(************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) (* user_err (print_retype_error e) open Goptions (* Option for 8.2 compatibility *) let dependent_propositions_elimination = ref true let use_dependent_propositions_elimination () = !dependent_propositions_elimination && Flags.version_strictly_greater Flags.V8_2 let _ = declare_bool_option { optsync = true; optdepr = false; optname = "dependent-propositions-elimination tactic"; optkey = ["Dependent";"Propositions";"Elimination"]; optread = (fun () -> !dependent_propositions_elimination) ; optwrite = (fun b -> dependent_propositions_elimination := b) } let _ = declare_bool_option { optsync = true; optdepr = false; optname = "trigger bugged context matching compatibility"; optkey = ["Tactic";"Compat";"Context"]; optread = (fun () -> !Flags.tactic_context_compat) ; optwrite = (fun b -> Flags.tactic_context_compat := b) } let apply_solve_class_goals = ref (false) let _ = Goptions.declare_bool_option { Goptions.optsync = true; Goptions.optdepr = true; Goptions.optname = "Perform typeclass resolution on apply-generated subgoals."; Goptions.optkey = ["Typeclass";"Resolution";"After";"Apply"]; Goptions.optread = (fun () -> !apply_solve_class_goals); Goptions.optwrite = (fun a -> apply_solve_class_goals:=a); } let clear_hyp_by_default = ref false let use_clear_hyp_by_default () = !clear_hyp_by_default let _ = declare_bool_option { optsync = true; optdepr = false; optname = "default clearing of hypotheses after use"; optkey = ["Default";"Clearing";"Used";"Hypotheses"]; optread = (fun () -> !clear_hyp_by_default) ; optwrite = (fun b -> clear_hyp_by_default := b) } (* Compatibility option useful in developments using apply intensively in ltac code *) let universal_lemma_under_conjunctions = ref false let accept_universal_lemma_under_conjunctions () = !universal_lemma_under_conjunctions let _ = declare_bool_option { optsync = true; optdepr = false; optname = "trivial unification in tactics applying under conjunctions"; optkey = ["Universal";"Lemma";"Under";"Conjunction"]; optread = (fun () -> !universal_lemma_under_conjunctions) ; optwrite = (fun b -> universal_lemma_under_conjunctions := b) } (* Shrinking of abstract proofs. *) let shrink_abstract = ref true let _ = declare_bool_option { optsync = true; optdepr = true; optname = "shrinking of abstracted proofs"; optkey = ["Shrink"; "Abstract"]; optread = (fun () -> !shrink_abstract) ; optwrite = (fun b -> shrink_abstract := b) } (* The following boolean governs what "intros []" do on examples such as "forall x:nat*nat, x=x"; if true, it behaves as "intros [? ?]"; if false, it behaves as "intro H; case H; clear H" for fresh H. Kept as false for compatibility. *) let bracketing_last_or_and_intro_pattern = ref true let use_bracketing_last_or_and_intro_pattern () = !bracketing_last_or_and_intro_pattern && Flags.version_strictly_greater Flags.V8_4 let _ = declare_bool_option { optsync = true; optdepr = false; optname = "bracketing last or-and introduction pattern"; optkey = ["Bracketing";"Last";"Introduction";"Pattern"]; optread = (fun () -> !bracketing_last_or_and_intro_pattern); optwrite = (fun b -> bracketing_last_or_and_intro_pattern := b) } (*********************************************) (* Tactics *) (*********************************************) (******************************************) (* Primitive tactics *) (******************************************) (** This tactic creates a partial proof realizing the introduction rule, but does not check anything. *) let unsafe_intro env store decl b = Refine.refine ~unsafe:true { run = begin fun sigma -> let ctx = named_context_val env in let nctx = push_named_context_val decl ctx in let inst = List.map (NamedDecl.get_id %> mkVar) (named_context env) in let ninst = mkRel 1 :: inst in let nb = subst1 (mkVar (NamedDecl.get_id decl)) b in let Sigma (ev, sigma, p) = new_evar_instance nctx sigma nb ~principal:true ~store ninst in Sigma (mkNamedLambda_or_LetIn decl ev, sigma, p) end } let introduction ?(check=true) id = Proofview.Goal.enter { enter = begin fun gl -> let gl = Proofview.Goal.assume gl in let concl = Proofview.Goal.concl gl in let sigma = Tacmach.New.project gl in let hyps = named_context_val (Proofview.Goal.env gl) in let store = Proofview.Goal.extra gl in let env = Proofview.Goal.env gl in let () = if check && mem_named_context_val id hyps then user_err ~hdr:"Tactics.introduction" (str "Variable " ++ pr_id id ++ str " is already declared.") in let open Context.Named.Declaration in match EConstr.kind sigma concl with | Prod (_, t, b) -> unsafe_intro env store (LocalAssum (id, t)) b | LetIn (_, c, t, b) -> unsafe_intro env store (LocalDef (id, c, t)) b | _ -> raise (RefinerError IntroNeedsProduct) end } let refine = Tacmach.refine let convert_concl ?(check=true) ty k = Proofview.Goal.enter { enter = begin fun gl -> let env = Proofview.Goal.env gl in let store = Proofview.Goal.extra gl in let conclty = Proofview.Goal.concl gl in Refine.refine ~unsafe:true { run = begin fun sigma -> let Sigma ((), sigma, p) = if check then begin let sigma = Sigma.to_evar_map sigma in ignore (Typing.unsafe_type_of env sigma ty); let sigma,b = Reductionops.infer_conv env sigma ty conclty in if not b then error "Not convertible."; Sigma.Unsafe.of_pair ((), sigma) end else Sigma.here () sigma in let Sigma (x, sigma, q) = Evarutil.new_evar env sigma ~principal:true ~store ty in let ans = if k == DEFAULTcast then x else mkCast(x,k,conclty) in Sigma (ans, sigma, p +> q) end } end } let convert_hyp ?(check=true) d = Proofview.Goal.enter { enter = begin fun gl -> let env = Proofview.Goal.env gl in let sigma = Tacmach.New.project gl in let ty = Proofview.Goal.concl gl in let store = Proofview.Goal.extra gl in let sign = convert_hyp check (named_context_val env) sigma d in let env = reset_with_named_context sign env in Refine.refine ~unsafe:true { run = begin fun sigma -> Evarutil.new_evar env sigma ~principal:true ~store ty end } end } let convert_concl_no_check = convert_concl ~check:false let convert_hyp_no_check = convert_hyp ~check:false let convert_gen pb x y = Proofview.Goal.enter { enter = begin fun gl -> try let sigma, b = Tacmach.New.pf_apply (Reductionops.infer_conv ~pb) gl x y in if b then Proofview.Unsafe.tclEVARS sigma else Tacticals.New.tclFAIL 0 (str "Not convertible") with (* Reduction.NotConvertible *) _ -> (** FIXME: Sometimes an anomaly is raised from conversion *) Tacticals.New.tclFAIL 0 (str "Not convertible") end } let convert x y = convert_gen Reduction.CONV x y let convert_leq x y = convert_gen Reduction.CUMUL x y let clear_dependency_msg env sigma id = function | Evarutil.OccurHypInSimpleClause None -> pr_id id ++ str " is used in conclusion." | Evarutil.OccurHypInSimpleClause (Some id') -> pr_id id ++ strbrk " is used in hypothesis " ++ pr_id id' ++ str"." | Evarutil.EvarTypingBreak ev -> str "Cannot remove " ++ pr_id id ++ strbrk " without breaking the typing of " ++ Printer.pr_existential env sigma ev ++ str"." let error_clear_dependency env sigma id err = user_err (clear_dependency_msg env sigma id err) let replacing_dependency_msg env sigma id = function | Evarutil.OccurHypInSimpleClause None -> str "Cannot change " ++ pr_id id ++ str ", it is used in conclusion." | Evarutil.OccurHypInSimpleClause (Some id') -> str "Cannot change " ++ pr_id id ++ strbrk ", it is used in hypothesis " ++ pr_id id' ++ str"." | Evarutil.EvarTypingBreak ev -> str "Cannot change " ++ pr_id id ++ strbrk " without breaking the typing of " ++ Printer.pr_existential env sigma ev ++ str"." let error_replacing_dependency env sigma id err = user_err (replacing_dependency_msg env sigma id err) (* This tactic enables the user to remove hypotheses from the signature. * Some care is taken to prevent him from removing variables that are * subsequently used in other hypotheses or in the conclusion of the * goal. *) let clear_gen fail = function | [] -> Proofview.tclUNIT () | ids -> Proofview.Goal.s_enter { s_enter = begin fun gl -> let ids = List.fold_right Id.Set.add ids Id.Set.empty in (** clear_hyps_in_evi does not require nf terms *) let gl = Proofview.Goal.assume gl in let env = Proofview.Goal.env gl in let sigma = Tacmach.New.project gl in let concl = Proofview.Goal.concl gl in let evdref = ref sigma in let (hyps, concl) = try clear_hyps_in_evi env evdref (named_context_val env) concl ids with Evarutil.ClearDependencyError (id,err) -> fail env sigma id err in let env = reset_with_named_context hyps env in let tac = Refine.refine ~unsafe:true { run = fun sigma -> Evarutil.new_evar env sigma ~principal:true concl } in Sigma.Unsafe.of_pair (tac, !evdref) end } let clear ids = clear_gen error_clear_dependency ids let clear_for_replacing ids = clear_gen error_replacing_dependency ids let apply_clear_request clear_flag dft c = Proofview.tclEVARMAP >>= fun sigma -> let check_isvar c = if not (isVar sigma c) then error "keep/clear modifiers apply only to hypothesis names." in let doclear = match clear_flag with | None -> dft && isVar sigma c | Some true -> check_isvar c; true | Some false -> false in if doclear then clear [destVar sigma c] else Tacticals.New.tclIDTAC (* Moving hypotheses *) let move_hyp id dest = Proofview.Goal.enter { enter = begin fun gl -> let env = Proofview.Goal.env gl in let sigma = Tacmach.New.project gl in let ty = Proofview.Goal.concl gl in let store = Proofview.Goal.extra gl in let sign = named_context_val env in let sign' = move_hyp_in_named_context sigma id dest sign in let env = reset_with_named_context sign' env in Refine.refine ~unsafe:true { run = begin fun sigma -> Evarutil.new_evar env sigma ~principal:true ~store ty end } end } (* Renaming hypotheses *) let rename_hyp repl = let fold accu (src, dst) = match accu with | None -> None | Some (srcs, dsts) -> if Id.Set.mem src srcs then None else if Id.Set.mem dst dsts then None else let srcs = Id.Set.add src srcs in let dsts = Id.Set.add dst dsts in Some (srcs, dsts) in let init = Some (Id.Set.empty, Id.Set.empty) in let dom = List.fold_left fold init repl in match dom with | None -> Tacticals.New.tclZEROMSG (str "Not a one-to-one name mapping") | Some (src, dst) -> Proofview.Goal.enter { enter = begin fun gl -> let gl = Proofview.Goal.assume gl in let hyps = Proofview.Goal.hyps gl in let concl = Proofview.Goal.concl gl in let store = Proofview.Goal.extra gl in (** Check that we do not mess variables *) let fold accu decl = Id.Set.add (NamedDecl.get_id decl) accu in let vars = List.fold_left fold Id.Set.empty hyps in let () = if not (Id.Set.subset src vars) then let hyp = Id.Set.choose (Id.Set.diff src vars) in raise (RefinerError (NoSuchHyp hyp)) in let mods = Id.Set.diff vars src in let () = try let elt = Id.Set.choose (Id.Set.inter dst mods) in CErrors.user_err (pr_id elt ++ str " is already used") with Not_found -> () in (** All is well *) let make_subst (src, dst) = (src, mkVar dst) in let subst = List.map make_subst repl in let subst c = Vars.replace_vars subst c in let map decl = decl |> NamedDecl.map_id (fun id -> try List.assoc_f Id.equal id repl with Not_found -> id) |> NamedDecl.map_constr subst in let nhyps = List.map map hyps in let nconcl = subst concl in let nctx = val_of_named_context nhyps in let instance = List.map (NamedDecl.get_id %> mkVar) hyps in Refine.refine ~unsafe:true { run = begin fun sigma -> Evarutil.new_evar_instance nctx sigma nconcl ~principal:true ~store instance end } end } (**************************************************************) (* Fresh names *) (**************************************************************) let fresh_id_in_env avoid id env = next_ident_away_in_goal id (avoid@ids_of_named_context (named_context env)) let fresh_id avoid id gl = fresh_id_in_env avoid id (pf_env gl) let new_fresh_id avoid id gl = fresh_id_in_env avoid id (Proofview.Goal.env gl) let id_of_name_with_default id = function | Anonymous -> id | Name id -> id let default_id_of_sort s = if Sorts.is_small s then default_small_ident else default_type_ident let default_id env sigma decl = let open Context.Rel.Declaration in match decl with | LocalAssum (name,t) -> let dft = default_id_of_sort (Retyping.get_sort_of env sigma t) in id_of_name_with_default dft name | LocalDef (name,b,_) -> id_of_name_using_hdchar env sigma b name (* Non primitive introduction tactics are treated by intro_then_gen There is possibly renaming, with possibly names to avoid and possibly a move to do after the introduction *) type name_flag = | NamingAvoid of Id.t list | NamingBasedOn of Id.t * Id.t list | NamingMustBe of Id.t Loc.located let naming_of_name = function | Anonymous -> NamingAvoid [] | Name id -> NamingMustBe (Loc.tag id) let find_name mayrepl decl naming gl = match naming with | NamingAvoid idl -> (* this case must be compatible with [find_intro_names] below. *) let env = Proofview.Goal.env gl in let sigma = Tacmach.New.project gl in new_fresh_id idl (default_id env sigma decl) gl | NamingBasedOn (id,idl) -> new_fresh_id idl id gl | NamingMustBe (loc,id) -> (* When name is given, we allow to hide a global name *) let ids_of_hyps = Tacmach.New.pf_ids_of_hyps gl in let id' = next_ident_away id ids_of_hyps in if not mayrepl && not (Id.equal id' id) then user_err ?loc (pr_id id ++ str" is already used."); id (**************************************************************) (* Cut rule *) (**************************************************************) let assert_before_then_gen b naming t tac = let open Context.Rel.Declaration in Proofview.Goal.enter { enter = begin fun gl -> let id = find_name b (LocalAssum (Anonymous,t)) naming gl in Tacticals.New.tclTHENLAST (Proofview.V82.tactic (fun gl -> try Tacmach.internal_cut b id t gl with Evarutil.ClearDependencyError (id,err) -> error_replacing_dependency (pf_env gl) (project gl) id err)) (tac id) end } let assert_before_gen b naming t = assert_before_then_gen b naming t (fun _ -> Proofview.tclUNIT ()) let assert_before na = assert_before_gen false (naming_of_name na) let assert_before_replacing id = assert_before_gen true (NamingMustBe (Loc.tag id)) let assert_after_then_gen b naming t tac = let open Context.Rel.Declaration in Proofview.Goal.enter { enter = begin fun gl -> let id = find_name b (LocalAssum (Anonymous,t)) naming gl in Tacticals.New.tclTHENFIRST (Proofview.V82.tactic (fun gl -> try Tacmach.internal_cut_rev b id t gl with Evarutil.ClearDependencyError (id,err) -> error_replacing_dependency (pf_env gl) (project gl) id err)) (tac id) end } let assert_after_gen b naming t = assert_after_then_gen b naming t (fun _ -> (Proofview.tclUNIT ())) let assert_after na = assert_after_gen false (naming_of_name na) let assert_after_replacing id = assert_after_gen true (NamingMustBe (Loc.tag id)) (**************************************************************) (* Fixpoints and CoFixpoints *) (**************************************************************) let rec mk_holes : type r s. _ -> r Sigma.t -> (s, r) Sigma.le -> _ -> (_, s) Sigma.sigma = fun env sigma p -> function | [] -> Sigma ([], sigma, p) | arg :: rem -> let Sigma (arg, sigma, q) = Evarutil.new_evar env sigma arg in let Sigma (rem, sigma, r) = mk_holes env sigma (p +> q) rem in Sigma (arg :: rem, sigma, r) let rec check_mutind env sigma k cl = match EConstr.kind sigma (strip_outer_cast sigma cl) with | Prod (na, c1, b) -> if Int.equal k 1 then try let ((sp, _), u), _ = find_inductive env sigma c1 in (sp, u) with Not_found -> error "Cannot do a fixpoint on a non inductive type." else let open Context.Rel.Declaration in check_mutind (push_rel (LocalAssum (na, c1)) env) sigma (pred k) b | LetIn (na, c1, t, b) -> let open Context.Rel.Declaration in check_mutind (push_rel (LocalDef (na, c1, t)) env) sigma k b | _ -> error "Not enough products." (* Refine as a fixpoint *) let mutual_fix f n rest j = Proofview.Goal.enter { enter = begin fun gl -> let env = Proofview.Goal.env gl in let sigma = Tacmach.New.project gl in let concl = Proofview.Goal.concl gl in let (sp, u) = check_mutind env sigma n concl in let firsts, lasts = List.chop j rest in let all = firsts @ (f, n, concl) :: lasts in let rec mk_sign sign = function | [] -> sign | (f, n, ar) :: oth -> let open Context.Named.Declaration in let (sp', u') = check_mutind env sigma n ar in if not (eq_mind sp sp') then error "Fixpoints should be on the same mutual inductive declaration."; if mem_named_context_val f sign then user_err ~hdr:"Logic.prim_refiner" (str "Name " ++ pr_id f ++ str " already used in the environment"); mk_sign (push_named_context_val (LocalAssum (f, ar)) sign) oth in let nenv = reset_with_named_context (mk_sign (named_context_val env) all) env in Refine.refine { run = begin fun sigma -> let Sigma (evs, sigma, p) = mk_holes nenv sigma Sigma.refl (List.map pi3 all) in let ids = List.map pi1 all in let evs = List.map (Vars.subst_vars (List.rev ids)) evs in let indxs = Array.of_list (List.map (fun n -> n-1) (List.map pi2 all)) in let funnames = Array.of_list (List.map (fun i -> Name i) ids) in let typarray = Array.of_list (List.map pi3 all) in let bodies = Array.of_list evs in let oterm = mkFix ((indxs,0),(funnames,typarray,bodies)) in Sigma (oterm, sigma, p) end } end } let fix ido n = match ido with | None -> Proofview.Goal.enter { enter = begin fun gl -> let name = Pfedit.get_current_proof_name () in let id = new_fresh_id [] name gl in mutual_fix id n [] 0 end } | Some id -> mutual_fix id n [] 0 let rec check_is_mutcoind env sigma cl = let b = whd_all env sigma cl in match EConstr.kind sigma b with | Prod (na, c1, b) -> let open Context.Rel.Declaration in check_is_mutcoind (push_rel (LocalAssum (na,c1)) env) sigma b | _ -> try let _ = find_coinductive env sigma b in () with Not_found -> error "All methods must construct elements in coinductive types." (* Refine as a cofixpoint *) let mutual_cofix f others j = Proofview.Goal.enter { enter = begin fun gl -> let env = Proofview.Goal.env gl in let sigma = Tacmach.New.project gl in let concl = Proofview.Goal.concl gl in let firsts,lasts = List.chop j others in let all = firsts @ (f, concl) :: lasts in List.iter (fun (_, c) -> check_is_mutcoind env sigma c) all; let rec mk_sign sign = function | [] -> sign | (f, ar) :: oth -> let open Context.Named.Declaration in if mem_named_context_val f sign then error "Name already used in the environment."; mk_sign (push_named_context_val (LocalAssum (f, ar)) sign) oth in let nenv = reset_with_named_context (mk_sign (named_context_val env) all) env in Refine.refine { run = begin fun sigma -> let (ids, types) = List.split all in let Sigma (evs, sigma, p) = mk_holes nenv sigma Sigma.refl types in let evs = List.map (Vars.subst_vars (List.rev ids)) evs in let funnames = Array.of_list (List.map (fun i -> Name i) ids) in let typarray = Array.of_list types in let bodies = Array.of_list evs in let oterm = mkCoFix (0, (funnames, typarray, bodies)) in Sigma (oterm, sigma, p) end } end } let cofix ido = match ido with | None -> Proofview.Goal.enter { enter = begin fun gl -> let name = Pfedit.get_current_proof_name () in let id = new_fresh_id [] name gl in mutual_cofix id [] 0 end } | Some id -> mutual_cofix id [] 0 (**************************************************************) (* Reduction and conversion tactics *) (**************************************************************) type tactic_reduction = env -> evar_map -> constr -> constr let pf_reduce_decl redfun where decl gl = let open Context.Named.Declaration in let redfun' c = Tacmach.New.pf_apply redfun gl c in match decl with | LocalAssum (id,ty) -> if where == InHypValueOnly then user_err (pr_id id ++ str " has no value."); LocalAssum (id,redfun' ty) | LocalDef (id,b,ty) -> let b' = if where != InHypTypeOnly then redfun' b else b in let ty' = if where != InHypValueOnly then redfun' ty else ty in LocalDef (id,b',ty') (* Possibly equip a reduction with the occurrences mentioned in an occurrence clause *) let error_illegal_clause () = error "\"at\" clause not supported in presence of an occurrence clause." let error_illegal_non_atomic_clause () = error "\"at\" clause not supported in presence of a non atomic \"in\" clause." let error_occurrences_not_unsupported () = error "Occurrences not supported for this reduction tactic." let bind_change_occurrences occs = function | None -> None | Some c -> Some (Redexpr.out_with_occurrences (occs,c)) let bind_red_expr_occurrences occs nbcl redexp = let has_at_clause = function | Unfold l -> List.exists (fun (occl,_) -> occl != AllOccurrences) l | Pattern l -> List.exists (fun (occl,_) -> occl != AllOccurrences) l | Simpl (_,Some (occl,_)) -> occl != AllOccurrences | _ -> false in if occs == AllOccurrences then if nbcl > 1 && has_at_clause redexp then error_illegal_non_atomic_clause () else redexp else match redexp with | Unfold (_::_::_) -> error_illegal_clause () | Unfold [(occl,c)] -> if occl != AllOccurrences then error_illegal_clause () else Unfold [(occs,c)] | Pattern (_::_::_) -> error_illegal_clause () | Pattern [(occl,c)] -> if occl != AllOccurrences then error_illegal_clause () else Pattern [(occs,c)] | Simpl (f,Some (occl,c)) -> if occl != AllOccurrences then error_illegal_clause () else Simpl (f,Some (occs,c)) | CbvVm (Some (occl,c)) -> if occl != AllOccurrences then error_illegal_clause () else CbvVm (Some (occs,c)) | CbvNative (Some (occl,c)) -> if occl != AllOccurrences then error_illegal_clause () else CbvNative (Some (occs,c)) | Red _ | Hnf | Cbv _ | Lazy _ | Cbn _ | ExtraRedExpr _ | Fold _ | Simpl (_,None) | CbvVm None | CbvNative None -> error_occurrences_not_unsupported () | Unfold [] | Pattern [] -> assert false (* The following two tactics apply an arbitrary reduction function either to the conclusion or to a certain hypothesis *) let reduct_in_concl (redfun,sty) = Proofview.Goal.enter { enter = begin fun gl -> convert_concl_no_check (Tacmach.New.pf_apply redfun gl (Tacmach.New.pf_concl gl)) sty end } let reduct_in_hyp ?