proofview.tactic val split_with_bindings : evars_flag -> constr bindings list -> unit Proofview.tactic val simplest_left : unit Proofview.tactic val simplest_right : unit Proofview.tactic val simplest_split : unit Proofview.tactic (** {6 Equality tactics. } *) val setoid_reflexivity : unit Proofview.tactic Hook.t val reflexivity_red : bool -> unit Proofview.tactic val reflexivity : unit Proofview.tactic val intros_reflexivity : unit Proofview.tactic val setoid_symmetry : unit Proofview.tactic Hook.t val symmetry_red : bool -> unit Proofview.tactic val symmetry : unit Proofview.tactic val setoid_symmetry_in : (Id.t -> unit Proofview.tactic) Hook.t val intros_symmetry : clause -> unit Proofview.tactic val setoid_transitivity : (constr option -> unit Proofview.tactic) Hook.t val transitivity_red : bool -> constr option -> unit Proofview.tactic val transitivity : constr -> unit Proofview.tactic val etransitivity : unit Proofview.tactic val intros_transitivity : constr option -> unit Proofview.tactic (** {6 Cut tactics. } *) val assert_before_replacing: Id.t -> types -> unit Proofview.tactic val assert_after_replacing : Id.t -> types -> unit Proofview.tactic val assert_before : Name.t -> types -> unit Proofview.tactic val assert_after : Name.t -> types -> unit Proofview.tactic val assert_as : (* true = before *) bool -> (* optionally tell if a specialization of some hyp: *) identifier option -> intro_pattern option -> constr -> unit Proofview.tactic (** Implements the tactics assert, enough and pose proof; note that "by" applies on the first goal for both assert and enough *) val assert_by : Name.t -> types -> unit Proofview.tactic -> unit Proofview.tactic val enough_by : Name.t -> types -> unit Proofview.tactic -> unit Proofview.tactic val pose_proof : Name.t -> constr -> unit Proofview.tactic (** Common entry point for user-level "assert", "enough" and "pose proof" *) val forward : bool -> unit Proofview.tactic option option -> intro_pattern option -> constr -> unit Proofview.tactic (** Implements the tactic cut, actually a modus ponens rule *) val cut : types -> unit Proofview.tactic (** {6 Tactics for adding local definitions. } *) val letin_tac : (bool * intro_pattern_naming) option -> Name.t -> constr -> types option -> clause -> unit Proofview.tactic (** Common entry point for user-level "set", "pose" and "remember" *) val letin_pat_tac : (bool * intro_pattern_naming) option -> Name.t -> pending_constr -> clause -> unit Proofview.tactic (** {6 Generalize tactics. } *) val generalize : constr list -> tactic val generalize_gen : (constr Locus.with_occurrences * Name.t) list -> tactic val new_generalize : constr list -> unit Proofview.tactic val new_generalize_gen : ((occurrences * constr) * Name.t) list -> unit Proofview.tactic val generalize_dep : ?with_let:bool (** Don't lose let bindings *) -> constr -> tactic (** {6 Other tactics. } *) val unify : ?state:Names.transparent_state -> constr -> constr -> unit Proofview.tactic val tclABSTRACT : Id.t option -> unit Proofview.tactic -> unit Proofview.tactic val abstract_generalize : ?generalize_vars:bool -> ?force_dep:bool -> Id.t -> unit Proofview.tactic val specialize_eqs : Id.t -> tactic val general_rewrite_clause : (bool -> evars_flag -> constr with_bindings -> clause -> unit Proofview.tactic) Hook.t val subst_one : (bool -> Id.t -> Id.t * constr * bool -> unit Proofview.tactic) Hook.t val declare_intro_decomp_eq : ((int -> unit Proofview.tactic) -> Coqlib.coq_eq_data * types * (types * constr * constr) -> constr * types -> unit Proofview.tactic) -> unit (** {6 Simple form of basic tactics. } *) module Simple : sig (** Simplified version of some of the above tactics *) val intro : Id.t -> unit Proofview.tactic val apply : constr -> unit Proofview.tactic val eapply : constr -> unit Proofview.tactic val elim : constr -> unit Proofview.tactic val case : constr -> unit Proofview.tactic val apply_in : identifier -> constr -> unit Proofview.tactic end (** {6 Tacticals defined directly in term of Proofview} *) module New : sig val refine : ?unsafe:bool -> constr Sigma.run -> unit Proofview.tactic (** [refine ?unsafe c] is [Refine.refine ?unsafe c] followed by beta-iota-reduction of the conclusion. *) val reduce_after_refine : unit Proofview.tactic (** The reducing tactic called after {!refine}. *) open Proofview val exact_proof : Constrexpr.constr_expr -> unit tactic end