(check=false) redfun (id,where) = Proofview.Goal.enter { enter = begin fun gl -> convert_hyp ~check (pf_reduce_decl redfun where (Tacmach.New.pf_get_hyp id gl) gl) end } let revert_cast (redfun,kind as r) = if kind == DEFAULTcast then (redfun,REVERTcast) else r let reduct_option ?(check=false) redfun = function | Some id -> reduct_in_hyp ~check (fst redfun) id | None -> reduct_in_concl (revert_cast redfun) (** Tactic reduction modulo evars (for universes essentially) *) let pf_e_reduce_decl redfun where decl gl = let open Context.Named.Declaration in let sigma = Proofview.Goal.sigma gl in let redfun sigma c = redfun.e_redfun (Tacmach.New.pf_env gl) sigma c in match decl with | LocalAssum (id,ty) -> if where == InHypValueOnly then user_err (pr_id id ++ str " has no value."); let Sigma (ty', sigma, p) = redfun sigma ty in Sigma (LocalAssum (id, ty'), sigma, p) | LocalDef (id,b,ty) -> let Sigma (b', sigma, p) = if where != InHypTypeOnly then redfun sigma b else Sigma.here b sigma in let Sigma (ty', sigma, q) = if where != InHypValueOnly then redfun sigma ty else Sigma.here ty sigma in Sigma (LocalDef (id, b', ty'), sigma, p +> q) let e_reduct_in_concl ~check (redfun, sty) = Proofview.Goal.s_enter { s_enter = begin fun gl -> let sigma = Proofview.Goal.sigma gl in let Sigma (c', sigma, p) = redfun.e_redfun (Tacmach.New.pf_env gl) sigma (Tacmach.New.pf_concl gl) in Sigma (convert_concl ~check c' sty, sigma, p) end } let e_reduct_in_hyp ?(check=false) redfun (id, where) = Proofview.Goal.s_enter { s_enter = begin fun gl -> let Sigma (decl', sigma, p) = pf_e_reduce_decl redfun where (Tacmach.New.pf_get_hyp id gl) gl in Sigma (convert_hyp ~check decl', sigma, p) end } let e_reduct_option ?(check=false) redfun = function | Some id -> e_reduct_in_hyp ~check (fst redfun) id | None -> e_reduct_in_concl ~check (revert_cast redfun) (** Versions with evars to maintain the unification of universes resulting from conversions. *) let e_change_in_concl (redfun,sty) = Proofview.Goal.s_enter { s_enter = begin fun gl -> let sigma = Proofview.Goal.sigma gl in let Sigma (c, sigma, p) = redfun.e_redfun (Proofview.Goal.env gl) sigma (Proofview.Goal.concl gl) in Sigma (convert_concl_no_check c sty, sigma, p) end } let e_pf_change_decl (redfun : bool -> e_reduction_function) where decl env sigma = let open Context.Named.Declaration in match decl with | LocalAssum (id,ty) -> if where == InHypValueOnly then user_err (pr_id id ++ str " has no value."); let Sigma (ty', sigma, p) = (redfun false).e_redfun env sigma ty in Sigma (LocalAssum (id, ty'), sigma, p) | LocalDef (id,b,ty) -> let Sigma (b', sigma, p) = if where != InHypTypeOnly then (redfun true).e_redfun env sigma b else Sigma.here b sigma in let Sigma (ty', sigma, q) = if where != InHypValueOnly then (redfun false).e_redfun env sigma ty else Sigma.here ty sigma in Sigma (LocalDef (id,b',ty'), sigma, p +> q) let e_change_in_hyp redfun (id,where) = Proofview.Goal.s_enter { s_enter = begin fun gl -> let sigma = Proofview.Goal.sigma gl in let hyp = Tacmach.New.pf_get_hyp id (Proofview.Goal.assume gl) in let Sigma (c, sigma, p) = e_pf_change_decl redfun where hyp (Proofview.Goal.env gl) sigma in Sigma (convert_hyp c, sigma, p) end } type change_arg = Pattern.patvar_map -> EConstr.constr Sigma.run let make_change_arg c pats = { run = fun sigma -> Sigma.here (replace_vars (Id.Map.bindings pats) c) sigma } let check_types env sigma mayneedglobalcheck deep newc origc = let t1 = Retyping.get_type_of env sigma newc in if deep then begin let t2 = Retyping.get_type_of env sigma origc in let sigma, t2 = Evarsolve.refresh_universes ~onlyalg:true (Some false) env sigma t2 in let sigma, b = infer_conv ~pb:Reduction.CUMUL env sigma t1 t2 in if not b then if isSort sigma (whd_all env sigma t1) && isSort sigma (whd_all env sigma t2) then (mayneedglobalcheck := true; sigma) else user_err ~hdr:"convert-check-hyp" (str "Types are incompatible.") else sigma end else if not (isSort sigma (whd_all env sigma t1)) then user_err ~hdr:"convert-check-hyp" (str "Not a type.") else sigma (* Now we introduce different instances of the previous tacticals *) let change_and_check cv_pb mayneedglobalcheck deep t = { e_redfun = begin fun env sigma c -> let Sigma (t', sigma, p) = t.run sigma in let sigma = Sigma.to_evar_map sigma in let sigma = check_types env sigma mayneedglobalcheck deep t' c in let sigma, b = infer_conv ~pb:cv_pb env sigma t' c in if not b then user_err ~hdr:"convert-check-hyp" (str "Not convertible."); Sigma.Unsafe.of_pair (t', sigma) end } (* Use cumulativity only if changing the conclusion not a subterm *) let change_on_subterm cv_pb deep t where = { e_redfun = begin fun env sigma c -> let mayneedglobalcheck = ref false in let Sigma (c, sigma, p) = match where with | None -> (change_and_check cv_pb mayneedglobalcheck deep (t Id.Map.empty)).e_redfun env sigma c | Some occl -> (e_contextually false occl (fun subst -> change_and_check Reduction.CONV mayneedglobalcheck true (t subst))).e_redfun env sigma c in if !mayneedglobalcheck then begin try ignore (Typing.unsafe_type_of env (Sigma.to_evar_map sigma) c) with e when catchable_exception e -> error "Replacement would lead to an ill-typed term." end; Sigma (c, sigma, p) end } let change_in_concl occl t = e_change_in_concl ((change_on_subterm Reduction.CUMUL false t occl),DEFAULTcast) let change_in_hyp occl t id = e_change_in_hyp (fun x -> change_on_subterm Reduction.CONV x t occl) id let change_option occl t = function | Some id -> change_in_hyp occl t id | None -> change_in_concl occl t let change chg c cls = Proofview.Goal.enter { enter = begin fun gl -> let cls = concrete_clause_of (fun () -> Tacmach.New.pf_ids_of_hyps gl) cls in Tacticals.New.tclMAP (function | OnHyp (id,occs,where) -> change_option (bind_change_occurrences occs chg) c (Some (id,where)) | OnConcl occs -> change_option (bind_change_occurrences occs chg) c None) cls end } let change_concl t = change_in_concl None (make_change_arg t) (* Pour usage interne (le niveau User est pris en compte par reduce) *) let red_in_concl = reduct_in_concl (red_product,REVERTcast) let red_in_hyp = reduct_in_hyp red_product let red_option = reduct_option (red_product,REVERTcast) let hnf_in_concl = reduct_in_concl (hnf_constr,REVERTcast) let hnf_in_hyp = reduct_in_hyp hnf_constr let hnf_option = reduct_option (hnf_constr,REVERTcast) let simpl_in_concl = reduct_in_concl (simpl,REVERTcast) let simpl_in_hyp = reduct_in_hyp simpl let simpl_option = reduct_option (simpl,REVERTcast) let normalise_in_concl = reduct_in_concl (compute,REVERTcast) let normalise_in_hyp = reduct_in_hyp compute let normalise_option = reduct_option (compute,REVERTcast) let normalise_vm_in_concl = reduct_in_concl (Redexpr.cbv_vm,VMcast) let unfold_in_concl loccname = reduct_in_concl (unfoldn loccname,REVERTcast) let unfold_in_hyp loccname = reduct_in_hyp (unfoldn loccname) let unfold_option loccname = reduct_option (unfoldn loccname,DEFAULTcast) let pattern_option l = e_reduct_option (pattern_occs l,DEFAULTcast) (* The main reduction function *) let reduction_clause redexp cl = let nbcl = List.length cl in List.map (function | OnHyp (id,occs,where) -> (Some (id,where), bind_red_expr_occurrences occs nbcl redexp) | OnConcl occs -> (None, bind_red_expr_occurrences occs nbcl redexp)) cl let reduce redexp cl = let trace () = let open Printer in let pr = (pr_econstr, pr_leconstr, pr_evaluable_reference, pr_constr_pattern) in Pp.(hov 2 (Pputils.pr_red_expr pr str redexp)) in Proofview.Trace.name_tactic trace begin Proofview.Goal.enter { enter = begin fun gl -> let cl' = concrete_clause_of (fun () -> Tacmach.New.pf_ids_of_hyps gl) cl in let redexps = reduction_clause redexp cl' in let check = match redexp with Fold _ | Pattern _ -> true | _ -> false in Tacticals.New.tclMAP (fun (where,redexp) -> e_reduct_option ~check (Redexpr.reduction_of_red_expr (Tacmach.New.pf_env gl) redexp) where) redexps end } end (* Unfolding occurrences of a constant *) let unfold_constr = function | ConstRef sp -> unfold_in_concl [AllOccurrences,EvalConstRef sp] | VarRef id -> unfold_in_concl [AllOccurrences,EvalVarRef id] | _ -> user_err ~hdr:"unfold_constr" (str "Cannot unfold a non-constant.") (*******************************************) (* Introduction tactics *) (*******************************************) (* Returns the names that would be created by intros, without doing intros. This function is supposed to be compatible with an iteration of [find_name] above. As [default_id] checks the sort of the type to build hyp names, we maintain an environment to be able to type dependent hyps. *) let find_intro_names ctxt gl = let _, res = List.fold_right (fun decl acc -> let env,idl = acc in let name = fresh_id idl (default_id env gl.sigma decl) gl in let newenv = push_rel decl env in (newenv,(name::idl))) ctxt (pf_env gl , []) in List.rev res let build_intro_tac id dest tac = match dest with | MoveLast -> Tacticals.New.tclTHEN (introduction id) (tac id) | dest -> Tacticals.New.tclTHENLIST [introduction id; move_hyp id dest; tac id] let rec intro_then_gen name_flag move_flag force_flag dep_flag tac = let open Context.Rel.Declaration in Proofview.Goal.enter { enter = begin fun gl -> let sigma = Tacmach.New.project gl in let concl = Proofview.Goal.concl (Proofview.Goal.assume gl) in match EConstr.kind sigma concl with | Prod (name,t,u) when not dep_flag || not (noccurn sigma 1 u) -> let name = find_name false (LocalAssum (name,t)) name_flag gl in build_intro_tac name move_flag tac | LetIn (name,b,t,u) when not dep_flag || not (noccurn sigma 1 u) -> let name = find_name false (LocalDef (name,b,t)) name_flag gl in build_intro_tac name move_flag tac | _ -> begin if not force_flag then Proofview.tclZERO (RefinerError IntroNeedsProduct) (* Note: red_in_concl includes betaiotazeta and this was like *) (* this since at least V6.3 (a pity *) (* that intro do betaiotazeta only when reduction is needed; and *) (* probably also a pity that intro does zeta *) else Proofview.tclUNIT () end <*> Proofview.tclORELSE (Tacticals.New.tclTHEN hnf_in_concl (intro_then_gen name_flag move_flag false dep_flag tac)) begin function (e, info) -> match e with | RefinerError IntroNeedsProduct -> Tacticals.New.tclZEROMSG (str "No product even after head-reduction.") | e -> Proofview.tclZERO ~info e end end } let intro_gen n m f d = intro_then_gen n m f d (fun _ -> Proofview.tclUNIT ()) let intro_mustbe_force id = intro_gen (NamingMustBe (Loc.tag id)) MoveLast true false let intro_using id = intro_gen (NamingBasedOn (id,[])) MoveLast false false let intro_then = intro_then_gen (NamingAvoid []) MoveLast false false let intro = intro_gen (NamingAvoid []) MoveLast false false let introf = intro_gen (NamingAvoid []) MoveLast true false let intro_avoiding l = intro_gen (NamingAvoid l) MoveLast false false let intro_move_avoid idopt avoid hto = match idopt with | None -> intro_gen (NamingAvoid avoid) hto true false | Some id -> intro_gen (NamingMustBe (Loc.tag id)) hto true false let intro_move idopt hto = intro_move_avoid idopt [] hto (**** Multiple introduction tactics ****) let rec intros_using = function | [] -> Proofview.tclUNIT() | str::l -> Tacticals.New.tclTHEN (intro_using str) (intros_using l) let intros = Tacticals.New.tclREPEAT intro let intro_forthcoming_then_gen name_flag move_flag dep_flag n bound tac = let rec aux n ids = (* Note: we always use the bound when there is one for "*" and "**" *) if (match bound with None -> true | Some (_,p) -> n < p) then Proofview.tclORELSE begin intro_then_gen name_flag move_flag false dep_flag (fun id -> aux (n+1) (id::ids)) end begin function (e, info) -> match e with | RefinerError IntroNeedsProduct -> tac ids | e -> Proofview.tclZERO ~info e end else tac ids in aux n [] let get_next_hyp_position id gl = let rec aux = function | [] -> raise (RefinerError (NoSuchHyp id)) | decl :: right -> if Id.equal (NamedDecl.get_id decl) id then match right with decl::_ -> MoveBefore (NamedDecl.get_id decl) | [] -> MoveLast else aux right in aux (Proofview.Goal.hyps (Proofview.Goal.assume gl)) let get_previous_hyp_position id gl = let rec aux dest = function | [] -> raise (RefinerError (NoSuchHyp id)) | decl :: right -> let hyp = NamedDecl.get_id decl in if Id.equal hyp id then dest else aux (MoveAfter hyp) right in aux MoveLast (Proofview.Goal.hyps (Proofview.Goal.assume gl)) let intro_replacing id = Proofview.Goal.enter { enter = begin fun gl -> let next_hyp = get_next_hyp_position id gl in Tacticals.New.tclTHENLIST [ clear_for_replacing [id]; introduction id; move_hyp id next_hyp; ] end } (* We have e.g. [x, y, y', x', y'' |- forall y y' y'', G] and want to reintroduce y, y,' y''. Note that we have to clear y, y' and y'' before introducing y because y' or y'' can e.g. depend on old y. *) (* This version assumes that replacement is actually possible *) (* (ids given in the introduction order) *) (* We keep a sub-optimality in cleaing for compatibility with *) (* the behavior of inversion *) let intros_possibly_replacing ids = let suboptimal = true in Proofview.Goal.enter { enter = begin fun gl -> let posl = List.map (fun id -> (id, get_next_hyp_position id gl)) ids in Tacticals.New.tclTHEN (Tacticals.New.tclMAP (fun id -> Tacticals.New.tclTRY (clear_for_replacing [id])) (if suboptimal then ids else List.rev ids)) (Tacticals.New.tclMAP (fun (id,pos) -> Tacticals.New.tclORELSE (intro_move (Some id) pos) (intro_using id)) posl) end } (* This version assumes that replacement is actually possible *) let intros_replacing ids = Proofview.Goal.enter { enter = begin fun gl -> let posl = List.map (fun id -> (id, get_next_hyp_position id gl)) ids in Tacticals.New.tclTHEN (clear_for_replacing ids) (Tacticals.New.tclMAP (fun (id,pos) -> intro_move (Some id) pos) posl) end } (* User-level introduction tactics *) let lookup_hypothesis_as_renamed env sigma ccl = function | AnonHyp n -> Detyping.lookup_index_as_renamed env sigma ccl n | NamedHyp id -> Detyping.lookup_name_as_displayed env sigma ccl id let lookup_hypothesis_as_renamed_gen red h gl = let env = Proofview.Goal.env gl in let rec aux ccl = match lookup_hypothesis_as_renamed env (Tacmach.New.project gl) ccl h with | None when red -> let (redfun, _) = Redexpr.reduction_of_red_expr env (Red true) in let Sigma (c, _, _) = redfun.e_redfun env (Proofview.Goal.sigma gl) ccl in aux c | x -> x in try aux (Proofview.Goal.concl gl) with Redelimination -> None let is_quantified_hypothesis id gl = match lookup_hypothesis_as_renamed_gen false (NamedHyp id) gl with | Some _ -> true | None -> false let msg_quantified_hypothesis = function | NamedHyp id -> str "quantified hypothesis named " ++ pr_id id | AnonHyp n -> pr_nth n ++ str " non dependent hypothesis" let depth_of_quantified_hypothesis red h gl = match lookup_hypothesis_as_renamed_gen red h gl with | Some depth -> depth | None -> user_err ~hdr:"lookup_quantified_hypothesis" (str "No " ++ msg_quantified_hypothesis h ++ strbrk " in current goal" ++ (if red then strbrk " even after head-reduction" else mt ()) ++ str".") let intros_until_gen red h = Proofview.Goal.enter { enter = begin fun gl -> let n = depth_of_quantified_hypothesis red h gl in Tacticals.New.tclDO n (if red then introf else intro) end } let intros_until_id id = intros_until_gen false (NamedHyp id) let intros_until_n_gen red n = intros_until_gen red (AnonHyp n) let intros_until = intros_until_gen true let intros_until_n = intros_until_n_gen true let tclCHECKVAR id = Proofview.Goal.enter { enter = begin fun gl -> let _ = Tacmach.New.pf_get_hyp id (Proofview.Goal.assume gl) in Proofview.tclUNIT () end } let try_intros_until_id_check id = Tacticals.New.tclORELSE (intros_until_id id) (tclCHECKVAR id) let try_intros_until tac = function | NamedHyp id -> Tacticals.New.tclTHEN (try_intros_until_id_check id) (tac id) | AnonHyp n -> Tacticals.New.tclTHEN (intros_until_n n) (Tacticals.New.onLastHypId tac) let rec intros_move = function | [] -> Proofview.tclUNIT () | (hyp,destopt) :: rest -> Tacticals.New.tclTHEN (intro_gen (NamingMustBe (Loc.tag hyp)) destopt false false) (intros_move rest) let run_delayed env sigma c = Sigma.run sigma { Sigma.run = fun sigma -> c.delayed env sigma } (* Apply a tactic on a quantified hypothesis, an hypothesis in context or a term with bindings *) let tactic_infer_flags with_evar = { Pretyping.use_typeclasses = true; Pretyping.solve_unification_constraints = true; Pretyping.use_hook = solve_by_implicit_tactic (); Pretyping.fail_evar = not with_evar; Pretyping.expand_evars = true } let onOpenInductionArg env sigma tac = function | clear_flag,ElimOnConstr f -> let (cbl, sigma') = run_delayed env sigma f in Tacticals.New.tclTHEN (Proofview.Unsafe.tclEVARS sigma') (tac clear_flag (sigma,cbl)) | clear_flag,ElimOnAnonHyp n -> Tacticals.New.tclTHEN (intros_until_n n) (Tacticals.New.onLastHyp (fun c -> Proofview.Goal.enter { enter = begin fun gl -> let sigma = Tacmach.New.project gl in tac clear_flag (sigma,(c,NoBindings)) end })) | clear_flag,ElimOnIdent (_,id) -> (* A quantified hypothesis *) Tacticals.New.tclTHEN (try_intros_until_id_check id) (Proofview.Goal.enter { enter = begin fun gl -> let sigma = Tacmach.New.project gl in tac clear_flag (sigma,(mkVar id,NoBindings)) end }) let onInductionArg tac = function | clear_flag,ElimOnConstr cbl -> tac clear_flag cbl | clear_flag,ElimOnAnonHyp n -> Tacticals.New.tclTHEN (intros_until_n n) (Tacticals.New.onLastHyp (fun c -> tac clear_flag (c,NoBindings))) | clear_flag,ElimOnIdent (_,id) -> (* A quantified hypothesis *) Tacticals.New.tclTHEN (try_intros_until_id_check id) (tac clear_flag (mkVar id,NoBindings)) let map_destruction_arg f sigma = function | clear_flag,ElimOnConstr g -> let sigma,x = f sigma g in (sigma, (clear_flag,ElimOnConstr x)) | clear_flag,ElimOnAnonHyp n as x -> (sigma,x) | clear_flag,ElimOnIdent id as x -> (sigma,x) let finish_delayed_evar_resolution with_evars env sigma f = let ((c, lbind), sigma') = run_delayed env sigma f in let sigma' = Sigma.Unsafe.of_evar_map sigma' in let flags = tactic_infer_flags with_evars in let Sigma (c, sigma', _) = finish_evar_resolution ~flags env sigma' (sigma,c) in (Sigma.to_evar_map sigma', (c, lbind)) let with_no_bindings (c, lbind) = if lbind != NoBindings then error "'with' clause not supported here."; c let force_destruction_arg with_evars env sigma c = map_destruction_arg (finish_delayed_evar_resolution with_evars env) sigma c (****************************************) (* tactic "cut" (actually modus ponens) *) (****************************************) let normalize_cut = false let cut c = Proofview.Goal.enter { enter = begin fun gl -> let env = Proofview.Goal.env gl in let sigma = Tacmach.New.project gl in let concl = Proofview.Goal.concl gl in let is_sort = try (** Backward compat: ensure that [c] is well-typed. *) let typ = Typing.unsafe_type_of env sigma c in let typ = whd_all env sigma typ in match EConstr.kind sigma typ with | Sort _ -> true | _ -> false with e when Pretype_errors.precatchable_exception e -> false in if is_sort then let id = next_name_away_with_default "H" Anonymous (Tacmach.New.pf_ids_of_hyps gl) in (** Backward compat: normalize [c]. *) let c = if normalize_cut then local_strong whd_betaiota sigma c else c in Refine.refine ~unsafe:true { run = begin fun h -> let Sigma (f, h, p) = Evarutil.new_evar ~principal:true env h (mkArrow c (Vars.lift 1 concl)) in let Sigma (x, h, q) = Evarutil.new_evar env h c in let f = mkLetIn (Name id, x, c, mkApp (Vars.lift 1 f, [|mkRel 1|])) in Sigma (f, h, p +> q) end } else Tacticals.New.tclZEROMSG (str "Not a proposition or a type.") end } let error_uninstantiated_metas t clenv = let t = EConstr.Unsafe.to_constr t in let na = meta_name clenv.evd (List.hd (Metaset.elements (metavars_of t))) in let id = match na with Name id -> id | _ -> anomaly (Pp.str "unnamed dependent meta") in user_err (str "Cannot find an instance for " ++ pr_id id ++ str".") let check_unresolved_evars_of_metas sigma clenv = (* This checks that Metas turned into Evars by *) (* Refiner.pose_all_metas_as_evars are resolved *) List.iter (fun (mv,b) -> match b with | Clval (_,(c,_),_) -> (match kind_of_term c.rebus with | Evar (evk,_) when Evd.is_undefined clenv.evd evk && not (Evd.mem sigma evk) -> error_uninstantiated_metas (mkMeta mv) clenv | _ -> ()) | _ -> ()) (meta_list clenv.evd) let do_replace id = function | NamingMustBe (_,id') when Option.equal Id.equal id (Some id') -> true | _ -> false (* For a clenv expressing some lemma [C[?1:T1,...,?n:Tn] : P] and some goal [G], [clenv_refine_in] returns [n+1] subgoals, the [n] last ones (resp [n] first ones if [sidecond_first] is [true]) being the [Ti] and the first one (resp last one) being [G] whose hypothesis [id] is replaced by P using the proof given by [tac] *) let clenv_refine_in ?(sidecond_first=false) with_evars ?(with_classes=true) targetid id sigma0 clenv tac = let clenv = Clenvtac.clenv_pose_dependent_evars with_evars clenv in let clenv = if with_classes then { clenv with evd = Typeclasses.resolve_typeclasses ~fail:(not with_evars) clenv.env clenv.evd } else clenv in let new_hyp_typ = clenv_type clenv in if not with_evars then check_unresolved_evars_of_metas sigma0 clenv; if not with_evars && occur_meta clenv.evd new_hyp_typ then error_uninstantiated_metas new_hyp_typ clenv; let new_hyp_prf = clenv_value clenv in let exact_tac = Proofview.V82.tactic (Tacmach.refine_no_check new_hyp_prf) in let naming = NamingMustBe (Loc.tag targetid) in let with_clear = do_replace (Some id) naming in Tacticals.New.tclTHEN (Proofview.Unsafe.tclEVARS (clear_metas clenv.evd)) (if sidecond_first then Tacticals.New.tclTHENFIRST (assert_before_then_gen with_clear naming new_hyp_typ tac) exact_tac else Tacticals.New.tclTHENLAST (assert_after_then_gen with_clear naming new_hyp_typ tac) exact_tac) (********************************************) (* Elimination tactics *) (********************************************) let last_arg sigma c = match EConstr.kind sigma c with | App (f,cl) -> Array.last cl | _ -> anomaly (Pp.str "last_arg") let nth_arg sigma i c = if Int.equal i (-1) then last_arg sigma c else match EConstr.kind sigma c with | App (f,cl) -> cl.(i) | _ -> anomaly (Pp.str "nth_arg") let index_of_ind_arg sigma t = let rec aux i j t = match EConstr.kind sigma t with | Prod (_,t,u) -> (* heuristic *) if isInd sigma (fst (decompose_app sigma t)) then aux (Some j) (j+1) u else aux i (j+1) u | _ -> match i with | Some i -> i | None -> error "Could not find inductive argument of elimination scheme." in aux None 0 t let enforce_prop_bound_names rename tac = let open Context.Rel.Declaration in match rename with | Some (isrec,nn) when Namegen.use_h_based_elimination_names () -> (* Rename dependent arguments in Prop with name "H" *) (* so as to avoid having hypothesis such as "t:True", "n:~A" when calling *) (* elim or induction with schemes built by Indrec.build_induction_scheme *) let rec aux env sigma i t = if i = 0 then t else match EConstr.kind sigma t with | Prod (Name _ as na,t,t') -> let very_standard = true in let na = if Retyping.get_sort_family_of env sigma t = InProp then (* "very_standard" says that we should have "H" names only, but this would break compatibility even more... *) let s = match Namegen.head_name sigma t with | Some id when not very_standard -> string_of_id id | _ -> "" in Name (add_suffix Namegen.default_prop_ident s) else na in mkProd (na,t,aux (push_rel (LocalAssum (na,t)) env) sigma (i-1) t') | Prod (Anonymous,t,t') -> mkProd (Anonymous,t,aux (push_rel (LocalAssum (Anonymous,t)) env) sigma (i-1) t') | LetIn (na,c,t,t') -> mkLetIn (na,c,t,aux (push_rel (LocalDef (na,c,t)) env) sigma (i-1) t') | _ -> assert false in let rename_branch i = Proofview.Goal.enter { enter = begin fun gl -> let env = Proofview.Goal.env gl in let sigma = Tacmach.New.project gl in let t = Proofview.Goal.concl gl in change_concl (aux env sigma i t) end } in (if isrec then Tacticals.New.tclTHENFIRSTn else Tacticals.New.tclTHENLASTn) tac (Array.map rename_branch nn) | _ -> tac let rec contract_letin_in_lam_header sigma c = match EConstr.kind sigma c with | Lambda (x,t,c) -> mkLambda (x,t,contract_letin_in_lam_header sigma c) | LetIn (x,b,t,c) -> contract_letin_in_lam_header sigma (subst1 b c) | _ -> c let elimination_clause_scheme with_evars ?(with_classes=true) ?(flags=elim_flags ()) rename i (elim, elimty, bindings) indclause = Proofview.Goal.enter { enter = begin fun gl -> let env = Proofview.Goal.env gl in let sigma = Tacmach.New.project gl in let elim = contract_letin_in_lam_header sigma elim in let elimclause = make_clenv_binding env sigma (elim, elimty) bindings in let indmv = (match EConstr.kind sigma (nth_arg sigma i elimclause.templval.rebus) with | Meta mv -> mv | _ -> user_err ~hdr:"elimination_clause" (str "The type of elimination clause is not well-formed.")) in let elimclause' = clenv_fchain ~flags indmv elimclause indclause in enforce_prop_bound_names rename (Clenvtac.res_pf elimclause' ~with_evars ~with_classes ~flags) end } (* * Elimination tactic with bindings and using an arbitrary * elimination constant called elimc. This constant should end * with a clause (x:I)(P .. ), where P is a bound variable. * The term c is of type t, which is a product ending with a type * matching I, lbindc are the expected terms for c arguments *) type eliminator = { elimindex : int option; (* None = find it automatically *) elimrename : (bool * int array) option; (** None = don't rename Prop hyps with H-names *) elimbody : EConstr.constr with_bindings } let general_elim_clause_gen elimtac indclause elim = Proofview.Goal.enter { enter = begin fun gl -> let env = Proofview.Goal.env gl in let sigma = Tacmach.New.project gl in let (elimc,lbindelimc) = elim.elimbody in let elimt = Retyping.get_type_of env sigma elimc in let i = match elim.elimindex with None -> index_of_ind_arg sigma elimt | Some i -> i in elimtac elim.elimrename i (elimc, elimt, lbindelimc) indclause end } let general_elim with_evars clear_flag (c, lbindc) elim = Proofview.Goal.enter { enter = begin fun gl -> let env = Proofview.Goal.env gl in let sigma = Tacmach.New.project gl in let ct = Retyping.get_type_of env sigma c in let t = try snd (reduce_to_quantified_ind env sigma ct) with UserError _ -> ct in let elimtac = elimination_clause_scheme with_evars in let indclause = make_clenv_binding env sigma (c, t) lbindc in let sigma = meta_merge sigma (clear_metas indclause.evd) in Proofview.Unsafe.tclEVARS sigma <*> Tacticals.New.tclTHEN (general_elim_clause_gen elimtac indclause elim) (apply_clear_request clear_flag (use_clear_hyp_by_default ()) c) end } (* Case analysis tactics *) let general_case_analysis_in_context with_evars clear_flag (c,lbindc) = Proofview.Goal.s_enter { s_enter = begin fun gl -> let sigma = Proofview.Goal.sigma gl in let env = Proofview.Goal.env gl in let concl = Proofview.Goal.concl gl in let t = Retyping.get_type_of env (Sigma.to_evar_map sigma) c in let (mind,_) = reduce_to_quantified_ind env (Sigma.to_evar_map sigma) t in let sort = Tacticals.New.elimination_sort_of_goal gl in let mind = on_snd (fun u -> EInstance.kind (Sigma.to_evar_map sigma) u) mind in let Sigma (elim, sigma, p) = if occur_term (Sigma.to_evar_map sigma) c concl then build_case_analysis_scheme env sigma mind true sort else build_case_analysis_scheme_default env sigma mind sort in let elim = EConstr.of_constr elim in let tac = (general_elim with_evars clear_flag (c,lbindc) {elimindex = None; elimbody = (elim,NoBindings); elimrename = Some (false, constructors_nrealdecls (fst mind))}) in Sigma (tac, sigma, p) end } let general_case_analysis with_evars clear_flag (c,lbindc as cx) = Proofview.tclEVARMAP >>= fun sigma -> match EConstr.kind sigma c with | Var id when lbindc == NoBindings -> Tacticals.New.tclTHEN (try_intros_until_id_check id) (general_case_analysis_in_context with_evars clear_flag cx) | _ -> general_case_analysis_in_context with_evars clear_flag cx let simplest_case c = general_case_analysis false None (c,NoBindings) let simplest_ecase c = general_case_analysis true None (c,NoBindings) (* Elimination tactic with bindings but using the default elimination * constant associated with the type. *) exception IsNonrec let is_nonrec mind = (Global.lookup_mind (fst mind)).mind_finite == Decl_kinds.BiFinite let find_ind_eliminator ind s gl = let gr = lookup_eliminator ind s in let evd, c = Tacmach.New.pf_apply Evd.fresh_global gl gr in let c = EConstr.of_constr c in evd, c let find_eliminator c gl = let ((ind,u),t) = Tacmach.New.pf_reduce_to_quantified_ind gl (Tacmach.New.pf_unsafe_type_of gl c) in if is_nonrec ind then raise IsNonrec; let evd, c = find_ind_eliminator ind (Tacticals.New.elimination_sort_of_goal gl) gl in evd, {elimindex = None; elimbody = (c,NoBindings); elimrename = Some (true, constructors_nrealdecls ind)} let default_elim with_evars clear_flag (c,_ as cx) = Proofview.tclORELSE (Proofview.Goal.s_enter { s_enter = begin fun gl -> let sigma, elim = find_eliminator c gl in let tac = (general_elim with_evars clear_flag cx elim) in Sigma.Unsafe.of_pair (tac, sigma) end }) begin function (e, info) -> match e with | IsNonrec -> (* For records, induction principles aren't there by default anymore. Instead, we do a case analysis. *) general_case_analysis with_evars clear_flag cx | e -> Proofview.tclZERO ~info e end let elim_in_context with_evars clear_flag c = function | Some elim -> general_elim with_evars clear_flag c {elimindex = Some (-1); elimbody = elim; elimrename = None} | None -> default_elim with_evars clear_flag c let elim with_evars clear_flag (c,lbindc as cx) elim = Proofview.tclEVARMAP >>= fun sigma -> match EConstr.kind sigma c with | Var id when lbindc == NoBindings -> Tacticals.New.tclTHEN (try_intros_until_id_check id) (elim_in_context with_evars clear_flag cx elim) | _ -> elim_in_context with_evars clear_flag cx elim (* The simplest elimination tactic, with no substitutions at all. *) let simplest_elim c = default_elim false None (c,NoBindings) (* Elimination in hypothesis *) (* Typically, elimclause := (eq_ind ?x ?P ?H ?y ?Heq : ?P ?y) indclause : forall ..., hyps -> a=b (to take place of ?Heq) id : phi(a) (to take place of ?H) and the result is to overwrite id with the proof of phi(b) but this generalizes to any elimination scheme with one constructor (e.g. it could replace id:A->B->C by id:C, knowing A/\B) *) let clenv_fchain_in id ?(flags=elim_flags ()) mv elimclause hypclause = (** The evarmap of elimclause is assumed to be an extension of hypclause, so we do not need to merge the universes coming from hypclause. *) try clenv_fchain ~with_univs:false ~flags mv elimclause hypclause with PretypeError (env,evd,NoOccurrenceFound (op,_)) -> (* Set the hypothesis name in the message *) raise (PretypeError (env,evd,NoOccurrenceFound (op,Some id))) let elimination_in_clause_scheme with_evars ?(flags=elim_flags ()) id rename i (elim, elimty, bindings) indclause = Proofview.Goal.enter { enter = begin fun gl -> let env = Proofview.Goal.env gl in let sigma = Tacmach.New.project gl in let elim = contract_letin_in_lam_header sigma elim in let elimclause = make_clenv_binding env sigma (elim, elimty) bindings in let indmv = destMeta sigma (nth_arg sigma i elimclause.templval.rebus) in let hypmv = try match List.remove Int.equal indmv (clenv_independent elimclause) with | [a] -> a | _ -> failwith "" with Failure _ -> user_err ~hdr:"elimination_clause" (str "The type of elimination clause is not well-formed.") in let elimclause' = clenv_fchain ~flags indmv elimclause indclause in let hyp = mkVar id in let hyp_typ = Retyping.get_type_of env sigma hyp in let hypclause = mk_clenv_from_env env sigma (Some 0) (hyp, hyp_typ) in let elimclause'' = clenv_fchain_in id ~flags hypmv elimclause' hypclause in let new_hyp_typ = clenv_type elimclause'' in if EConstr.eq_constr sigma hyp_typ new_hyp_typ then user_err ~hdr:"general_rewrite_in" (str "Nothing to rewrite in " ++ pr_id id ++ str"."); clenv_refine_in with_evars id id sigma elimclause'' (fun id -> Proofview.tclUNIT ()) end } let general_elim_clause with_evars flags id c e = let elim = match id with | None -> elimination_clause_scheme with_evars ~with_classes:true ~flags | Some id -> elimination_in_clause_scheme with_evars ~flags id in general_elim_clause_gen elim c e (* Apply a tactic below the products of the conclusion of a lemma *) type conjunction_status = | DefinedRecord of constant option list | NotADefinedRecordUseScheme of constr let make_projection env sigma params cstr sign elim i n c u = let open Context.Rel.Declaration in let elim = match elim with | NotADefinedRecordUseScheme elim -> (* bugs: goes from right to left when i increases! *) let cs_args = List.map (fun d -> map_rel_decl EConstr.of_constr d) cstr.cs_args in let decl = List.nth cs_args i in let t = RelDecl.get_type decl in let b = match decl with LocalAssum _ -> mkRel (i+1) | LocalDef (_,b,_) -> b in let branch = it_mkLambda_or_LetIn b cs_args in if (* excludes dependent projection types *) noccur_between sigma 1 (n-i-1) t (* to avoid surprising unifications, excludes flexible projection types or lambda which will be instantiated by Meta/Evar *) && not (isEvar sigma (fst (whd_betaiota_stack sigma t))) && (accept_universal_lemma_under_conjunctions () || not (isRel sigma t)) then let t = lift (i+1-n) t in let abselim = beta_applist sigma (elim, params@[t;branch]) in let args = Context.Rel.to_extended_vect mkRel 0 sign in let c = beta_applist sigma (abselim, [mkApp (c, args)]) in Some (it_mkLambda_or_LetIn c sign, it_mkProd_or_LetIn t sign) else None | DefinedRecord l -> (* goes from left to right when i increases! *) match List.nth l i with | Some proj -> let args = Context.Rel.to_extended_vect mkRel 0 sign in let proj = if Environ.is_projection proj env then mkProj (Projection.make proj false, mkApp (c, args)) else mkApp (mkConstU (proj,u), Array.append (Array.of_list params) [|mkApp (c, args)|]) in let app = it_mkLambda_or_LetIn proj sign in let t = Retyping.get_type_of env sigma app in Some (app, t) | None -> None in elim let descend_in_conjunctions avoid tac (err, info) c = Proofview.Goal.enter { enter = begin fun gl -> let env = Proofview.Goal.env gl in let sigma = Tacmach.New.project gl in try let t = Retyping.get_type_of env sigma c in let ((ind,u),t) = reduce_to_quantified_ind env sigma t in let sign,ccl = EConstr.decompose_prod_assum sigma t in match match_with_tuple sigma ccl with | Some (_,_,isrec) -> let n = (constructors_nrealargs ind).(0) in let sort = Tacticals.New.elimination_sort_of_goal gl in let IndType (indf,_) = find_rectype env sigma ccl in let (_,inst), params = dest_ind_family indf in let params = List.map EConstr.of_constr params in let cstr = (get_constructors env indf).(0) in let elim = try DefinedRecord (Recordops.lookup_projections ind) with Not_found -> let u = EInstance.kind sigma u in let sigma = Sigma.Unsafe.of_evar_map sigma in let Sigma (elim, _, _) = build_case_analysis_scheme env sigma (ind,u) false sort in let elim = EConstr.of_constr elim in NotADefinedRecordUseScheme elim in Tacticals.New.tclORELSE0 (Tacticals.New.tclFIRST (List.init n (fun i -> Proofview.Goal.enter { enter = begin fun gl -> let env = Proofview.Goal.env gl in let sigma = Tacmach.New.project gl in match make_projection env sigma params cstr sign elim i n c u with | None -> Tacticals.New.tclFAIL 0 (mt()) | Some (p,pt) -> Tacticals.New.tclTHENS (assert_before_gen false (NamingAvoid avoid) pt) [Proofview.V82.tactic (refine p); (* Might be ill-typed due to forbidden elimination. *) Tacticals.New.onLastHypId (tac (not isrec))] end }))) (Proofview.tclZERO ~info err) | None -> Proofview.tclZERO ~info err with RefinerError _|UserError _ -> Proofview.tclZERO ~info err end } (****************************************************) (* Resolution tactics *) (****************************************************) let solve_remaining_apply_goals = Proofview.Goal.s_enter { s_enter = begin fun gl -> let sigma = Proofview.Goal.sigma gl in if !apply_solve_class_goals then try let env = Proofview.Goal.env gl in let evd = Sigma.to_evar_map sigma in let concl = Proofview.Goal.concl gl in if Typeclasses.is_class_type evd concl then let evd', c' = Typeclasses.resolve_one_typeclass env evd concl in let tac = Refine.refine ~unsafe:true { run = fun h -> Sigma.here c' h } in Sigma.Unsafe.of_pair (tac, evd') else Sigma.here (Proofview.tclUNIT ()) sigma with Not_found -> Sigma.here (Proofview.tclUNIT ()) sigma else Sigma.here (Proofview.tclUNIT ()) sigma end } let tclORELSEOPT t k = Proofview.tclORELSE t (fun e -> match k e with | None -> let (e, info) = e in Proofview.tclZERO ~info e | Some tac -> tac) let general_apply with_delta with_destruct with_evars clear_flag (loc,(c,lbind : EConstr.constr with_bindings)) = Proofview.Goal.enter { enter = begin fun gl -> let concl = Proofview.Goal.concl gl in let sigma = Tacmach.New.project gl in let flags = if with_delta then default_unify_flags () else default_no_delta_unify_flags () in (* The actual type of the theorem. It will be matched against the goal. If this fails, then the head constant will be unfolded step by step. *) let concl_nprod = nb_prod_modulo_zeta sigma concl in let rec try_main_apply with_destruct c = Proofview.Goal.enter { enter = begin fun gl -> let env = Proofview.Goal.env gl in let sigma = Tacmach.New.project gl in let thm_ty0 = nf_betaiota sigma (Retyping.get_type_of env sigma c) in let try_apply thm_ty nprod = try let n = nb_prod_modulo_zeta sigma thm_ty - nprod in if n<0 then error "Applied theorem has not enough premisses."; let clause = make_clenv_binding_apply env sigma (Some n) (c,thm_ty) lbind in Clenvtac.res_pf clause ~with_evars ~flags with exn when catchable_exception exn -> Proofview.tclZERO exn in let rec try_red_apply thm_ty (exn0, info) = try (* Try to head-reduce the conclusion of the theorem *) let red_thm = try_red_product env sigma thm_ty in tclORELSEOPT (try_apply red_thm concl_nprod) (function (e, info) -> match e with | PretypeError _|RefinerError _|UserError _|Failure _ -> Some (try_red_apply red_thm (exn0, info)) | _ -> None) with Redelimination -> (* Last chance: if the head is a variable, apply may try second order unification *) let info = Option.cata (fun loc -> Loc.add_loc info loc) info loc in let tac = if with_destruct then descend_in_conjunctions [] (fun b id -> Tacticals.New.tclTHEN (try_main_apply b (mkVar id)) (clear [id])) (exn0, info) c else Proofview.tclZERO ~info exn0 in if not (Int.equal concl_nprod 0) then tclORELSEOPT (try_apply thm_ty 0) (function (e, info) -> match e with | PretypeError _|RefinerError _|UserError _|Failure _-> Some tac | _ -> None) else tac in tclORELSEOPT (try_apply thm_ty0 concl_nprod) (function (e, info) -> match e with | PretypeError _|RefinerError _|UserError _|Failure _ -> Some (try_red_apply thm_ty0 (e, info)) | _ -> None) end } in Tacticals.New.tclTHENLIST [ try_main_apply with_destruct c; solve_remaining_apply_goals; apply_clear_request clear_flag (use_clear_hyp_by_default ()) c ] end } let rec apply_with_bindings_gen b e = function | [] -> Proofview.tclUNIT () | [k,cb] -> general_apply b b e k cb | (k,cb)::cbl -> Tacticals.New.tclTHENLAST (general_apply b b e k cb) (apply_with_bindings_gen b e cbl) let apply_with_delayed_bindings_gen b e l = let one k (loc, f) = Proofview.Goal.enter { enter = begin fun gl -> let sigma = Tacmach.New.project gl in let env = Proofview.Goal.env gl in let (cb, sigma) = run_delayed env sigma f in Tacticals.New.tclWITHHOLES e (general_apply b b e k (loc,cb)) sigma end } in let rec aux = function | [] -> Proofview.tclUNIT () | [k,f] -> one k f | (k,f)::cbl -> Tacticals.New.tclTHENLAST (one k f) (aux cbl) in aux l let apply_with_bindings cb = apply_with_bindings_gen false false [None,(Loc.tag cb)] let eapply_with_bindings cb = apply_with_bindings_gen false true [None,(Loc.tag cb)] let apply c = apply_with_bindings_gen false false [None,(Loc.tag (c,NoBindings))] let eapply c = apply_with_bindings_gen false true [None,(Loc.tag (c,NoBindings))] let apply_list = function | c::l -> apply_with_bindings (c,ImplicitBindings l) | _ -> assert false (* [apply_in hyp c] replaces hyp : forall y1, ti -> t hyp : rho(u) ======================== with ============ and the ======= goal goal rho(ti) assuming that [c] has type [forall x1..xn -> t' -> u] for some [t] unifiable with [t'] with unifier [rho] *) let find_matching_clause unifier clause = let rec find clause = try unifier clause with e when catchable_exception e -> try find (clenv_push_prod clause) with NotExtensibleClause -> failwith "Cannot apply" in find clause exception UnableToApply let progress_with_clause flags innerclause clause = let ordered_metas = List.rev (clenv_independent clause) in if List.is_empty ordered_metas then raise UnableToApply; let f mv = try Some (find_matching_clause (clenv_fchain ~with_univs:false mv ~flags clause) innerclause) with Failure _ -> None in try List.find_map f ordered_metas with Not_found -> raise UnableToApply let explain_unable_to_apply_lemma ?loc env sigma thm innerclause = user_err ?loc (hov 0 (Pp.str "Unable to apply lemma of type" ++ brk(1,1) ++ Pp.quote (Printer.pr_leconstr_env env sigma thm) ++ spc() ++ str "on hypothesis of type" ++ brk(1,1) ++ Pp.quote (Printer.pr_leconstr_env innerclause.env innerclause.evd (clenv_type innerclause)) ++ str ".")) let apply_in_once_main flags innerclause env sigma (loc,d,lbind) = let thm = nf_betaiota sigma (Retyping.get_type_of env sigma d) in let rec aux clause = try progress_with_clause flags innerclause clause with e when CErrors.noncritical e -> let e' = CErrors.push e in try aux (clenv_push_prod clause) with NotExtensibleClause -> match e with | UnableToApply -> explain_unable_to_apply_lemma ?loc env sigma thm innerclause | _ -> iraise e' in aux (make_clenv_binding env sigma (d,thm) lbind) let apply_in_once sidecond_first with_delta with_destruct with_evars naming id (clear_flag,(loc,(d,lbind))) tac = let open Context.Rel.Declaration in Proofview.Goal.enter { enter = begin fun gl -> let env = Proofview.Goal.env gl in let sigma = Tacmach.New.project gl in let flags = if with_delta then default_unify_flags () else default_no_delta_unify_flags () in let t' = Tacmach.New.pf_get_hyp_typ id gl in let innerclause = mk_clenv_from_env env sigma (Some 0) (mkVar id,t') in let targetid = find_name true (LocalAssum (Anonymous,t')) naming gl in let rec aux idstoclear with_destruct c = Proofview.Goal.enter { enter = begin fun gl -> let env = Proofview.Goal.env gl in let sigma = Tacmach.New.project gl in try let clause = apply_in_once_main flags innerclause env sigma (loc,c,lbind) in clenv_refine_in ~sidecond_first with_evars targetid id sigma clause (fun id -> Tacticals.New.tclTHENLIST [ apply_clear_request clear_flag false c; clear idstoclear; tac id ]) with e when with_destruct && CErrors.noncritical e -> let (e, info) = CErrors.push e in (descend_in_conjunctions [targetid] (fun b id -> aux (id::idstoclear) b (mkVar id)) (e, info) c) end } in aux [] with_destruct d end } let apply_in_delayed_once sidecond_first with_delta with_destruct with_evars naming id (clear_flag,(loc,f)) tac = Proofview.Goal.enter { enter = begin fun gl -> let env = Proofview.Goal.env gl in let sigma = Tacmach.New.project gl in let (c, sigma) = run_delayed env sigma f in Tacticals.New.tclWITHHOLES with_evars (apply_in_once sidecond_first with_delta with_destruct with_evars naming id (clear_flag,(loc,c)) tac) sigma end } (* A useful resolution tactic which, if c:A->B, transforms |- C into |- B -> C and |- A ------------------- Gamma |- c : A -> B Gamma |- ?2 : A ---------------------------------------- Gamma |- B Gamma |- ?1 : B -> C ----------------------------------------------------- Gamma |- ? : C Ltac lapply c := let ty := check c in match eval hnf in ty with ?A -> ?B => cut B; [ idtac | apply c ] end. *) let cut_and_apply c = Proofview.Goal.enter { enter = begin fun gl -> let sigma = Tacmach.New.project gl in match EConstr.kind sigma (Tacmach.New.pf_hnf_constr gl (Tacmach.New.pf_unsafe_type_of gl c)) with | Prod (_,c1,c2) when Vars.noccurn sigma 1 c2 -> let concl = Proofview.Goal.concl gl in let env = Tacmach.New.pf_env gl in Refine.refine { run = begin fun sigma -> let typ = mkProd (Anonymous, c2, concl) in let Sigma (f, sigma, p) = Evarutil.new_evar env sigma typ in let Sigma (x, sigma, q) = Evarutil.new_evar env sigma c1 in let ans = mkApp (f, [|mkApp (c, [|x|])|]) in Sigma (ans, sigma, p +> q) end } | _ -> error "lapply needs a non-dependent product." end } (********************************************************************) (* Exact tactics *) (********************************************************************) (* let convert_leqkey = Profile.declare_profile "convert_leq";; *) (* let convert_leq = Profile.profile3 convert_leqkey convert_leq *) (* let refine_no_checkkey = Profile.declare_profile "refine_no_check";; *) (* let refine_no_check = Profile.profile2 refine_no_checkkey refine_no_check *) let exact_no_check c = Refine.refine ~unsafe:true { run = fun h -> Sigma.here c h } let exact_check c = Proofview.Goal.s_enter { s_enter = begin fun gl -> let sigma = Proofview.Goal.sigma gl in (** We do not need to normalize the goal because we just check convertibility *) let concl = Proofview.Goal.concl (Proofview.Goal.assume gl) in let env = Proofview.Goal.env gl in let sigma = Sigma.to_evar_map sigma in let sigma, ct = Typing.type_of env sigma c in let tac = Tacticals.New.tclTHEN (convert_leq ct concl) (exact_no_check c) in Sigma.Unsafe.of_pair (tac, sigma) end } let cast_no_check cast c = Proofview.Goal.enter { enter = begin fun gl -> let concl = Proofview.Goal.concl (Proofview.Goal.assume gl) in exact_no_check (mkCast (c, cast, concl)) end } let vm_cast_no_check c = cast_no_check Term.VMcast c let native_cast_no_check c = cast_no_check Term.NATIVEcast c let exact_proof c = let open Tacmach.New in Proofview.Goal.enter { enter = begin fun gl -> Refine.refine { run = begin fun sigma -> let sigma = Sigma.to_evar_map sigma in let (c, ctx) = Constrintern.interp_casted_constr (pf_env gl) sigma c (pf_concl gl) in let c = EConstr.of_constr c in let sigma = Evd.merge_universe_context sigma ctx in Sigma.Unsafe.of_pair (c, sigma) end } end } let assumption = let rec arec gl only_eq = function | [] -> if only_eq then let hyps = Proofview.Goal.hyps gl in arec gl false hyps else Tacticals.New.tclZEROMSG (str "No such assumption.") | decl::rest -> let t = NamedDecl.get_type decl in let concl = Proofview.Goal.concl gl in let sigma = Tacmach.New.project gl in let (sigma, is_same_type) = if only_eq then (sigma, EConstr.eq_constr sigma t concl) else let env = Proofview.Goal.env gl in infer_conv env sigma t concl in if is_same_type then (Proofview.Unsafe.tclEVARS sigma) <*> exact_no_check (mkVar (NamedDecl.get_id decl)) else arec gl only_eq rest in let assumption_tac = { enter = begin fun gl -> let hyps = Proofview.Goal.hyps gl in arec gl true hyps end } in Proofview.Goal.enter assumption_tac (*****************************************************************) (* Modification of a local context *) (*****************************************************************) let on_the_bodies = function | [] -> assert false | [id] -> str " depends on the body of " ++ pr_id id | l -> str " depends on the bodies of " ++ pr_sequence pr_id l exception DependsOnBody of Id.t option let check_is_type env sigma ty = let evdref = ref sigma in try let _ = Typing.e_sort_of env evdref ty in !evdref with e when CErrors.noncritical e -> raise (DependsOnBody None) let check_decl env sigma decl = let open Context.Named.Declaration in let ty = NamedDecl.get_type decl in let evdref = ref sigma in try let _ = Typing.e_sort_of env evdref ty in let _ = match decl with | LocalAssum _ -> () | LocalDef (_,c,_) -> Typing.e_check env evdref c ty in !evdref with e when CErrors.noncritical e -> let id = NamedDecl.get_id decl in raise (DependsOnBody (Some id)) let clear_body ids = let open Context.Named.Declaration in Proofview.Goal.enter { enter = begin fun gl -> let env = Proofview.Goal.env gl in let concl = Proofview.Goal.concl (Proofview.Goal.assume gl) in let sigma = Tacmach.New.project gl in let ctx = named_context env in let map = function | LocalAssum (id,t) as decl -> let () = if List.mem_f Id.equal id ids then user_err (str "Hypothesis " ++ pr_id id ++ str " is not a local definition") in decl | LocalDef (id,_,t) as decl -> if List.mem_f Id.equal id ids then LocalAssum (id, t) else decl in let ctx = List.map map ctx in let base_env = reset_context env in let env = push_named_context ctx base_env in let check = try let check (env, sigma, seen) decl = (** Do no recheck hypotheses that do not depend *) let sigma = if not seen then sigma else if List.exists (fun id -> occur_var_in_decl env sigma id decl) ids then check_decl env sigma decl else sigma in let seen = seen || List.mem_f Id.equal (NamedDecl.get_id decl) ids in (push_named decl env, sigma, seen) in let (env, sigma, _) = List.fold_left check (base_env, sigma, false) (List.rev ctx) in let sigma = if List.exists (fun id -> occur_var env sigma id concl) ids then check_is_type env sigma concl else sigma in Proofview.Unsafe.tclEVARS sigma with DependsOnBody where -> let msg = match where with | None -> str "Conclusion" ++ on_the_bodies ids | Some id -> str "Hypothesis " ++ pr_id id ++ on_the_bodies ids in Tacticals.New.tclZEROMSG msg in check <*> Refine.refine ~unsafe:true { run = begin fun sigma -> Evarutil.new_evar env sigma ~principal:true concl end } end } let clear_wildcards ids = Tacticals.New.tclMAP (fun (loc, id) -> clear [id]) ids (* Takes a list of booleans, and introduces all the variables * quantified in the goal which are associated with a value * true in the boolean list. *) let rec intros_clearing = function | [] -> Proofview.tclUNIT () | (false::tl) -> Tacticals.New.tclTHEN intro (intros_clearing tl) | (true::tl) -> Tacticals.New.tclTHENLIST [ intro; Tacticals.New.onLastHypId (fun id -> clear [id]); intros_clearing tl] (* Keeping only a few hypotheses *) let keep hyps = Proofview.Goal.enter { enter = begin fun gl -> Proofview.tclENV >>= fun env -> let ccl = Proofview.Goal.concl gl in let sigma = Tacmach.New.project gl in let cl,_ = fold_named_context_reverse (fun (clear,keep) decl -> let decl = map_named_decl EConstr.of_constr decl in let hyp = NamedDecl.get_id decl in if Id.List.mem hyp hyps || List.exists (occur_var_in_decl env sigma hyp) keep || occur_var env sigma hyp ccl then (clear,decl::keep) else (hyp::clear,keep)) ~init:([],[]) (Proofview.Goal.env gl) in clear cl end } (*********************************) (* Basic generalization tactics *) (*********************************) (* Given a type [T] convertible to [forall x1..xn:A1..An(x1..xn-1), G(x1..xn)] and [a1..an:A1..An(a1..an-1)] such that the goal is [G(a1..an)], this generalizes [hyps |- goal] into [hyps |- T] *) let apply_type newcl args = Proofview.Goal.enter { enter = begin fun gl -> let env = Proofview.Goal.env gl in let store = Proofview.Goal.extra gl in Refine.refine { run = begin fun sigma -> let newcl = nf_betaiota (Sigma.to_evar_map sigma) newcl (* As in former Logic.refine *) in let Sigma (ev, sigma, p) = Evarutil.new_evar env sigma ~principal:true ~store newcl in Sigma (applist (ev, args), sigma, p) end } end } (* Given a context [hyps] with domain [x1..xn], possibly with let-ins, and well-typed in the current goal, [bring_hyps hyps] generalizes [ctxt |- G(x1..xn] into [ctxt |- forall hyps, G(x1..xn)] *) let bring_hyps hyps = if List.is_empty hyps then Tacticals.New.tclIDTAC else Proofview.Goal.enter { enter = begin fun gl -> let env = Proofview.Goal.env gl in let store = Proofview.Goal.extra gl in let concl = Tacmach.New.pf_concl gl in let newcl = List.fold_right mkNamedProd_or_LetIn hyps concl in let args = Array.of_list (Context.Named.to_instance mkVar hyps) in Refine.refine { run = begin fun sigma -> let Sigma (ev, sigma, p) = Evarutil.new_evar env sigma ~principal:true ~store newcl in Sigma (mkApp (ev, args), sigma, p) end } end } let revert hyps = Proofview.Goal.enter { enter = begin fun gl -> let gl = Proofview.Goal.assume gl in let ctx = List.map (fun id -> Tacmach.New.pf_get_hyp id gl) hyps in (bring_hyps ctx) <*> (clear hyps) end } (************************) (* Introduction tactics *) (************************) let check_number_of_constructors expctdnumopt i nconstr = if Int.equal i 0 then error "The constructors are numbered starting from 1."; begin match expctdnumopt with | Some n when not (Int.equal n nconstr) -> user_err ~hdr:"Tactics.check_number_of_constructors" (str "Not an inductive goal with " ++ int n ++ str (String.plural n " constructor") ++ str ".") | _ -> () end; if i > nconstr then error "Not enough constructors." let constructor_tac with_evars expctdnumopt i lbind = Proofview.Goal.s_enter { s_enter = begin fun gl -> let sigma = Proofview.Goal.sigma gl in let cl = Tacmach.New.pf_concl gl in let reduce_to_quantified_ind = Tacmach.New.pf_apply Tacred.reduce_to_quantified_ind gl in let (mind,redcl) = reduce_to_quantified_ind cl in let nconstr = Array.length (snd (Global.lookup_inductive (fst mind))).mind_consnames in check_number_of_constructors expctdnumopt i nconstr; let Sigma ((cons, u), sigma, p) = Sigma.fresh_constructor_instance (Proofview.Goal.env gl) sigma (fst mind, i) in let cons = mkConstructU (cons, EInstance.make u) in let apply_tac = general_apply true false with_evars None (Loc.tag (cons,lbind)) in let tac = (Tacticals.New.tclTHENLIST [ convert_concl_no_check redcl DEFAULTcast; intros; apply_tac]) in Sigma (tac, sigma, p) end } let one_constructor i lbind = constructor_tac false None i lbind (* Try to apply the constructor of the inductive definition followed by a tactic t given as an argument. Should be generalize in Constructor (Fun c : I -> tactic) *) let rec tclANY tac = function | [] -> Tacticals.New.tclZEROMSG (str "No applicable tactic.") | arg :: l -> Tacticals.New.tclORD (tac arg) (fun () -> tclANY tac l) let any_constructor with_evars tacopt = let t = match tacopt with None -> Proofview.tclUNIT () | Some t -> t in let tac i = Tacticals.New.tclTHEN (constructor_tac with_evars None i NoBindings) t in Proofview.Goal.enter { enter = begin fun gl -> let cl = Tacmach.New.pf_concl gl in let reduce_to_quantified_ind = Tacmach.New.pf_apply Tacred.reduce_to_quantified_ind gl in let mind = fst (reduce_to_quantified_ind cl) in let nconstr = Array.length (snd (Global.lookup_inductive (fst mind))).mind_consnames in if Int.equal nconstr 0 then error "The type has no constructors."; tclANY tac (List.interval 1 nconstr) end } let left_with_bindings with_evars = constructor_tac with_evars (Some 2) 1 let right_with_bindings with_evars = constructor_tac with_evars (Some 2) 2 let split_with_bindings with_evars l = Tacticals.New.tclMAP (constructor_tac with_evars (Some 1) 1) l let left = left_with_bindings false let simplest_left = left NoBindings let right = right_with_bindings false let simplest_right = right NoBindings let split = constructor_tac false (Some 1) 1 let simplest_split = split NoBindings (*****************************) (* Decomposing introductions *) (*****************************) (* Rewriting function for rewriting one hypothesis at the time *) let (forward_general_rewrite_clause, general_rewrite_clause) = Hook.make () (* Rewriting function for substitution (x=t) everywhere at the same time *) let (forward_subst_one, subst_one) = Hook.make () let error_unexpected_extra_pattern loc bound pat = let _,nb = Option.get bound in let s1,s2,s3 = match pat with | IntroNaming (IntroIdentifier _) -> "name", (String.plural nb " introduction pattern"), "no" | _ -> "introduction pattern", "", "none" in user_err ?loc (str "Unexpected " ++ str s1 ++ str " (" ++ (if Int.equal nb 0 then (str s3 ++ str s2) else (str "at most " ++ int nb ++ str s2)) ++ spc () ++ str (if Int.equal nb 1 then "was" else "were") ++ strbrk " expected in the branch).") let intro_decomp_eq_function = ref (fun _ -> failwith "Not implemented") let declare_intro_decomp_eq f = intro_decomp_eq_function := f let my_find_eq_data_decompose gl t = try Some (find_eq_data_decompose gl t) with e when is_anomaly e (* Hack in case equality is not yet defined... one day, maybe, known equalities will be dynamically registered *) -> None | Constr_matching.PatternMatchingFailure -> None let intro_decomp_eq ?loc l thin tac id = Proofview.Goal.enter { enter = begin fun gl -> let c = mkVar id in let t = Tacmach.New.pf_unsafe_type_of gl c in let _,t = Tacmach.New.pf_reduce_to_quantified_ind gl t in match my_find_eq_data_decompose gl t with | Some (eq,u,eq_args) -> !intro_decomp_eq_function (fun n -> tac ((Loc.tag id)::thin) (Some (true,n)) l) (eq,t,eq_args) (c, t) | None -> Tacticals.New.tclZEROMSG (str "Not a primitive equality here.") end } let intro_or_and_pattern ?loc with_evars bracketed ll thin tac id = Proofview.Goal.enter { enter = begin fun gl -> let c = mkVar id in let t = Tacmach.New.pf_unsafe_type_of gl c in let (ind,t) = Tacmach.New.pf_reduce_to_quantified_ind gl t in let branchsigns = compute_constructor_signatures false ind in let nv_with_let = Array.map List.length branchsigns in let ll = fix_empty_or_and_pattern (Array.length branchsigns) ll in let ll = get_and_check_or_and_pattern ?loc ll branchsigns in Tacticals.New.tclTHENLASTn (Tacticals.New.tclTHEN (simplest_ecase c) (clear [id])) (Array.map2 (fun n l -> tac thin (Some (bracketed,n)) l) nv_with_let ll) end } let rewrite_hyp_then assert_style with_evars thin l2r id tac = let rew_on l2r = Hook.get forward_general_rewrite_clause l2r with_evars (mkVar id,NoBindings) in let subst_on l2r x rhs = Hook.get forward_subst_one true x (id,rhs,l2r) in let clear_var_and_eq id' = clear [id';id] in let early_clear id' thin = List.filter (fun (_,id) -> not (Id.equal id id')) thin in Proofview.Goal.enter { enter = begin fun gl -> let env = Proofview.Goal.env gl in let sigma = Tacmach.New.project gl in let type_of = Tacmach.New.pf_unsafe_type_of gl in let whd_all = Tacmach.New.pf_apply whd_all gl in let t = whd_all (type_of (mkVar id)) in let eqtac, thin = match match_with_equality_type sigma t with | Some (hdcncl,[_;lhs;rhs]) -> if l2r && isVar sigma lhs && not (occur_var env sigma (destVar sigma lhs) rhs) then let id' = destVar sigma lhs in subst_on l2r id' rhs, early_clear id' thin else if not l2r && isVar sigma rhs && not (occur_var env sigma (destVar sigma rhs) lhs) then let id' = destVar sigma rhs in subst_on l2r id' lhs, early_clear id' thin else Tacticals.New.tclTHEN (rew_on l2r onConcl) (clear [id]), thin | Some (hdcncl,[c]) -> let l2r = not l2r in (* equality of the form eq_true *) if isVar sigma c then let id' = destVar sigma c in Tacticals.New.tclTHEN (rew_on l2r allHypsAndConcl) (clear_var_and_eq id'), early_clear id' thin else Tacticals.New.tclTHEN (rew_on l2r onConcl) (clear [id]), thin | _ -> Tacticals.New.tclTHEN (rew_on l2r onConcl) (clear [id]), thin in (* Skip the side conditions of the rewriting step *) Tacticals.New.tclTHENFIRST eqtac (tac thin) end } let prepare_naming ?loc = function | IntroIdentifier id -> NamingMustBe (Loc.tag ?loc id) | IntroAnonymous -> NamingAvoid [] | IntroFresh id -> NamingBasedOn (id,[]) let rec explicit_intro_names = function | (_, IntroForthcoming _) :: l -> explicit_intro_names l | (_, IntroNaming (IntroIdentifier id)) :: l -> id :: explicit_intro_names l | (_, IntroAction (IntroOrAndPattern l)) :: l' -> let ll = match l with IntroAndPattern l -> [l] | IntroOrPattern ll -> ll in List.flatten (List.map (fun l -> explicit_intro_names (l@l')) ll) | (_, IntroAction (IntroInjection l)) :: l' -> explicit_intro_names (l@l') | (_, IntroAction (IntroApplyOn (c,pat))) :: l' -> explicit_intro_names (pat::l') | (_, (IntroNaming (IntroAnonymous | IntroFresh _) | IntroAction (IntroWildcard | IntroRewrite _))) :: l -> explicit_intro_names l | [] -> [] let rec check_name_unicity env ok seen = function | (_, IntroForthcoming _) :: l -> check_name_unicity env ok seen l | (loc, IntroNaming (IntroIdentifier id)) :: l -> (try ignore (if List.mem_f Id.equal id ok then raise Not_found else lookup_named id env); user_err ?loc (pr_id id ++ str" is already used.") with Not_found -> if List.mem_f Id.equal id seen then user_err ?loc (pr_id id ++ str" is used twice.") else check_name_unicity env ok (id::seen) l) | (_, IntroAction (IntroOrAndPattern l)) :: l' -> let ll = match l with IntroAndPattern l -> [l] | IntroOrPattern ll -> ll in List.iter (fun l -> check_name_unicity env ok seen (l@l')) ll | (_, IntroAction (IntroInjection l)) :: l' -> check_name_unicity env ok seen (l@l') | (_, IntroAction (IntroApplyOn (c,pat))) :: l' -> check_name_unicity env ok seen (pat::l') | (_, (IntroNaming (IntroAnonymous | IntroFresh _) | IntroAction (IntroWildcard | IntroRewrite _))) :: l -> check_name_unicity env ok seen l | [] -> () let wild_id = Id.of_string "_tmp" let rec list_mem_assoc_right id = function | [] -> false | (x,id')::l -> Id.equal id id' || list_mem_assoc_right id l let check_thin_clash_then id thin avoid tac = if list_mem_assoc_right id thin then let newid = next_ident_away (add_suffix id "'") avoid in let thin = List.map (on_snd (fun id' -> if Id.equal id id' then newid else id')) thin in Tacticals.New.tclTHEN (rename_hyp [id,newid]) (tac thin) else tac thin let make_tmp_naming avoid l = function (* In theory, we could use a tmp id like "wild_id" for all actions but we prefer to avoid it to avoid this kind of "ugly" names *) (* Alternatively, we could have called check_thin_clash_then on IntroAnonymous, but at the cost of a "renaming"; Note that in the case of IntroFresh, we should use check_thin_clash_then anyway to prevent the case of an IntroFresh precisely using the wild_id *) | IntroWildcard -> NamingBasedOn (wild_id,avoid@explicit_intro_names l) | pat -> NamingAvoid(avoid@explicit_intro_names ((Loc.tag @@ IntroAction pat)::l)) let fit_bound n = function | None -> true | Some (use_bound,n') -> not use_bound || n = n' let exceed_bound n = function | None -> false | Some (use_bound,n') -> use_bound && n >= n' (* We delay thinning until the completion of the whole intros tactic to ensure that dependent hypotheses are cleared in the right dependency order (see bug #1000); we use fresh names, not used in the tactic, for the hyps to clear *) (* In [intro_patterns_core b avoid ids thin destopt bound n tac patl]: [b]: compatibility flag, if false at toplevel, do not complete incomplete trailing toplevel or_and patterns (as in "intros []", see [bracketing_last_or_and_intro_pattern]) [avoid]: names to avoid when creating an internal name [ids]: collect introduced names for possible use by the [tac] continuation [thin]: collect names to erase at the end [destopt]: position in the context where to introduce the hypotheses [bound]: number of pending intros to do in the current or-and pattern, with remembering of [b] flag if at toplevel [n]: number of introduction done in the current or-and pattern [tac]: continuation tactic [patl]: introduction patterns to interpret *) let rec intro_patterns_core with_evars b avoid ids thin destopt bound n tac = function | [] when fit_bound n bound -> tac ids thin | [] -> (* Behave as IntroAnonymous *) intro_patterns_core with_evars b avoid ids thin destopt bound n tac [Loc.tag @@ IntroNaming IntroAnonymous] | (loc,pat) :: l -> if exceed_bound n bound then error_unexpected_extra_pattern loc bound pat else match pat with | IntroForthcoming onlydeps -> intro_forthcoming_then_gen (NamingAvoid (avoid@explicit_intro_names l)) destopt onlydeps n bound (fun ids -> intro_patterns_core with_evars b avoid ids thin destopt bound (n+List.length ids) tac l) | IntroAction pat -> intro_then_gen (make_tmp_naming avoid l pat) destopt true false (intro_pattern_action ?loc with_evars (b || not (List.is_empty l)) false pat thin destopt (fun thin bound' -> intro_patterns_core with_evars b avoid ids thin destopt bound' 0 (fun ids thin -> intro_patterns_core with_evars b avoid ids thin destopt bound (n+1) tac l))) | IntroNaming pat -> intro_pattern_naming loc with_evars b avoid ids pat thin destopt bound (n+1) tac l (* Pi-introduction rule, used backwards *) and intro_pattern_naming loc with_evars b avoid ids pat thin destopt bound n tac l = match pat with | IntroIdentifier id -> check_thin_clash_then id thin avoid (fun thin -> intro_then_gen (NamingMustBe (loc,id)) destopt true false (fun id -> intro_patterns_core with_evars b avoid (id::ids) thin destopt bound n tac l)) | IntroAnonymous -> intro_then_gen (NamingAvoid (avoid@explicit_intro_names l)) destopt true false (fun id -> intro_patterns_core with_evars b avoid (id::ids) thin destopt bound n tac l) | IntroFresh id -> (* todo: avoid thinned names to interfere with generation of fresh name *) intro_then_gen (NamingBasedOn (id, avoid@explicit_intro_names l)) destopt true false (fun id -> intro_patterns_core with_evars b avoid (id::ids) thin destopt bound n tac l) and intro_pattern_action ?loc with_evars b style pat thin destopt tac id = match pat with | IntroWildcard -> tac ((Loc.tag ?loc id)::thin) None [] | IntroOrAndPattern ll -> intro_or_and_pattern ?loc with_evars b ll thin tac id | IntroInjection l' -> intro_decomp_eq ?loc l' thin tac id | IntroRewrite l2r -> rewrite_hyp_then style with_evars thin l2r id (fun thin -> tac thin None []) | IntroApplyOn ((loc',f),(loc,pat)) -> let naming,tac_ipat = prepare_intros ?loc with_evars (IntroIdentifier id) destopt pat in let doclear = if naming = NamingMustBe (Loc.tag ?loc id) then Proofview.tclUNIT () (* apply_in_once do a replacement *) else clear [id] in let f = { delayed = fun env sigma -> let Sigma (c, sigma, p) = f.delayed env sigma in Sigma ((c, NoBindings), sigma, p) } in apply_in_delayed_once false true true with_evars naming id (None,(loc',f)) (fun id -> Tacticals.New.tclTHENLIST [doclear; tac_ipat id; tac thin None []]) and prepare_intros ?loc with_evars dft destopt = function | IntroNaming ipat -> prepare_naming ?loc ipat, (fun id -> move_hyp id destopt) | IntroAction ipat -> prepare_naming ?loc dft, (let tac thin bound = intro_patterns_core with_evars true [] [] thin destopt bound 0 (fun _ l -> clear_wildcards l) in fun id -> intro_pattern_action ?loc with_evars true true ipat [] destopt tac id) | IntroForthcoming _ -> user_err ?loc (str "Introduction pattern for one hypothesis expected.") let intro_patterns_head_core with_evars b destopt bound pat = Proofview.Goal.enter { enter = begin fun gl -> let env = Proofview.Goal.env gl in check_name_unicity env [] [] pat; intro_patterns_core with_evars b [] [] [] destopt bound 0 (fun _ l -> clear_wildcards l) pat end } let intro_patterns_bound_to with_evars n destopt = intro_patterns_head_core with_evars true destopt (Some (true,n)) let intro_patterns_to with_evars destopt = intro_patterns_head_core with_evars (use_bracketing_last_or_and_intro_pattern ()) destopt None let intro_pattern_to with_evars destopt pat = intro_patterns_to with_evars destopt [Loc.tag pat] let intro_patterns with_evars = intro_patterns_to with_evars MoveLast (* Implements "intros" *) let intros_patterns with_evars = function | [] -> intros | l -> intro_patterns_to with_evars MoveLast l (**************************) (* Forward reasoning *) (**************************) let prepare_intros_opt with_evars dft destopt = function | None -> prepare_naming dft, (fun _id -> Proofview.tclUNIT ()) | Some (loc,ipat) -> prepare_intros ?loc with_evars dft destopt ipat let ipat_of_name = function | Anonymous -> None | Name id -> Some (Loc.tag @@ IntroNaming (IntroIdentifier id)) let head_ident sigma c = let c = fst (decompose_app sigma (snd (decompose_lam_assum sigma c))) in if isVar sigma c then Some (destVar sigma c) else None let assert_as first hd ipat t = let naming,tac = prepare_intros_opt false IntroAnonymous MoveLast ipat in let repl = do_replace hd naming in let tac = if repl then (fun id -> Proofview.tclUNIT ()) else tac in if first then assert_before_then_gen repl naming t tac else assert_after_then_gen repl naming t tac (* apply in as *) let general_apply_in sidecond_first with_delta with_destruct with_evars id lemmas ipat = let tac (naming,lemma) tac id = apply_in_delayed_once sidecond_first with_delta with_destruct with_evars naming id lemma tac in Proofview.Goal.enter { enter = begin fun gl -> let destopt = if with_evars then MoveLast (* evars would depend on the whole context *) else get_previous_hyp_position id gl in let naming,ipat_tac = prepare_intros_opt with_evars (IntroIdentifier id) destopt ipat in let lemmas_target, last_lemma_target = let last,first = List.sep_last lemmas in List.map (fun lem -> (NamingMustBe (Loc.tag id),lem)) first, (naming,last) in (* We chain apply_in_once, ending with an intro pattern *) List.fold_right tac lemmas_target (tac last_lemma_target ipat_tac) id end } (* if sidecond_first then (* Skip the side conditions of the applied lemma *) Tacticals.New.tclTHENLAST (tclMAPLAST tac lemmas_target) (ipat_tac id) else Tacticals.New.tclTHENFIRST (tclMAPFIRST tac lemmas_target) (ipat_tac id) *) let apply_in simple with_evars id lemmas ipat = let lemmas = List.map (fun (k,(loc,l)) -> k, (loc, { delayed = fun _ sigma -> Sigma.here l sigma })) lemmas in general_apply_in false simple simple with_evars id lemmas ipat let apply_delayed_in simple with_evars id lemmas ipat = general_apply_in false simple simple with_evars id lemmas ipat (*****************************) (* Tactics abstracting terms *) (*****************************) (* Implementation without generalisation: abbrev will be lost in hyps in *) (* in the extracted proof *) let decode_hyp = function | None -> MoveLast | Some id -> MoveAfter id (* [letin_tac b (... abstract over c ...) gl] transforms [...x1:T1(c),...,x2:T2(c),... |- G(c)] into [...x:T;Heqx:(x=c);x1:T1(x),...,x2:T2(x),... |- G(x)] if [b] is false or [...x:=c:T;x1:T1(x),...,x2:T2(x),... |- G(x)] if [b] is true *) let letin_tac_gen with_eq (id,depdecls,lastlhyp,ccl,c) ty = Proofview.Goal.s_enter { s_enter = begin fun gl -> let sigma = Proofview.Goal.sigma gl in let env = Proofview.Goal.env gl in let Sigma (t, sigma, p) = match ty with | Some t -> Sigma.here t sigma | None -> let t = typ_of env sigma c in let sigma, c = Evarsolve.refresh_universes ~onlyalg:true (Some false) env (Sigma.to_evar_map sigma) t in Sigma.Unsafe.of_pair (c, sigma) in let Sigma ((newcl, eq_tac), sigma, q) = match with_eq with | Some (lr,(loc,ido)) -> let heq = match ido with | IntroAnonymous -> new_fresh_id [id] (add_prefix "Heq" id) gl | IntroFresh heq_base -> new_fresh_id [id] heq_base gl | IntroIdentifier id -> id in let eqdata = build_coq_eq_data () in let args = if lr then [t;mkVar id;c] else [t;c;mkVar id]in let Sigma (eq, sigma, p) = Sigma.fresh_global env sigma eqdata.eq in let eq = EConstr.of_constr eq in let Sigma (refl, sigma, q) = Sigma.fresh_global env sigma eqdata.refl in let refl = EConstr.of_constr refl in let eq = applist (eq,args) in let refl = applist (refl, [t;mkVar id]) in let term = mkNamedLetIn id c t (mkLetIn (Name heq, refl, eq, ccl)) in let sigma = Sigma.to_evar_map sigma in let sigma, _ = Typing.type_of env sigma term in let ans = term, Tacticals.New.tclTHEN (intro_gen (NamingMustBe (loc,heq)) (decode_hyp lastlhyp) true false) (clear_body [heq;id]) in Sigma.Unsafe.of_pair (ans, sigma) | None -> Sigma.here (mkNamedLetIn id c t ccl, Proofview.tclUNIT ()) sigma in let tac = Tacticals.New.tclTHENLIST [ convert_concl_no_check newcl DEFAULTcast; intro_gen (NamingMustBe (Loc.tag id)) (decode_hyp lastlhyp) true false; Tacticals.New.tclMAP convert_hyp_no_check depdecls; eq_tac ] in Sigma (tac, sigma, p +> q) end } let insert_before decls lasthyp env = match lasthyp with | None -> push_named_context decls env | Some id -> Environ.fold_named_context (fun _ d env -> let d = map_named_decl EConstr.of_constr d in let env = if Id.equal id (NamedDecl.get_id d) then push_named_context decls env else env in push_named d env) ~init:(reset_context env) env (* unsafe *) let mkletin_goal env sigma store with_eq dep (id,lastlhyp,ccl,c) ty = let open Context.Named.Declaration in let t = match ty with Some t -> t | _ -> typ_of env sigma c in let decl = if dep then LocalDef (id,c,t) else LocalAssum (id,t) in match with_eq with | Some (lr,(loc,ido)) -> let heq = match ido with | IntroAnonymous -> fresh_id_in_env [id] (add_prefix "Heq" id) env | IntroFresh heq_base -> fresh_id_in_env [id] heq_base env | IntroIdentifier id -> if List.mem id (ids_of_named_context (named_context env)) then user_err ?loc (pr_id id ++ str" is already used."); id in let eqdata = build_coq_eq_data () in let args = if lr then [t;mkVar id;c] else [t;c;mkVar id]in let Sigma (eq, sigma, p) = Sigma.fresh_global env sigma eqdata.eq in let eq = EConstr.of_constr eq in let Sigma (refl, sigma, q) = Sigma.fresh_global env sigma eqdata.refl in let refl = EConstr.of_constr refl in let eq = applist (eq,args) in let refl = applist (refl, [t;mkVar id]) in let newenv = insert_before [LocalAssum (heq,eq); decl] lastlhyp env in let Sigma (x, sigma, r) = new_evar newenv sigma ~principal:true ~store ccl in Sigma (mkNamedLetIn id c t (mkNamedLetIn heq refl eq x), sigma, p +> q +> r) | None -> let newenv = insert_before [decl] lastlhyp env in let Sigma (x, sigma, p) = new_evar newenv sigma ~principal:true ~store ccl in Sigma (mkNamedLetIn id c t x, sigma, p) let letin_tac with_eq id c ty occs = Proofview.Goal.s_enter { s_enter = begin fun gl -> let sigma = Proofview.Goal.sigma gl in let env = Proofview.Goal.env gl in let ccl = Proofview.Goal.concl gl in let abs = AbstractExact (id,c,ty,occs,true) in let (id,_,depdecls,lastlhyp,ccl,res) = make_abstraction env sigma ccl abs in (* We keep the original term to match but record the potential side-effects of unifying universes. *) let Sigma (c, sigma, p) = match res with | None -> Sigma.here c sigma | Some (Sigma (_, sigma, p)) -> Sigma (c, sigma, p) in let tac = letin_tac_gen with_eq (id,depdecls,lastlhyp,ccl,c) ty in Sigma (tac, sigma, p) end } let letin_pat_tac with_eq id c occs = Proofview.Goal.s_enter { s_enter = begin fun gl -> let sigma = Proofview.Goal.sigma gl in let env = Proofview.Goal.env gl in let ccl = Proofview.Goal.concl gl in let check t = true in let abs = AbstractPattern (false,check,id,c,occs,false) in let (id,_,depdecls,lastlhyp,ccl,res) = make_abstraction env sigma ccl abs in let Sigma (c, sigma, p) = match res with | None -> finish_evar_resolution ~flags:(tactic_infer_flags false) env sigma c | Some res -> res in let tac = (letin_tac_gen with_eq (id,depdecls,lastlhyp,ccl,c) None) in Sigma (tac, sigma, p) end } (* Tactics "pose proof" (usetac=None) and "assert"/"enough" (otherwise) *) let forward b usetac ipat c = match usetac with | None -> Proofview.Goal.enter { enter = begin fun gl -> let t = Tacmach.New.pf_get_type_of gl c in let sigma = Tacmach.New.project gl in let hd = head_ident sigma c in Tacticals.New.tclTHENFIRST (assert_as true hd ipat t) (exact_no_check c) end } | Some tac -> let tac = match tac with | None -> Tacticals.New.tclIDTAC | Some tac -> Tacticals.New.tclCOMPLETE tac in if b then Tacticals.New.tclTHENFIRST (assert_as b None ipat c) tac else Tacticals.New.tclTHENS3PARTS (assert_as b None ipat c) [||] tac [|Tacticals.New.tclIDTAC|] let pose_proof na c = forward true None (ipat_of_name na) c let assert_by na t tac = forward true (Some (Some tac)) (ipat_of_name na) t let enough_by na t tac = forward false (Some (Some tac)) (ipat_of_name na) t (***************************) (* Generalization tactics *) (***************************) (* Compute a name for a generalization *) let generalized_name env sigma c t ids cl = function | Name id as na -> if Id.List.mem id ids then user_err (pr_id id ++ str " is already used."); na | Anonymous -> match EConstr.kind sigma c with | Var id -> (* Keep the name even if not occurring: may be used by intros later *) Name id | _ -> if noccurn sigma 1 cl then Anonymous else (* On ne s'etait pas casse la tete : on avait pris pour nom de variable la premiere lettre du type, meme si "c" avait ete une constante dont on aurait pu prendre directement le nom *) named_hd env sigma t Anonymous (* Abstract over [c] in [forall x1:A1(c)..xi:Ai(c).T(c)] producing [forall x, x1:A1(x1), .., xi:Ai(x). T(x)] with all [c] abtracted in [Ai] but only those at [occs] in [T] *) let generalize_goal_gen env sigma ids i ((occs,c,b),na) t cl = let open Context.Rel.Declaration in let decls,cl = decompose_prod_n_assum sigma i cl in let dummy_prod = it_mkProd_or_LetIn mkProp decls in let newdecls,_ = decompose_prod_n_assum sigma i (subst_term_gen sigma EConstr.eq_constr_nounivs c dummy_prod) in let cl',sigma' = subst_closed_term_occ env sigma (AtOccs occs) c (it_mkProd_or_LetIn cl newdecls) in let na = generalized_name env sigma c t ids cl' na in let decl = match b with | None -> LocalAssum (na,t) | Some b -> LocalDef (na,b,t) in mkProd_or_LetIn decl cl', sigma' let generalize_goal gl i ((occs,c,b),na as o) (cl,sigma) = let open Tacmach.New in let env = pf_env gl in let ids = pf_ids_of_hyps gl in let sigma, t = Typing.type_of env sigma c in generalize_goal_gen env sigma ids i o t cl let generalize_dep ?(with_let=false) c = let open Tacmach.New in let open Tacticals.New in Proofview.Goal.nf_s_enter { s_enter = begin fun gl -> let env = pf_env gl in let sign = Proofview.Goal.hyps gl in let sigma = project gl in let init_ids = ids_of_named_context (Global.named_context()) in let seek (d:named_declaration) (toquant:named_context) = if List.exists (fun d' -> occur_var_in_decl env sigma (NamedDecl.get_id d') d) toquant || dependent_in_decl sigma c d then d::toquant else toquant in let to_quantify = Context.Named.fold_outside seek sign ~init:[] in let to_quantify_rev = List.rev to_quantify in let qhyps = List.map NamedDecl.get_id to_quantify_rev in let tothin = List.filter (fun id -> not (Id.List.mem id init_ids)) qhyps in let tothin' = match EConstr.kind sigma c with | Var id when mem_named_context_val id (val_of_named_context sign) && not (Id.List.mem id init_ids) -> id::tothin | _ -> tothin in let cl' = it_mkNamedProd_or_LetIn (pf_concl gl) to_quantify in let body = if with_let then match EConstr.kind sigma c with | Var id -> id |> (fun id -> pf_get_hyp id gl) |> NamedDecl.get_value | _ -> None else None in let cl'',evd = generalize_goal gl 0 ((AllOccurrences,c,body),Anonymous) (cl',project gl) in (** Check that the generalization is indeed well-typed *) let (evd, _) = Typing.type_of env evd cl'' in let args = Context.Named.to_instance mkVar to_quantify_rev in let tac = tclTHEN (apply_type cl'' (if Option.is_empty body then c::args else args)) (clear (List.rev tothin')) in Sigma.Unsafe.of_pair (tac, evd) end } (** *) let generalize_gen_let lconstr = Proofview.Goal.s_enter { s_enter = begin fun gl -> let env = Proofview.Goal.env gl in let newcl, evd = List.fold_right_i (generalize_goal gl) 0 lconstr (Tacmach.New.pf_concl gl,Tacmach.New.project gl) in let (evd, _) = Typing.type_of env evd newcl in let map ((_, c, b),_) = if Option.is_empty b then Some c else None in let tac = apply_type newcl (List.map_filter map lconstr) in Sigma.Unsafe.of_pair (tac, evd) end } let new_generalize_gen_let lconstr = Proofview.Goal.s_enter { s_enter = begin fun gl -> let sigma = Proofview.Goal.sigma gl in let gl = Proofview.Goal.assume gl in let concl = Proofview.Goal.concl gl in let sigma = Sigma.to_evar_map sigma in let env = Proofview.Goal.env gl in let ids = Tacmach.New.pf_ids_of_hyps gl in let newcl, sigma, args = List.fold_right_i (fun i ((_,c,b),_ as o) (cl, sigma, args) -> let sigma, t = Typing.type_of env sigma c in let args = if Option.is_empty b then c :: args else args in let cl, sigma = generalize_goal_gen env sigma ids i o t cl in (cl, sigma, args)) 0 lconstr (concl, sigma, []) in let tac = Refine.refine { run = begin fun sigma -> let Sigma (ev, sigma, p) = Evarutil.new_evar env sigma ~principal:true newcl in Sigma ((applist (ev, args)), sigma, p) end } in Sigma.Unsafe.of_pair (tac, sigma) end } let generalize_gen lconstr = generalize_gen_let (List.map (fun (occs_c,na) -> let (occs,c) = Redexpr.out_with_occurrences occs_c in (occs,c,None),na) lconstr) let new_generalize_gen lconstr = new_generalize_gen_let (List.map (fun ((occs,c),na) -> (occs,c,None),na) lconstr) let generalize l = new_generalize_gen_let (List.map (fun c -> ((AllOccurrences,c,None),Anonymous)) l) (* Faudra-t-il une version avec plusieurs args de generalize_dep ? Cela peut-être troublant de faire "Generalize Dependent H n" dans "n:nat; H:n=n |- P(n)" et d'échouer parce que H a disparu après la généralisation dépendante par n. let quantify lconstr = List.fold_right (fun com tac -> tclTHEN tac (tactic_com generalize_dep c)) lconstr tclIDTAC *) (* Modifying/Adding an hypothesis *) let specialize (c,lbind) ipat = Proofview.Goal.enter { enter = begin fun gl -> let env = Proofview.Goal.env gl in let sigma = Sigma.to_evar_map (Proofview.Goal.sigma gl) in let sigma, term = if lbind == NoBindings then let sigma = Typeclasses.resolve_typeclasses env sigma in sigma, nf_evar sigma c else let clause = make_clenv_binding env sigma (c,Retyping.get_type_of env sigma c) lbind in let flags = { (default_unify_flags ()) with resolve_evars = true } in let clause = clenv_unify_meta_types ~flags clause in let (thd,tstack) = whd_nored_stack clause.evd (clenv_value clause) in let rec chk = function | [] -> [] | t::l -> if occur_meta clause.evd t then [] else t :: chk l in let tstack = chk tstack in let term = applist(thd,List.map (nf_evar clause.evd) tstack) in if occur_meta clause.evd term then user_err (str "Cannot infer an instance for " ++ pr_name (meta_name clause.evd (List.hd (collect_metas clause.evd term))) ++ str "."); clause.evd, term in let typ = Retyping.get_type_of env sigma term in let tac = match EConstr.kind sigma (fst(EConstr.decompose_app sigma (snd(EConstr.decompose_lam_assum sigma c)))) with | Var id when Id.List.mem id (Tacmach.New.pf_ids_of_hyps gl) -> (* Like assert (id:=id args) but with the concept of specialization *) let naming,tac = prepare_intros_opt false (IntroIdentifier id) MoveLast ipat in let repl = do_replace (Some id) naming in Tacticals.New.tclTHENFIRST (assert_before_then_gen repl naming typ tac) (exact_no_check term) | _ -> match ipat with | None -> (* Like generalize with extra support for "with" bindings *) (* even though the "with" bindings forces full application *) Tacticals.New.tclTHENLAST (cut typ) (exact_no_check term) | Some (loc,ipat) -> (* Like pose proof with extra support for "with" bindings *) (* even though the "with" bindings forces full application *) let naming,tac = prepare_intros ?loc false IntroAnonymous MoveLast ipat in Tacticals.New.tclTHENFIRST (assert_before_then_gen false naming typ tac) (exact_no_check term) in Tacticals.New.tclTHEN (Proofview.Unsafe.tclEVARS sigma) tac end } (*****************************) (* Ad hoc unfold *) (*****************************) (* The two following functions should already exist, but found nowhere *) (* Unfolds x by its definition everywhere *) let unfold_body x = let open Context.Named.Declaration in Proofview.Goal.enter { enter = begin fun gl -> (** We normalize the given hypothesis immediately. *) let env = Proofview.Goal.env (Proofview.Goal.assume gl) in let xval = match Environ.lookup_named x env with | LocalAssum _ -> user_err ~hdr:"unfold_body" (pr_id x ++ str" is not a defined hypothesis.") | LocalDef (_,xval,_) -> xval in let xval = EConstr.of_constr xval in Tacticals.New.afterHyp x begin fun aft -> let hl = List.fold_right (fun decl cl -> (NamedDecl.get_id decl, InHyp) :: cl) aft [] in let rfun _ _ c = replace_vars [x, xval] c in let reducth h = reduct_in_hyp rfun h in let reductc = reduct_in_concl (rfun, DEFAULTcast) in Tacticals.New.tclTHENLIST [Tacticals.New.tclMAP reducth hl; reductc] end end } (* Either unfold and clear if defined or simply clear if not a definition *) let expand_hyp id = Tacticals.New.tclTRY (unfold_body id) <*> clear [id] (*****************************) (* High-level induction *) (*****************************) (* * A "natural" induction tactic * - [H0:T0, ..., Hi:Ti, hyp0:P->I(args), Hi+1:Ti+1, ..., Hn:Tn |-G] is the goal - [hyp0] is the induction hypothesis - we extract from [args] the variables which are not rigid parameters of the inductive type, this is [indvars] (other terms are forgotten); - we look for all hyps depending of [hyp0] or one of [indvars]: this is [dephyps] of types [deptyps] respectively - [statuslist] tells for each hyps in [dephyps] after which other hyp fixed in the context they must be moved (when induction is done) - [hyp0succ] is the name of the hyp fixed in the context after which to move the subterms of [hyp0succ] in the i-th branch where it is supposed to be the i-th constructor of the inductive type. Strategy: (cf in [induction_with_atomization_of_ind_arg]) - requantify and clear all [dephyps] - apply induction on [hyp0] - clear those of [indvars] that are variables and [hyp0] - in the i-th subgoal, intro the arguments of the i-th constructor of the inductive type after [hyp0succ] (done in [induct_discharge]) let the induction hypotheses on top of the hyps because they may depend on variables between [hyp0] and the top. A counterpart is that the dep hyps programmed to be intro-ed on top must now be intro-ed after the induction hypotheses - move each of [dephyps] at the right place following the [statuslist] *) let warn_unused_intro_pattern = CWarnings.create ~name:"unused-intro-pattern" ~category:"tactics" (fun names -> strbrk"Unused introduction " ++ str (String.plural (List.length names) "pattern") ++ str": " ++ prlist_with_sep spc (Miscprint.pr_intro_pattern (fun c -> Printer.pr_econstr (fst (run_delayed (Global.env()) Evd.empty c)))) names) let check_unused_names names = if not (List.is_empty names) then warn_unused_intro_pattern names let intropattern_of_name gl avoid = function | Anonymous -> IntroNaming IntroAnonymous | Name id -> IntroNaming (IntroIdentifier (new_fresh_id avoid id gl)) let rec consume_pattern avoid na isdep gl = function | [] -> ((Loc.tag @@ intropattern_of_name gl avoid na), []) | (loc,IntroForthcoming true)::names when not isdep -> consume_pattern avoid na isdep gl names | (loc,IntroForthcoming _)::names as fullpat -> let avoid = avoid@explicit_intro_names names in ((loc,intropattern_of_name gl avoid na), fullpat) | (loc,IntroNaming IntroAnonymous)::names -> let avoid = avoid@explicit_intro_names names in ((loc,intropattern_of_name gl avoid na), names) | (loc,IntroNaming (IntroFresh id'))::names -> let avoid = avoid@explicit_intro_names names in ((loc,IntroNaming (IntroIdentifier (new_fresh_id avoid id' gl))), names) | pat::names -> (pat,names) let re_intro_dependent_hypotheses (lstatus,rstatus) (_,tophyp) = let tophyp = match tophyp with None -> MoveLast | Some hyp -> MoveAfter hyp in let newlstatus = (* if some IH has taken place at the top of hyps *) List.map (function (hyp,MoveLast) -> (hyp,tophyp) | x -> x) lstatus in Tacticals.New.tclTHEN (intros_move rstatus) (intros_move newlstatus) let dest_intro_patterns with_evars avoid thin dest pat tac = intro_patterns_core with_evars true avoid [] thin dest None 0 tac pat let safe_dest_intro_patterns with_evars avoid thin dest pat tac = Proofview.tclORELSE (dest_intro_patterns with_evars avoid thin dest pat tac) begin function (e, info) -> match e with | UserError (Some "move_hyp",_) -> (* May happen e.g. with "destruct x using s" with an hypothesis which is morally an induction hypothesis to be "MoveLast" if known as such but which is considered instead as a subterm of a constructor to be move at the place of x. *) dest_intro_patterns with_evars avoid thin MoveLast pat tac | e -> Proofview.tclZERO ~info e end type elim_arg_kind = RecArg | IndArg | OtherArg type recarg_position = | AfterFixedPosition of Id.t option (* None = top of context *) let update_dest (recargdests,tophyp as dests) = function | [] -> dests | hyp::_ -> (match recargdests with | AfterFixedPosition None -> AfterFixedPosition (Some hyp) | x -> x), (match tophyp with None -> Some hyp | x -> x) let get_recarg_dest (recargdests,tophyp) = match recargdests with | AfterFixedPosition None -> MoveLast | AfterFixedPosition (Some id) -> MoveAfter id (* Current policy re-introduces recursive arguments of destructed variable at the place of the original variable while induction hypothesese are introduced at the top of the context. Since in the general case of an inductive scheme, the induction hypotheses can arrive just after the recursive arguments (e.g. as in "forall t1:tree, P t1 -> forall t2:tree, P t2 -> P (node t1 t2)", we need to update the position for t2 after "P t1" is introduced if ever t2 had to be introduced at the top of the context). *) let induct_discharge with_evars dests avoid' tac (avoid,ra) names = let avoid = avoid @ avoid' in let rec peel_tac ra dests names thin = match ra with | (RecArg,_,deprec,recvarname) :: (IndArg,_,depind,hyprecname) :: ra' -> Proofview.Goal.enter { enter = begin fun gl -> let (recpat,names) = match names with | [loc,IntroNaming (IntroIdentifier id) as pat] -> let id' = next_ident_away (add_prefix "IH" id) avoid in (pat, [Loc.tag @@ IntroNaming (IntroIdentifier id')]) | _ -> consume_pattern avoid (Name recvarname) deprec gl names in let dest = get_recarg_dest dests in dest_intro_patterns with_evars avoid thin dest [recpat] (fun ids thin -> Proofview.Goal.enter { enter = begin fun gl -> let (hyprec,names) = consume_pattern avoid (Name hyprecname) depind gl names in dest_intro_patterns with_evars avoid thin MoveLast [hyprec] (fun ids' thin -> peel_tac ra' (update_dest dests ids') names thin) end }) end } | (IndArg,_,dep,hyprecname) :: ra' -> Proofview.Goal.enter { enter = begin fun gl -> (* Rem: does not happen in Coq schemes, only in user-defined schemes *) let pat,names = consume_pattern avoid (Name hyprecname) dep gl names in dest_intro_patterns with_evars avoid thin MoveLast [pat] (fun ids thin -> peel_tac ra' (update_dest dests ids) names thin) end } | (RecArg,_,dep,recvarname) :: ra' -> Proofview.Goal.enter { enter = begin fun gl -> let (pat,names) = consume_pattern avoid (Name recvarname) dep gl names in let dest = get_recarg_dest dests in dest_intro_patterns with_evars avoid thin dest [pat] (fun ids thin -> peel_tac ra' dests names thin) end } | (OtherArg,_,dep,_) :: ra' -> Proofview.Goal.enter { enter = begin fun gl -> let (pat,names) = consume_pattern avoid Anonymous dep gl names in let dest = get_recarg_dest dests in safe_dest_intro_patterns with_evars avoid thin dest [pat] (fun ids thin -> peel_tac ra' dests names thin) end } | [] -> check_unused_names names; Tacticals.New.tclTHEN (clear_wildcards thin) (tac dests) in peel_tac ra dests names [] (* - le recalcul de indtyp à chaque itération de atomize_one est pour ne pas s'embêter à regarder si un letin_tac ne fait pas des substitutions aussi sur l'argument voisin *) let expand_projections env sigma c = let rec aux env c = match EConstr.kind sigma c with | Proj (p, c) -> Retyping.expand_projection env sigma p (aux env c) [] | _ -> map_constr_with_full_binders sigma push_rel aux env c in aux env c (* Marche pas... faut prendre en compte l'occurrence précise... *) let atomize_param_of_ind_then (indref,nparams,_) hyp0 tac = Proofview.Goal.enter { enter = begin fun gl -> let env = Proofview.Goal.env gl in let sigma = Tacmach.New.project gl in let tmptyp0 = Tacmach.New.pf_get_hyp_typ hyp0 (Proofview.Goal.assume gl) in let reduce_to_quantified_ref = Tacmach.New.pf_apply reduce_to_quantified_ref gl in let typ0 = reduce_to_quantified_ref indref tmptyp0 in let prods, indtyp = decompose_prod_assum sigma typ0 in let hd,argl = decompose_app sigma indtyp in let env' = push_rel_context prods env in let params = List.firstn nparams argl in let params' = List.map (expand_projections env' sigma) params in (* le gl est important pour ne pas préévaluer *) let rec atomize_one i args args' avoid = if Int.equal i nparams then let t = applist (hd, params@args) in Tacticals.New.tclTHEN (change_in_hyp None (make_change_arg t) (hyp0,InHypTypeOnly)) (tac avoid) else let c = List.nth argl (i-1) in match EConstr.kind sigma c with | Var id when not (List.exists (fun c -> occur_var env sigma id c) args') && not (List.exists (fun c -> occur_var env sigma id c) params') -> (* Based on the knowledge given by the user, all constraints on the variable are generalizable in the current environment so that it is clearable after destruction *) atomize_one (i-1) (c::args) (c::args') (id::avoid) | _ -> let c' = expand_projections env' sigma c in let dependent t = dependent sigma c t in if List.exists dependent params' || List.exists dependent args' then (* This is a case where the argument is constrained in a way which would require some kind of inversion; we follow the (old) discipline of not generalizing over this term, since we don't try to invert the constraint anyway. *) atomize_one (i-1) (c::args) (c'::args') avoid else (* We reason blindly on the term and do as if it were generalizable, ignoring the constraints coming from its structure *) let id = match EConstr.kind sigma c with | Var id -> id | _ -> let type_of = Tacmach.New.pf_unsafe_type_of gl in id_of_name_using_hdchar (Global.env()) sigma (type_of c) Anonymous in let x = fresh_id_in_env avoid id env in Tacticals.New.tclTHEN (letin_tac None (Name x) c None allHypsAndConcl) (atomize_one (i-1) (mkVar x::args) (mkVar x::args') (x::avoid)) in atomize_one (List.length argl) [] [] [] end } (* [cook_sign] builds the lists [beforetoclear] (preceding the ind. var.) and [aftertoclear] (coming after the ind. var.) of hyps that must be erased, the lists of hyps to be generalize [decldeps] on the goal together with the places [(lstatus,rstatus)] where to re-intro them after induction. To know where to re-intro the dep hyp, we remember the name of the hypothesis [lhyp] after which (if the dep hyp is more recent than [hyp0]) or [rhyp] before which (if older than [hyp0]) its equivalent must be moved when the induction has been applied. Since computation of dependencies and [rhyp] is from more ancient (on the right) to more recent hyp (on the left) but the computation of [lhyp] progresses from the other way, [cook_hyp] is in two passes (an alternative would have been to write an higher-order algorithm). We use references to reduce the accumulation of arguments. To summarize, the situation looks like this Goal(n,x) -| H6:(Q n); x:A; H5:True; H4:(le O n); H3:(P n); H2:True; n:nat Left Right Induction hypothesis is H4 ([hyp0]) Variable parameters of (le O n) is the singleton list with "n" ([indvars]) The dependent hyps are H3 and H6 ([dephyps]) For H3 the memorized places are H5 ([lhyp]) and H2 ([rhyp]) because these names are among the hyp which are fixed through the induction For H6 the neighbours are None ([lhyp]) and H5 ([rhyp]) For H3, because on the right of H4, we remember rhyp (here H2) For H6, because on the left of H4, we remember lhyp (here None) For H4, we remember lhyp (here H5) The right neighbour is then translated into the left neighbour because move_hyp tactic needs the name of the hyp _after_ which we move the hyp to move. But, say in the 2nd subgoal of the hypotheses, the goal will be (m:nat)((P m)->(Q m)->(Goal m)) -> (P Sm)-> (Q Sm)-> (Goal Sm) ^^^^^^^^^^^^^^^^^^^^^^^^^^^ ^^^^ both go where H4 was goes where goes where H3 was H6 was We have to intro and move m and the recursive hyp first, but then where to move H3 ??? Only the hyp on its right is relevant, but we have to translate it into the name of the hyp on the left Note: this case where some hyp(s) in [dephyps] has(have) the same left neighbour as [hyp0] is the only problematic case with right neighbours. For the other cases (e.g. an hyp H1:(R n) between n and H2 would have posed no problem. But for uniformity, we decided to use the right hyp for all hyps on the right of H4. Other solutions are welcome PC 9 fev 06: Adapted to accept multi argument principle with no main arg hyp. hyp0 is now optional, meaning that it is possible that there is no main induction hypotheses. In this case, we consider the last "parameter" (in [indvars]) as the limit between "left" and "right", BUT it must be included in indhyps. Other solutions are still welcome *) exception Shunt of Id.t move_location let cook_sign hyp0_opt inhyps indvars env sigma = (* First phase from L to R: get [toclear], [decldep] and [statuslist] for the hypotheses before (= more ancient than) hyp0 (see above) *) let toclear = ref [] in let avoid = ref [] in let decldeps = ref [] in let ldeps = ref [] in let rstatus = ref [] in let lstatus = ref [] in let before = ref true in let maindep = ref false in let seek_deps env decl rhyp = let decl = map_named_decl EConstr.of_constr decl in let hyp = NamedDecl.get_id decl in if (match hyp0_opt with Some hyp0 -> Id.equal hyp hyp0 | _ -> false) then begin before:=false; (* Note that if there was no main induction hypotheses, then hyp is one of indvars too *) toclear := hyp::!toclear; MoveFirst (* fake value *) end else if Id.List.mem hyp indvars then begin (* The variables in indvars are such that they don't occur any more after generalization, so declare them to clear. *) toclear := hyp::!toclear; rhyp end else let dephyp0 = List.is_empty inhyps && (Option.cata (fun id -> occur_var_in_decl env sigma id decl) false hyp0_opt) in let depother = List.is_empty inhyps && (List.exists (fun id -> occur_var_in_decl env sigma id decl) indvars || List.exists (fun decl' -> occur_var_in_decl env sigma (NamedDecl.get_id decl') decl) !decldeps) in if not (List.is_empty inhyps) && Id.List.mem hyp inhyps || dephyp0 || depother then begin decldeps := decl::!decldeps; avoid := hyp::!avoid; maindep := dephyp0 || !maindep; if !before then begin toclear := hyp::!toclear; rstatus := (hyp,rhyp)::!rstatus end else begin toclear := hyp::!toclear; ldeps := hyp::!ldeps (* status computed in 2nd phase *) end; MoveBefore hyp end else MoveBefore hyp in let _ = fold_named_context seek_deps env ~init:MoveFirst in (* 2nd phase from R to L: get left hyp of [hyp0] and [lhyps] *) let compute_lstatus lhyp decl = let hyp = NamedDecl.get_id decl in if (match hyp0_opt with Some hyp0 -> Id.equal hyp hyp0 | _ -> false) then raise (Shunt lhyp); if Id.List.mem hyp !ldeps then begin lstatus := (hyp,lhyp)::!lstatus; lhyp end else if Id.List.mem hyp !toclear then lhyp else MoveAfter hyp in try let _ = fold_named_context_reverse compute_lstatus ~init:MoveLast env in raise (Shunt MoveLast) (* ?? FIXME *) with Shunt lhyp0 -> let lhyp0 = match lhyp0 with | MoveLast -> None | MoveAfter hyp -> Some hyp | _ -> assert false in let statuslists = (!lstatus,List.rev !rstatus) in let recargdests = AfterFixedPosition (if Option.is_empty hyp0_opt then None else lhyp0) in (statuslists, (recargdests,None), !toclear, !decldeps, !avoid, !maindep) (* The general form of an induction principle is the following: forall prm1 prm2 ... prmp, (induction parameters) forall Q1...,(Qi:Ti_1 -> Ti_2 ->...-> Ti_ni),...Qq, (predicates) branch1, branch2, ... , branchr, (branches of the principle) forall (x1:Ti_1) (x2:Ti_2) ... (xni:Ti_ni), (induction arguments) (HI: I prm1..prmp x1...xni) (optional main induction arg) -> (Qi x1...xni HI (f prm1...prmp x1...xni)).(conclusion) ^^ ^^^^^^^^^^^^^^^^^^^^^^^^ optional optional argument added if even if HI principle generated by functional present above induction, only if HI does not exist [indarg] [farg] HI is not present when the induction principle does not come directly from an inductive type (like when it is generated by functional induction for example). HI is present otherwise BUT may not appear in the conclusion (dependent principle). HI and (f...) cannot be both present. Principles taken from functional induction have the final (f...).*) (* [rel_contexts] and [rel_declaration] actually contain triples, and lists are actually in reverse order to fit [compose_prod]. *) type elim_scheme = { elimc: constr with_bindings option; elimt: types; indref: global_reference option; params: rel_context; (* (prm1,tprm1);(prm2,tprm2)...(prmp,tprmp) *) nparams: int; (* number of parameters *) predicates: rel_context; (* (Qq, (Tq_1 -> Tq_2 ->...-> Tq_nq)), (Q1,...) *) npredicates: int; (* Number of predicates *) branches: rel_context; (* branchr,...,branch1 *) nbranches: int; (* Number of branches *) args: rel_context; (* (xni, Ti_ni) ... (x1, Ti_1) *) nargs: int; (* number of arguments *) indarg: rel_declaration option; (* Some (H,I prm1..prmp x1...xni) if HI is in premisses, None otherwise *) concl: types; (* Qi x1...xni HI (f...), HI and (f...) are optional and mutually exclusive *) indarg_in_concl: bool; (* true if HI appears at the end of conclusion *) farg_in_concl: bool; (* true if (f...) appears at the end of conclusion *) } let empty_scheme = { elimc = None; elimt = mkProp; indref = None; params = []; nparams = 0; predicates = []; npredicates = 0; branches = []; nbranches = 0; args = []; nargs = 0; indarg = None; concl = mkProp; indarg_in_concl = false; farg_in_concl = false; } let make_base n id = if Int.equal n 0 || Int.equal n 1 then id else (* This extends the name to accept new digits if it already ends with *) (* digits *) Id.of_string (atompart_of_id (make_ident (Id.to_string id) (Some 0))) (* Builds two different names from an optional inductive type and a number, also deals with a list of names to avoid. If the inductive type is None, then hyprecname is IHi where i is a number. *) let make_up_names n ind_opt cname = let is_hyp = String.equal (atompart_of_id cname) "H" in let base = Id.to_string (make_base n cname) in let ind_prefix = "IH" in let base_ind = if is_hyp then match ind_opt with | None -> Id.of_string ind_prefix | Some ind_id -> add_prefix ind_prefix (Nametab.basename_of_global ind_id) else add_prefix ind_prefix cname in let hyprecname = make_base n base_ind in let avoid = if Int.equal n 1 (* Only one recursive argument *) || Int.equal n 0 then [] else (* Forbid to use cname, cname0, hyprecname and hyprecname0 *) (* in order to get names such as f1, f2, ... *) let avoid = (make_ident (Id.to_string hyprecname) None) :: (make_ident (Id.to_string hyprecname) (Some 0)) :: [] in if not (String.equal (atompart_of_id cname) "H") then (make_ident base (Some 0)) :: (make_ident base None) :: avoid else avoid in Id.of_string base, hyprecname, avoid let error_ind_scheme s = let s = if not (String.is_empty s) then s^" " else s in user_err ~hdr:"Tactics" (str "Cannot recognize " ++ str s ++ str "an induction scheme.") let glob c = EConstr.of_constr (Universes.constr_of_global c) let coq_eq = lazy (glob (Coqlib.build_coq_eq ())) let coq_eq_refl = lazy (glob (Coqlib.build_coq_eq_refl ())) let coq_heq = lazy (EConstr.of_constr (Coqlib.coq_constant "mkHEq" ["Logic";"JMeq"] "JMeq")) let coq_heq_refl = lazy (EConstr.of_constr (Coqlib.coq_constant "mkHEq" ["Logic";"JMeq"] "JMeq_refl")) let mkEq t x y = mkApp (Lazy.force coq_eq, [| t; x; y |]) let mkRefl t x = mkApp (Lazy.force coq_eq_refl, [| t; x |]) let mkHEq t x u y = mkApp (Lazy.force coq_heq, [| t; x; u; y |]) let mkHRefl t x = mkApp (Lazy.force coq_heq_refl, [| t; x |]) let lift_togethern n l = let l', _ = List.fold_right (fun x (acc, n) -> (lift n x :: acc, succ n)) l ([], n) in l' let lift_list l = List.map (lift 1) l let ids_of_constr sigma ?(all=false) vars c = let rec aux vars c = match EConstr.kind sigma c with | Var id -> Id.Set.add id vars | App (f, args) -> (match EConstr.kind sigma f with | Construct ((ind,_),_) | Ind (ind,_) -> let (mib,mip) = Global.lookup_inductive ind in Array.fold_left_from (if all then 0 else mib.Declarations.mind_nparams) aux vars args | _ -> EConstr.fold sigma aux vars c) | _ -> EConstr.fold sigma aux vars c in aux vars c let decompose_indapp sigma f args = match EConstr.kind sigma f with | Construct ((ind,_),_) | Ind (ind,_) -> let (mib,mip) = Global.lookup_inductive ind in let first = mib.Declarations.mind_nparams_rec in let pars, args = Array.chop first args in mkApp (f, pars), args | _ -> f, args let mk_term_eq env sigma ty t ty' t' = let sigma = Sigma.to_evar_map sigma in if Reductionops.is_conv env sigma ty ty' then mkEq ty t t', mkRefl ty' t' else mkHEq ty t ty' t', mkHRefl ty' t' let make_abstract_generalize env id typ concl dep ctx body c eqs args refls = let open Context.Rel.Declaration in Refine.refine { run = begin fun sigma -> let eqslen = List.length eqs in (* Abstract by the "generalized" hypothesis equality proof if necessary. *) let abshypeq, abshypt = if dep then let eq, refl = mk_term_eq (push_rel_context ctx env) sigma (lift 1 c) (mkRel 1) typ (mkVar id) in mkProd (Anonymous, eq, lift 1 concl), [| refl |] else concl, [||] in (* Abstract by equalities *) let eqs = lift_togethern 1 eqs in (* lift together and past genarg *) let abseqs = it_mkProd_or_LetIn (lift eqslen abshypeq) (List.map (fun x -> LocalAssum (Anonymous, x)) eqs) in let decl = match body with | None -> LocalAssum (Name id, c) | Some body -> LocalDef (Name id, body, c) in (* Abstract by the "generalized" hypothesis. *) let genarg = mkProd_or_LetIn decl abseqs in (* Abstract by the extension of the context *) let genctyp = it_mkProd_or_LetIn genarg ctx in (* The goal will become this product. *) let Sigma (genc, sigma, p) = Evarutil.new_evar env sigma ~principal:true genctyp in (* Apply the old arguments giving the proper instantiation of the hyp *) let instc = mkApp (genc, Array.of_list args) in (* Then apply to the original instantiated hyp. *) let instc = Option.cata (fun _ -> instc) (mkApp (instc, [| mkVar id |])) body in (* Apply the reflexivity proofs on the indices. *) let appeqs = mkApp (instc, Array.of_list refls) in (* Finally, apply the reflexivity proof for the original hyp, to get a term of type gl again. *) Sigma (mkApp (appeqs, abshypt), sigma, p) end } let hyps_of_vars env sigma sign nogen hyps = if Id.Set.is_empty hyps then [] else let (_,lh) = Context.Named.fold_inside (fun (hs,hl) d -> let x = NamedDecl.get_id d in if Id.Set.mem x nogen then (hs,hl) else if Id.Set.mem x hs then (hs,x::hl) else let xvars = global_vars_set_of_decl env sigma d in if not (Id.Set.is_empty (Id.Set.diff xvars hs)) then (Id.Set.add x hs, x :: hl) else (hs, hl)) ~init:(hyps,[]) sign in lh exception Seen let linear sigma vars args = let seen = ref vars in try Array.iter (fun i -> let rels = ids_of_constr sigma ~all:true Id.Set.empty i in let seen' = Id.Set.fold (fun id acc -> if Id.Set.mem id acc then raise Seen else Id.Set.add id acc) rels !seen in seen := seen') args; true with Seen -> false let is_defined_variable env id = env |> lookup_named id |> is_local_def let abstract_args gl generalize_vars dep id defined f args = let open Tacmach.New in let open Context.Rel.Declaration in let sigma = ref (Tacmach.New.project gl) in let env = Tacmach.New.pf_env gl in let concl = Tacmach.New.pf_concl gl in let dep = dep || local_occur_var !sigma id concl in let avoid = ref [] in let get_id name = let id = new_fresh_id !avoid (match name with Name n -> n | Anonymous -> Id.of_string "gen_x") gl in avoid := id :: !avoid; id in (* Build application generalized w.r.t. the argument plus the necessary eqs. From env |- c : forall G, T and args : G we build (T[G'], G' : ctx, env ; G' |- args' : G, eqs := G'_i = G_i, refls : G' = G, vars to generalize) eqs are not lifted w.r.t. each other yet. (* will be needed when going to dependent indexes *) *) let aux (prod, ctx, ctxenv, c, args, eqs, refls, nongenvars, vars, env) arg = let name, ty, arity = let rel, c = Reductionops.splay_prod_n env !sigma 1 prod in let decl = List.hd rel in RelDecl.get_name decl, RelDecl.get_type decl, c in let argty = Tacmach.New.pf_unsafe_type_of gl arg in let sigma', ty = Evarsolve.refresh_universes (Some true) env !sigma ty in let () = sigma := sigma' in let lenctx = List.length ctx in let liftargty = lift lenctx argty in let leq = constr_cmp !sigma Reduction.CUMUL liftargty ty in match EConstr.kind !sigma arg with | Var id when not (is_defined_variable env id) && leq && not (Id.Set.mem id nongenvars) -> (subst1 arg arity, ctx, ctxenv, mkApp (c, [|arg|]), args, eqs, refls, Id.Set.add id nongenvars, Id.Set.remove id vars, env) | _ -> let name = get_id name in let decl = LocalAssum (Name name, ty) in let ctx = decl :: ctx in let c' = mkApp (lift 1 c, [|mkRel 1|]) in let args = arg :: args in let liftarg = lift (List.length ctx) arg in let eq, refl = if leq then mkEq (lift 1 ty) (mkRel 1) liftarg, mkRefl (lift (-lenctx) ty) arg else mkHEq (lift 1 ty) (mkRel 1) liftargty liftarg, mkHRefl argty arg in let eqs = eq :: lift_list eqs in let refls = refl :: refls in let argvars = ids_of_constr !sigma vars arg in (arity, ctx, push_rel decl ctxenv, c', args, eqs, refls, nongenvars, Id.Set.union argvars vars, env) in let f', args' = decompose_indapp !sigma f args in let dogen, f', args' = let parvars = ids_of_constr !sigma ~all:true Id.Set.empty f' in if not (linear !sigma parvars args') then true, f, args else match Array.findi (fun i x -> not (isVar !sigma x) || is_defined_variable env (destVar !sigma x)) args' with | None -> false, f', args' | Some nonvar -> let before, after = Array.chop nonvar args' in true, mkApp (f', before), after in if dogen then let tyf' = Tacmach.New.pf_unsafe_type_of gl f' in let arity, ctx, ctxenv, c', args, eqs, refls, nogen, vars, env = Array.fold_left aux (tyf',[],env,f',[],[],[],Id.Set.empty,Id.Set.empty,env) args' in let args, refls = List.rev args, List.rev refls in let vars = if generalize_vars then let nogen = Id.Set.add id nogen in hyps_of_vars (pf_env gl) (project gl) (Proofview.Goal.hyps gl) nogen vars else [] in let body, c' = if defined then Some c', Retyping.get_type_of ctxenv !sigma c' else None, c' in let typ = Tacmach.New.pf_get_hyp_typ id gl in let tac = make_abstract_generalize (pf_env gl) id typ concl dep ctx body c' eqs args refls in let tac = Proofview.Unsafe.tclEVARS !sigma <*> tac in Some (tac, dep, succ (List.length ctx), vars) else None let abstract_generalize ?(generalize_vars=true) ?(force_dep=false) id = let open Context.Named.Declaration in Proofview.Goal.enter { enter = begin fun gl -> Coqlib.check_required_library Coqlib.jmeq_module_name; let sigma = Tacmach.New.project gl in let (f, args, def, id, oldid) = let oldid = Tacmach.New.pf_get_new_id id gl in match Tacmach.New.pf_get_hyp id gl with | LocalAssum (_,t) -> let f, args = decompose_app sigma t in (f, args, false, id, oldid) | LocalDef (_,t,_) -> let f, args = decompose_app sigma t in (f, args, true, id, oldid) in if List.is_empty args then Proofview.tclUNIT () else let args = Array.of_list args in let newc = abstract_args gl generalize_vars force_dep id def f args in match newc with | None -> Proofview.tclUNIT () | Some (tac, dep, n, vars) -> let tac = if dep then Tacticals.New.tclTHENLIST [ tac; rename_hyp [(id, oldid)]; Tacticals.New.tclDO n intro; generalize_dep ~with_let:true (mkVar oldid)] else Tacticals.New.tclTHENLIST [ tac; clear [id]; Tacticals.New.tclDO n intro] in if List.is_empty vars then tac else Tacticals.New.tclTHEN tac (Tacticals.New.tclFIRST [revert vars ; Tacticals.New.tclMAP (fun id -> Tacticals.New.tclTRY (generalize_dep ~with_let:true (mkVar id))) vars]) end } let compare_upto_variables sigma x y = let rec compare x y = if (isVar sigma x || isRel sigma x) && (isVar sigma y || isRel sigma y) then true else compare_constr sigma compare x y in compare x y let specialize_eqs id gl = let open Context.Rel.Declaration in let env = Tacmach.pf_env gl in let ty = Tacmach.pf_get_hyp_typ gl id in let evars = ref (project gl) in let unif env evars c1 c2 = compare_upto_variables !evars c1 c2 && Evarconv.e_conv env evars c1 c2 in let rec aux in_eqs ctx acc ty = match EConstr.kind !evars ty with | Prod (na, t, b) -> (match EConstr.kind !evars t with | App (eq, [| eqty; x; y |]) when EConstr.eq_constr !evars (Lazy.force coq_eq) eq -> let c = if noccur_between !evars 1 (List.length ctx) x then y else x in let pt = mkApp (Lazy.force coq_eq, [| eqty; c; c |]) in let p = mkApp (Lazy.force coq_eq_refl, [| eqty; c |]) in if unif (push_rel_context ctx env) evars pt t then aux true ctx (mkApp (acc, [| p |])) (subst1 p b) else acc, in_eqs, ctx, ty | App (heq, [| eqty; x; eqty'; y |]) when EConstr.eq_constr !evars heq (Lazy.force coq_heq) -> let eqt, c = if noccur_between !evars 1 (List.length ctx) x then eqty', y else eqty, x in let pt = mkApp (Lazy.force coq_heq, [| eqt; c; eqt; c |]) in let p = mkApp (Lazy.force coq_heq_refl, [| eqt; c |]) in if unif (push_rel_context ctx env) evars pt t then aux true ctx (mkApp (acc, [| p |])) (subst1 p b) else acc, in_eqs, ctx, ty | _ -> if in_eqs then acc, in_eqs, ctx, ty else let e = e_new_evar (push_rel_context ctx env) evars t in aux false (LocalDef (na,e,t) :: ctx) (mkApp (lift 1 acc, [| mkRel 1 |])) b) | t -> acc, in_eqs, ctx, ty in let acc, worked, ctx, ty = aux false [] (mkVar id) ty in let ctx' = nf_rel_context_evar !evars ctx in let ctx'' = List.map (function | LocalDef (n,k,t) when isEvar !evars k -> LocalAssum (n,t) | decl -> decl) ctx' in let ty' = it_mkProd_or_LetIn ty ctx'' in let acc' = it_mkLambda_or_LetIn acc ctx'' in let ty' = Tacred.whd_simpl env !evars ty' and acc' = Tacred.whd_simpl env !evars acc' in let ty' = Evarutil.nf_evar !evars ty' in if worked then tclTHENFIRST (Tacmach.internal_cut true id ty') (Proofview.V82.of_tactic (exact_no_check ((* refresh_universes_strict *) acc'))) gl else tclFAIL 0 (str "Nothing to do in hypothesis " ++ pr_id id) gl let specialize_eqs id = Proofview.Goal.enter { enter = begin fun gl -> let msg = str "Specialization not allowed on dependent hypotheses" in Proofview.tclOR (clear [id]) (fun _ -> Tacticals.New.tclZEROMSG msg) >>= fun () -> Proofview.V82.tactic (specialize_eqs id) end } let occur_rel sigma n c = let res = not (noccurn sigma n c) in res (* This function splits the products of the induction scheme [elimt] into four parts: - branches, easily detectable (they are not referred by rels in the subterm) - what was found before branches (acc1) that is: parameters and predicates - what was found after branches (acc3) that is: args and indarg if any if there is no branch, we try to fill in acc3 with args/indargs. We also return the conclusion. *) let decompose_paramspred_branch_args sigma elimt = let open Context.Rel.Declaration in let rec cut_noccur elimt acc2 = match EConstr.kind sigma elimt with | Prod(nme,tpe,elimt') -> let hd_tpe,_ = decompose_app sigma (snd (decompose_prod_assum sigma tpe)) in if not (occur_rel sigma 1 elimt') && isRel sigma hd_tpe then cut_noccur elimt' (LocalAssum (nme,tpe)::acc2) else let acc3,ccl = decompose_prod_assum sigma elimt in acc2 , acc3 , ccl | App(_, _) | Rel _ -> acc2 , [] , elimt | _ -> error_ind_scheme "" in let rec cut_occur elimt acc1 = match EConstr.kind sigma elimt with | Prod(nme,tpe,c) when occur_rel sigma 1 c -> cut_occur c (LocalAssum (nme,tpe)::acc1) | Prod(nme,tpe,c) -> let acc2,acc3,ccl = cut_noccur elimt [] in acc1,acc2,acc3,ccl | App(_, _) | Rel _ -> acc1,[],[],elimt | _ -> error_ind_scheme "" in let acc1, acc2 , acc3, ccl = cut_occur elimt [] in (* Particular treatment when dealing with a dependent empty type elim scheme: if there is no branch, then acc1 contains all hyps which is wrong (acc1 should contain parameters and predicate only). This happens for an empty type (See for example Empty_set_ind, as False would actually be ok). Then we must find the predicate of the conclusion to separate params_pred from args. We suppose there is only one predicate here. *) match acc2 with | [] -> let hyps,ccl = decompose_prod_assum sigma elimt in let hd_ccl_pred,_ = decompose_app sigma ccl in begin match EConstr.kind sigma hd_ccl_pred with | Rel i -> let acc3,acc1 = List.chop (i-1) hyps in acc1 , [] , acc3 , ccl | _ -> error_ind_scheme "" end | _ -> acc1, acc2 , acc3, ccl let exchange_hd_app sigma subst_hd t = let hd,args= decompose_app sigma t in mkApp (subst_hd,Array.of_list args) (* Builds an elim_scheme from its type and calling form (const+binding). We first separate branches. We obtain branches, hyps before (params + preds), hyps after (args <+ indarg if present>) and conclusion. Then we proceed as follows: - separate parameters and predicates in params_preds. For that we build: forall (x1:Ti_1)(xni:Ti_ni) (HI:I prm1..prmp x1...xni), DUMMY x1...xni HI/farg ^^^^^^^^^^^^^^^^^^^^^^^^^ ^^^^^^^ optional opt Free rels appearing in this term are parameters (branches should not appear, and the only predicate would have been Qi but we replaced it by DUMMY). We guess this heuristic catches all params. TODO: generalize to the case where args are merged with branches (?) and/or where several predicates are cited in the conclusion. - finish to fill in the elim_scheme: indarg/farg/args and finally indref. *) let compute_elim_sig sigma ?elimc elimt = let open Context.Rel.Declaration in let params_preds,branches,args_indargs,conclusion = decompose_paramspred_branch_args sigma elimt in let ccl = exchange_hd_app sigma (mkVar (Id.of_string "__QI_DUMMY__")) conclusion in let concl_with_args = it_mkProd_or_LetIn ccl args_indargs in let nparams = Int.Set.cardinal (free_rels sigma concl_with_args) in let preds,params = List.chop (List.length params_preds - nparams) params_preds in (* A first approximation, further analysis will tweak it *) let res = ref { empty_scheme with (* This fields are ok: *) elimc = elimc; elimt = elimt; concl = conclusion; predicates = preds; npredicates = List.length preds; branches = branches; nbranches = List.length branches; farg_in_concl = isApp sigma ccl && isApp sigma (last_arg sigma ccl); params = params; nparams = nparams; (* all other fields are unsure at this point. Including these:*) args = args_indargs; nargs = List.length args_indargs; } in try (* Order of tests below is important. Each of them exits if successful. *) (* 1- First see if (f x...) is in the conclusion. *) if !res.farg_in_concl then begin res := { !res with indarg = None; indarg_in_concl = false; farg_in_concl = true }; raise Exit end; (* 2- If no args_indargs (=!res.nargs at this point) then no indarg *) if Int.equal !res.nargs 0 then raise Exit; (* 3- Look at last arg: is it the indarg? *) ignore ( match List.hd args_indargs with | LocalDef (hiname,_,hi) -> error_ind_scheme "" | LocalAssum (hiname,hi) -> let hi_ind, hi_args = decompose_app sigma hi in let hi_is_ind = (* hi est d'un type globalisable *) match EConstr.kind sigma hi_ind with | Ind (mind,_) -> true | Var _ -> true | Const _ -> true | Construct _ -> true | _ -> false in let hi_args_enough = (* hi a le bon nbre d'arguments *) Int.equal (List.length hi_args) (List.length params + !res.nargs -1) in (* FIXME: Ces deux tests ne sont pas suffisants. *) if not (hi_is_ind && hi_args_enough) then raise Exit (* No indarg *) else (* Last arg is the indarg *) res := {!res with indarg = Some (List.hd !res.args); indarg_in_concl = occur_rel sigma 1 ccl; args = List.tl !res.args; nargs = !res.nargs - 1; }; raise Exit); raise Exit(* exit anyway *) with Exit -> (* Ending by computing indref: *) match !res.indarg with | None -> !res (* No indref *) | Some (LocalDef _) -> error_ind_scheme "" | Some (LocalAssum (_,ind)) -> let indhd,indargs = decompose_app sigma ind in try {!res with indref = Some (fst (Termops.global_of_constr sigma indhd)) } with e when CErrors.noncritical e -> error "Cannot find the inductive type of the inductive scheme." let compute_scheme_signature evd scheme names_info ind_type_guess = let open Context.Rel.Declaration in let f,l = decompose_app evd scheme.concl in (* Vérifier que les arguments de Qi sont bien les xi. *) let cond, check_concl = match scheme.indarg with | Some (LocalDef _) -> error "Strange letin, cannot recognize an induction scheme." | None -> (* Non standard scheme *) let cond hd = EConstr.eq_constr evd hd ind_type_guess && not scheme.farg_in_concl in (cond, fun _ _ -> ()) | Some (LocalAssum (_,ind)) -> (* Standard scheme from an inductive type *) let indhd,indargs = decompose_app evd ind in let cond hd = EConstr.eq_constr evd hd indhd in let check_concl is_pred p = (* Check again conclusion *) let ccl_arg_ok = is_pred (p + scheme.nargs + 1) f == IndArg in let ind_is_ok = List.equal (fun c1 c2 -> EConstr.eq_constr evd c1 c2) (List.lastn scheme.nargs indargs) (Context.Rel.to_extended_list mkRel 0 scheme.args) in if not (ccl_arg_ok && ind_is_ok) then error_ind_scheme "the conclusion of" in (cond, check_concl) in let is_pred n c = let hd = fst (decompose_app evd c) in match EConstr.kind evd hd with | Rel q when n < q && q <= n+scheme.npredicates -> IndArg | _ when cond hd -> RecArg | _ -> OtherArg in let rec check_branch p c = match EConstr.kind evd c with | Prod (_,t,c) -> (is_pred p t, true, not (Vars.noccurn evd 1 c)) :: check_branch (p+1) c | LetIn (_,_,_,c) -> (OtherArg, false, not (Vars.noccurn evd 1 c)) :: check_branch (p+1) c | _ when is_pred p c == IndArg -> [] | _ -> raise Exit in let rec find_branches p lbrch = match lbrch with | LocalAssum (_,t) :: brs -> (try let lchck_brch = check_branch p t in let n = List.fold_left (fun n (b,_,_) -> if b == RecArg then n+1 else n) 0 lchck_brch in let recvarname, hyprecname, avoid = make_up_names n scheme.indref names_info in let namesign = List.map (fun (b,is_assum,dep) -> (b,is_assum,dep,if b == IndArg then hyprecname else recvarname)) lchck_brch in (avoid,namesign) :: find_branches (p+1) brs with Exit-> error_ind_scheme "the branches of") | LocalDef _ :: _ -> error_ind_scheme "the branches of" | [] -> check_concl is_pred p; [] in Array.of_list (find_branches 0 (List.rev scheme.branches)) (* Check that the elimination scheme has a form similar to the elimination schemes built by Coq. Schemes may have the standard form computed from an inductive type OR (feb. 2006) a non standard form. That is: with no main induction argument and with an optional extra final argument of the form (f x y ...) in the conclusion. In the non standard case, naming of generated hypos is slightly different. *) let compute_elim_signature (evd,(elimc,elimt),ind_type_guess) names_info = let scheme = compute_elim_sig evd ~elimc:elimc elimt in evd, (compute_scheme_signature evd scheme names_info ind_type_guess, scheme) let guess_elim isrec dep s hyp0 gl = let tmptyp0 = Tacmach.New.pf_get_hyp_typ hyp0 gl in let (mind, u), _ = Tacmach.New.pf_reduce_to_quantified_ind gl tmptyp0 in let evd, elimc = if isrec && not (is_nonrec mind) then find_ind_eliminator mind s gl else let env = Tacmach.New.pf_env gl in let sigma = Sigma.Unsafe.of_evar_map (Tacmach.New.project gl) in let u = EInstance.kind (Tacmach.New.project gl) u in if use_dependent_propositions_elimination () && dep then let Sigma (ind, sigma, _) = build_case_analysis_scheme env sigma (mind, u) true s in let ind = EConstr.of_constr ind in (Sigma.to_evar_map sigma, ind) else let Sigma (ind, sigma, _) = build_case_analysis_scheme_default env sigma (mind, u) s in let ind = EConstr.of_constr ind in (Sigma.to_evar_map sigma, ind) in let elimt = Tacmach.New.pf_unsafe_type_of gl elimc in evd, ((elimc, NoBindings), elimt), mkIndU (mind, u) let given_elim hyp0 (elimc,lbind as e) gl = let sigma = Tacmach.New.project gl in let tmptyp0 = Tacmach.New.pf_get_hyp_typ hyp0 gl in let ind_type_guess,_ = decompose_app sigma (snd (decompose_prod sigma tmptyp0)) in let elimt = Tacmach.New.pf_unsafe_type_of gl elimc in Tacmach.New.project gl, (e, elimt), ind_type_guess type scheme_signature = (Id.t list * (elim_arg_kind * bool * bool * Id.t) list) array type eliminator_source = | ElimUsing of (eliminator * EConstr.types) * scheme_signature | ElimOver of bool * Id.t let find_induction_type isrec elim hyp0 gl = let sigma = Tacmach.New.project gl in let scheme,elim = match elim with | None -> let sort = Tacticals.New.elimination_sort_of_goal gl in let _, (elimc,elimt),_ = guess_elim isrec (* dummy: *) true sort hyp0 gl in let scheme = compute_elim_sig sigma ~elimc elimt in (* We drop the scheme waiting to know if it is dependent *) scheme, ElimOver (isrec,hyp0) | Some e -> let evd, (elimc,elimt),ind_guess = given_elim hyp0 e gl in let scheme = compute_elim_sig sigma ~elimc elimt in if Option.is_empty scheme.indarg then error "Cannot find induction type"; let indsign = compute_scheme_signature evd scheme hyp0 ind_guess in let elim = ({elimindex = Some(-1); elimbody = elimc; elimrename = None},elimt) in scheme, ElimUsing (elim,indsign) in match scheme.indref with | None -> error_ind_scheme "" | Some ref -> ref, scheme.nparams, elim let get_elim_signature elim hyp0 gl = compute_elim_signature (given_elim hyp0 elim gl) hyp0 let is_functional_induction elimc gl = let sigma = Tacmach.New.project gl in let scheme = compute_elim_sig sigma ~elimc (Tacmach.New.pf_unsafe_type_of gl (fst elimc)) in (* The test is not safe: with non-functional induction on non-standard induction scheme, this may fail *) Option.is_empty scheme.indarg (* Wait the last moment to guess the eliminator so as to know if we need a dependent one or not *) let get_eliminator elim dep s gl = match elim with | ElimUsing (elim,indsign) -> Tacmach.New.project gl, (* bugged, should be computed *) true, elim, indsign | ElimOver (isrec,id) -> let evd, (elimc,elimt),_ as elims = guess_elim isrec dep s id gl in let _, (l, s) = compute_elim_signature elims id in let branchlengthes = List.map (fun d -> assert (RelDecl.is_local_assum d); pi1 (decompose_prod_letin (Tacmach.New.project gl) (RelDecl.get_type d))) (List.rev s.branches) in evd, isrec, ({elimindex = None; elimbody = elimc; elimrename = Some (isrec,Array.of_list branchlengthes)}, elimt), l (* Instantiate all meta variables of elimclause using lid, some elts of lid are parameters (first ones), the other are arguments. Returns the clause obtained. *) let recolle_clenv i params args elimclause gl = let _,arr = destApp elimclause.evd elimclause.templval.rebus in let lindmv = Array.map (fun x -> match EConstr.kind elimclause.evd x with | Meta mv -> mv | _ -> user_err ~hdr:"elimination_clause" (str "The type of the elimination clause is not well-formed.")) arr in let k = match i with -1 -> Array.length lindmv - List.length args | _ -> i in (* parameters correspond to first elts of lid. *) let clauses_params = List.map_i (fun i id -> mkVar id , pf_get_hyp_typ id gl, lindmv.(i)) 0 params in let clauses_args = List.map_i (fun i id -> mkVar id , pf_get_hyp_typ id gl, lindmv.(k+i)) 0 args in let clauses = clauses_params@clauses_args in (* iteration of clenv_fchain with all infos we have. *) List.fold_right (fun e acc -> let x,y,i = e in (* from_n (Some 0) means that x should be taken "as is" without trying to unify (which would lead to trying to apply it to evars if y is a product). *) let indclause = mk_clenv_from_n gl (Some 0) (x,y) in let elimclause' = clenv_fchain ~with_univs:false i acc indclause in elimclause') (List.rev clauses) elimclause (* Unification of the goal and the principle applied to meta variables: (elimc ?i ?j ?k...?l). This solves partly meta variables (and may produce new ones). Then refine with the resulting term with holes. *) let induction_tac with_evars params indvars elim = Proofview.Goal.enter { enter = begin fun gl -> let sigma = Tacmach.New.project gl in let ({elimindex=i;elimbody=(elimc,lbindelimc);elimrename=rename},elimt) = elim in let i = match i with None -> index_of_ind_arg sigma elimt | Some i -> i in (* elimclause contains this: (elimc ?i ?j ?k...?l) *) let elimc = contract_letin_in_lam_header sigma elimc in let elimc = mkCast (elimc, DEFAULTcast, elimt) in let elimclause = Tacmach.New.pf_apply make_clenv_binding gl (elimc,elimt) lbindelimc in (* elimclause' is built from elimclause by instanciating all args and params. *) let elimclause' = recolle_clenv i params indvars elimclause gl in (* one last resolution (useless?) *) let resolved = clenv_unique_resolver ~flags:(elim_flags ()) elimclause' gl in enforce_prop_bound_names rename (Clenvtac.clenv_refine with_evars resolved) end } (* Apply induction "in place" taking into account dependent hypotheses from the context, replacing the main hypothesis on which induction applies with the induction hypotheses *) let apply_induction_in_context with_evars hyp0 inhyps elim indvars names induct_tac = Proofview.Goal.s_enter { s_enter = begin fun gl -> let sigma = Proofview.Goal.sigma gl in let env = Proofview.Goal.env gl in let sigma = Sigma.to_evar_map sigma in let concl = Tacmach.New.pf_concl gl in let statuslists,lhyp0,toclear,deps,avoid,dep_in_hyps = cook_sign hyp0 inhyps indvars env sigma in let dep_in_concl = Option.cata (fun id -> occur_var env sigma id concl) false hyp0 in let dep = dep_in_hyps || dep_in_concl in let tmpcl = it_mkNamedProd_or_LetIn concl deps in let s = Retyping.get_sort_family_of env sigma tmpcl in let deps_cstr = List.fold_left (fun a decl -> if NamedDecl.is_local_assum decl then (mkVar (NamedDecl.get_id decl))::a else a) [] deps in let (sigma, isrec, elim, indsign) = get_eliminator elim dep s (Proofview.Goal.assume gl) in let branchletsigns = let f (_,is_not_let,_,_) = is_not_let in Array.map (fun (_,l) -> List.map f l) indsign in let names = compute_induction_names branchletsigns names in Array.iter (check_name_unicity env toclear []) names; let tac = (if isrec then Tacticals.New.tclTHENFIRSTn else Tacticals.New.tclTHENLASTn) (Tacticals.New.tclTHENLIST [ (* Generalize dependent hyps (but not args) *) if deps = [] then Proofview.tclUNIT () else apply_type tmpcl deps_cstr; (* side-conditions in elim (resp case) schemes come last (resp first) *) induct_tac elim; Tacticals.New.tclMAP expand_hyp toclear; ]) (Array.map2 (induct_discharge with_evars lhyp0 avoid (re_intro_dependent_hypotheses statuslists)) indsign names) in Sigma.Unsafe.of_pair (tac, sigma) end } let induction_with_atomization_of_ind_arg isrec with_evars elim names hyp0 inhyps = Proofview.Goal.enter { enter = begin fun gl -> let elim_info = find_induction_type isrec elim hyp0 (Proofview.Goal.assume gl) in atomize_param_of_ind_then elim_info hyp0 (fun indvars -> apply_induction_in_context with_evars (Some hyp0) inhyps (pi3 elim_info) indvars names (fun elim -> induction_tac with_evars [] [hyp0] elim)) end } let msg_not_right_number_induction_arguments scheme = str"Not the right number of induction arguments (expected " ++ pr_enum (fun x -> x) [ if scheme.farg_in_concl then str "the function name" else mt(); if scheme.nparams != 0 then int scheme.nparams ++ str (String.plural scheme.nparams " parameter") else mt (); if scheme.nargs != 0 then int scheme.nargs ++ str (String.plural scheme.nargs " argument") else mt ()] ++ str ")." (* Induction on a list of induction arguments. Analyze the elim scheme (which is mandatory for multiple ind args), check that all parameters and arguments are given (mandatory too). Main differences with induction_from_context is that there is no main induction argument. On the other hand, all args and params must be given, so we help a bit the unifier by making the "pattern" by hand before calling induction_tac *) let induction_without_atomization isrec with_evars elim names lid = Proofview.Goal.enter { enter = begin fun gl -> let sigma, (indsign,scheme) = get_elim_signature elim (List.hd lid) gl in let nargs_indarg_farg = scheme.nargs + (if scheme.farg_in_concl then 1 else 0) in if not (Int.equal (List.length lid) (scheme.nparams + nargs_indarg_farg)) then Tacticals.New.tclZEROMSG (msg_not_right_number_induction_arguments scheme) else let indvars,lid_params = List.chop nargs_indarg_farg lid in (* terms to patternify we must patternify indarg or farg if present in concl *) let realindvars = List.rev (if scheme.farg_in_concl then List.tl indvars else indvars) in let lidcstr = List.map mkVar (List.rev indvars) in let params = List.rev lid_params in let indvars = (* Temporary hack for compatibility, while waiting for better analysis of the form of induction schemes: a scheme like gt_wf_rec was taken as a functional scheme with no parameters, but by chance, because of the addition of at least hyp0 for cook_sign, it behaved as if there was a real induction arg. *) if indvars = [] then [List.hd lid_params] else indvars in let induct_tac elim = Tacticals.New.tclTHENLIST [ (* pattern to make the predicate appear. *) reduce (Pattern (List.map inj_with_occurrences lidcstr)) onConcl; (* Induction by "refine (indscheme ?i ?j ?k...)" + resolution of all possible holes using arguments given by the user (but the functional one). *) (* FIXME: Tester ca avec un principe dependant et non-dependant *) induction_tac with_evars params realindvars elim; ] in let elim = ElimUsing (({elimindex = Some (-1); elimbody = Option.get scheme.elimc; elimrename = None}, scheme.elimt), indsign) in apply_induction_in_context with_evars None [] elim indvars names induct_tac end } (* assume that no occurrences are selected *) let clear_unselected_context id inhyps cls = Proofview.Goal.enter { enter = begin fun gl -> if occur_var (Tacmach.New.pf_env gl) (Tacmach.New.project gl) id (Tacmach.New.pf_concl gl) && cls.concl_occs == NoOccurrences then user_err (str "Conclusion must be mentioned: it depends on " ++ pr_id id ++ str "."); match cls.onhyps with | Some hyps -> let to_erase d = let id' = NamedDecl.get_id d in if Id.List.mem id' inhyps then (* if selected, do not erase *) None else (* erase if not selected and dependent on id or selected hyps *) let test id = occur_var_in_decl (Tacmach.New.pf_env gl) (Tacmach.New.project gl) id d in if List.exists test (id::inhyps) then Some id' else None in let ids = List.map_filter to_erase (Proofview.Goal.hyps gl) in clear ids | None -> Proofview.tclUNIT () end } let use_bindings env sigma elim must_be_closed (c,lbind) typ = let sigma = Sigma.to_evar_map sigma in let typ = if elim == None then (* w/o an scheme, the term has to be applied at least until obtaining an inductive type (even though the arity might be known only by pattern-matching, as in the case of a term of the form "nat_rect ?A ?o ?s n", with ?A to be inferred by matching. *) let sign,t = splay_prod env sigma typ in it_mkProd t sign else (* Otherwise, we exclude the case of an induction argument in an explicitly functional type. Henceforth, we can complete the pattern until it has as type an atomic type (even though this atomic type can hide a functional type, for which the "using" clause has a scheme). *) typ in let rec find_clause typ = try let indclause = make_clenv_binding env sigma (c,typ) lbind in if must_be_closed && occur_meta indclause.evd (clenv_value indclause) then error "Need a fully applied argument."; (* We lose the possibility of coercions in with-bindings *) let (sigma, c) = pose_all_metas_as_evars env indclause.evd (clenv_value indclause) in Sigma.Unsafe.of_pair (c, sigma) with e when catchable_exception e -> try find_clause (try_red_product env sigma typ) with Redelimination -> raise e in find_clause typ let check_expected_type env sigma (elimc,bl) elimt = (* Compute the expected template type of the term in case a using clause is given *) let sign,_ = splay_prod env sigma elimt in let n = List.length sign in if n == 0 then error "Scheme cannot be applied."; let sigma,cl = make_evar_clause env sigma ~len:(n - 1) elimt in let sigma = solve_evar_clause env sigma true cl bl in let (_,u,_) = destProd sigma cl.cl_concl in fun t -> Evarconv.e_cumul env (ref sigma) t u let check_enough_applied env sigma elim = let sigma = Sigma.to_evar_map sigma in (* A heuristic to decide whether the induction arg is enough applied *) match elim with | None -> (* No eliminator given *) fun u -> let t,_ = decompose_app sigma (whd_all env sigma u) in isInd sigma t | Some elimc -> let elimt = Retyping.get_type_of env sigma (fst elimc) in let scheme = compute_elim_sig sigma ~elimc elimt in match scheme.indref with | None -> (* in the absence of information, do not assume it may be partially applied *) fun _ -> true | Some _ -> (* Last argument is supposed to be the induction argument *) check_expected_type env sigma elimc elimt let guard_no_unifiable = Proofview.guard_no_unifiable >>= function | None -> Proofview.tclUNIT () | Some l -> Proofview.tclZERO (RefinerError (UnresolvedBindings l)) let pose_induction_arg_then isrec with_evars (is_arg_pure_hyp,from_prefix) elim id ((pending,(c0,lbind)),(eqname,names)) t0 inhyps cls tac = Proofview.Goal.s_enter { s_enter = begin fun gl -> let sigma = Proofview.Goal.sigma gl in let env = Proofview.Goal.env gl in let ccl = Proofview.Goal.concl gl in let store = Proofview.Goal.extra gl in let check = check_enough_applied env sigma elim in let Sigma (c, sigma', p) = use_bindings env sigma elim false (c0,lbind) t0 in let abs = AbstractPattern (from_prefix,check,Name id,(pending,c),cls,false) in let (id,sign,_,lastlhyp,ccl,res) = make_abstraction env sigma' ccl abs in match res with | None -> (* pattern not found *) let with_eq = Option.map (fun eq -> (false,eq)) eqname in (* we restart using bindings after having tried type-class resolution etc. on the term given by the user *) let flags = tactic_infer_flags (with_evars && (* do not give a success semantics to edestruct on an open term yet *) false) in let Sigma (c0, sigma, q) = finish_evar_resolution ~flags env sigma (pending,c0) in let tac = (if isrec then (* Historically, induction has side conditions last *) Tacticals.New.tclTHENFIRST else (* and destruct has side conditions first *) Tacticals.New.tclTHENLAST) (Tacticals.New.tclTHENLIST [ Refine.refine ~unsafe:true { run = begin fun sigma -> let b = not with_evars && with_eq != None in let Sigma (c, sigma, p) = use_bindings env sigma elim b (c0,lbind) t0 in let t = Retyping.get_type_of env (Sigma.to_evar_map sigma) c in let Sigma (ans, sigma, q) = mkletin_goal env sigma store with_eq false (id,lastlhyp,ccl,c) (Some t) in Sigma (ans, sigma, p +> q) end }; if with_evars then Proofview.shelve_unifiable else guard_no_unifiable; if is_arg_pure_hyp then Proofview.tclEVARMAP >>= fun sigma -> Tacticals.New.tclTRY (clear [destVar sigma c0]) else Proofview.tclUNIT (); if isrec then Proofview.cycle (-1) else Proofview.tclUNIT () ]) tac in Sigma (tac, sigma, q) | Some (Sigma (c, sigma', q)) -> (* pattern found *) let with_eq = Option.map (fun eq -> (false,eq)) eqname in (* TODO: if ind has predicate parameters, use JMeq instead of eq *) let env = reset_with_named_context sign env in let tac = Tacticals.New.tclTHENLIST [ Refine.refine ~unsafe:true { run = begin fun sigma -> mkletin_goal env sigma store with_eq true (id,lastlhyp,ccl,c) None end }; tac ] in Sigma (tac, sigma', p +> q) end } let has_generic_occurrences_but_goal cls id env sigma ccl = clause_with_generic_context_selection cls && (* TODO: whd_evar of goal *) (cls.concl_occs != NoOccurrences || not (occur_var env sigma id ccl)) let induction_gen clear_flag isrec with_evars elim ((_pending,(c,lbind)),(eqname,names) as arg) cls = let inhyps = match cls with | Some {onhyps=Some hyps} -> List.map (fun ((_,id),_) -> id) hyps | _ -> [] in Proofview.Goal.enter { enter = begin fun gl -> let env = Proofview.Goal.env gl in let sigma = Proofview.Goal.sigma gl in let evd = Sigma.to_evar_map sigma in let ccl = Proofview.Goal.concl gl in let cls = Option.default allHypsAndConcl cls in let t = typ_of env sigma c in let is_arg_pure_hyp = isVar evd c && not (mem_named_context_val (destVar evd c) (Global.named_context_val ())) && lbind == NoBindings && not with_evars && Option.is_empty eqname && clear_flag == None && has_generic_occurrences_but_goal cls (destVar evd c) env evd ccl in let enough_applied = check_enough_applied env sigma elim t in if is_arg_pure_hyp && enough_applied then (* First case: induction on a variable already in an inductive type and with maximal abstraction over the variable. This is a situation where the induction argument is a clearable variable of the goal w/o occurrence selection and w/o equality kept: no need to generalize *) let id = destVar evd c in Tacticals.New.tclTHEN (clear_unselected_context id inhyps cls) (induction_with_atomization_of_ind_arg isrec with_evars elim names id inhyps) else (* Otherwise, we look for the pattern, possibly adding missing arguments and declaring the induction argument as a new local variable *) let id = (* Type not the right one if partially applied but anyway for internal use*) let x = id_of_name_using_hdchar (Global.env()) evd t Anonymous in new_fresh_id [] x gl in let info_arg = (is_arg_pure_hyp, not enough_applied) in pose_induction_arg_then isrec with_evars info_arg elim id arg t inhyps cls (induction_with_atomization_of_ind_arg isrec with_evars elim names id inhyps) end } (* Induction on a list of arguments. First make induction arguments atomic (using letins), then do induction. The specificity here is that all arguments and parameters of the scheme are given (mandatory for the moment), so we don't need to deal with parameters of the inductive type as in induction_gen. *) let induction_gen_l isrec with_evars elim names lc = let newlc = ref [] in let lc = List.map (function | (c,None) -> c | (c,Some(loc,eqname)) -> user_err ?loc (str "Do not know what to do with " ++ Miscprint.pr_intro_pattern_naming eqname)) lc in let rec atomize_list l = match l with | [] -> Proofview.tclUNIT () | c::l' -> Proofview.tclEVARMAP >>= fun sigma -> match EConstr.kind sigma c with | Var id when not (mem_named_context_val id (Global.named_context_val ())) && not with_evars -> let _ = newlc:= id::!newlc in atomize_list l' | _ -> Proofview.Goal.enter { enter = begin fun gl -> let type_of = Tacmach.New.pf_unsafe_type_of gl in let sigma = Tacmach.New.project gl in let x = id_of_name_using_hdchar (Global.env()) sigma (type_of c) Anonymous in let id = new_fresh_id [] x gl in let newl' = List.map (fun r -> replace_term sigma c (mkVar id) r) l' in let _ = newlc:=id::!newlc in Tacticals.New.tclTHEN (letin_tac None (Name id) c None allHypsAndConcl) (atomize_list newl') end } in Tacticals.New.tclTHENLIST [ (atomize_list lc); (Proofview.tclUNIT () >>= fun () -> (* ensure newlc has been computed *) induction_without_atomization isrec with_evars elim names !newlc) ] (* Induction either over a term, over a quantified premisse, or over several quantified premisses (like with functional induction principles). TODO: really unify induction with one and induction with several args *) let induction_destruct isrec with_evars (lc,elim) = match lc with | [] -> assert false (* ensured by syntax, but if called inside caml? *) | [c,(eqname,names as allnames),cls] -> Proofview.Goal.enter { enter = begin fun gl -> let env = Proofview.Goal.env gl in let sigma = Tacmach.New.project gl in match elim with | Some elim when is_functional_induction elim gl -> (* Standard induction on non-standard induction schemes *) (* will be removable when is_functional_induction will be more clever *) if not (Option.is_empty cls) then error "'in' clause not supported here."; let _,c = force_destruction_arg false env sigma c in onInductionArg (fun _clear_flag c -> induction_gen_l isrec with_evars elim names [with_no_bindings c,eqname]) c | _ -> (* standard induction *) onOpenInductionArg env sigma (fun clear_flag c -> induction_gen clear_flag isrec with_evars elim (c,allnames) cls) c end } | _ -> Proofview.Goal.enter { enter = begin fun gl -> let env = Proofview.Goal.env gl in let sigma = Tacmach.New.project gl in match elim with | None -> (* Several arguments, without "using" clause *) (* TODO: Do as if the arguments after the first one were called with *) (* "destruct", but selecting occurrences on the initial copy of *) (* the goal *) let (a,b,cl) = List.hd lc in let l = List.tl lc in (* TODO *) Tacticals.New.tclTHEN (onOpenInductionArg env sigma (fun clear_flag a -> induction_gen clear_flag isrec with_evars None (a,b) cl) a) (Tacticals.New.tclMAP (fun (a,b,cl) -> Proofview.Goal.enter { enter = begin fun gl -> let env = Proofview.Goal.env gl in let sigma = Tacmach.New.project gl in onOpenInductionArg env sigma (fun clear_flag a -> induction_gen clear_flag false with_evars None (a,b) cl) a end }) l) | Some elim -> (* Several induction hyps with induction scheme *) let lc = List.map (on_pi1 (fun c -> snd (force_destruction_arg false env sigma c))) lc in let newlc = List.map (fun (x,(eqn,names),cls) -> if cls != None then error "'in' clause not yet supported here."; match x with (* FIXME: should we deal with ElimOnIdent? *) | _clear_flag,ElimOnConstr x -> if eqn <> None then error "'eqn' clause not supported here."; (with_no_bindings x,names) | _ -> error "Don't know where to find some argument.") lc in (* Check that "as", if any, is given only on the last argument *) let names,rest = List.sep_last (List.map snd newlc) in if List.exists (fun n -> not (Option.is_empty n)) rest then error "'as' clause with multiple arguments and 'using' clause can only occur last."; let newlc = List.map (fun (x,_) -> (x,None)) newlc in induction_gen_l isrec with_evars elim names newlc end } let induction ev clr c l e = induction_gen clr true ev e ((Evd.empty,(c,NoBindings)),(None,l)) None let destruct ev clr c l e = induction_gen clr false ev e ((Evd.empty,(c,NoBindings)),(None,l)) None (* The registered tactic, which calls the default elimination * if no elimination constant is provided. *) (* Induction tactics *) (* This was Induction before 6.3 (induction only in quantified premisses) *) let simple_induct_id s = Tacticals.New.tclTHEN (intros_until_id s) (Tacticals.New.onLastHyp simplest_elim) let simple_induct_nodep n = Tacticals.New.tclTHEN (intros_until_n n) (Tacticals.New.onLastHyp simplest_elim) let simple_induct = function | NamedHyp id -> simple_induct_id id | AnonHyp n -> simple_induct_nodep n (* Destruction tactics *) let simple_destruct_id s = (Tacticals.New.tclTHEN (intros_until_id s) (Tacticals.New.onLastHyp simplest_case)) let simple_destruct_nodep n = (Tacticals.New.tclTHEN (intros_until_n n) (Tacticals.New.onLastHyp simplest_case)) let simple_destruct = function | NamedHyp id -> simple_destruct_id id | AnonHyp n -> simple_destruct_nodep n (* * Eliminations giving the type instead of the proof. * These tactics use the default elimination constant and * no substitutions at all. * May be they should be integrated into Elim ... *) let elim_scheme_type elim t = Proofview.Goal.enter { enter = begin fun gl -> let clause = mk_clenv_type_of gl elim in match EConstr.kind clause.evd (last_arg clause.evd clause.templval.rebus) with | Meta mv -> let clause' = (* t is inductive, then CUMUL or CONV is irrelevant *) clenv_unify ~flags:(elim_flags ()) Reduction.CUMUL t (clenv_meta_type clause mv) clause in Clenvtac.res_pf clause' ~flags:(elim_flags ()) ~with_evars:false | _ -> anomaly (Pp.str "elim_scheme_type") end } let elim_type t = Proofview.Goal.s_enter { s_enter = begin fun gl -> let (ind,t) = Tacmach.New.pf_apply reduce_to_atomic_ind gl t in let evd, elimc = find_ind_eliminator (fst ind) (Tacticals.New.elimination_sort_of_goal gl) gl in Sigma.Unsafe.of_pair (elim_scheme_type elimc t, evd) end } let case_type t = Proofview.Goal.s_enter { s_enter = begin fun gl -> let sigma = Proofview.Goal.sigma gl in let env = Tacmach.New.pf_env gl in let ((ind, u), t) = reduce_to_atomic_ind env (Sigma.to_evar_map sigma) t in let u = EInstance.kind (Sigma.to_evar_map sigma) u in let s = Tacticals.New.elimination_sort_of_goal gl in let Sigma (elimc, evd, p) = build_case_analysis_scheme_default env sigma (ind, u) s in let elimc = EConstr.of_constr elimc in Sigma (elim_scheme_type elimc t, evd, p) end } (************************************************) (* Tactics related with logic connectives *) (************************************************) (* Reflexivity tactics *) let (forward_setoid_reflexivity, setoid_reflexivity) = Hook.make () let maybe_betadeltaiota_concl allowred gl = let concl = Tacmach.New.pf_concl gl in let sigma = Tacmach.New.project gl in if not allowred then concl else let env = Proofview.Goal.env gl in whd_all env sigma concl let reflexivity_red allowred = Proofview.Goal.enter { enter = begin fun gl -> (* PL: usual reflexivity don't perform any reduction when searching for an equality, but we may need to do some when called back from inside setoid_reflexivity (see Optimize cases in setoid_replace.ml). *) let sigma = Tacmach.New.project gl in let concl = maybe_betadeltaiota_concl allowred gl in match match_with_equality_type sigma concl with | None -> Proofview.tclZERO NoEquationFound | Some _ -> one_constructor 1 NoBindings end } let reflexivity = Proofview.tclORELSE (reflexivity_red false) begin function (e, info) -> match e with | NoEquationFound -> Hook.get forward_setoid_reflexivity | e -> Proofview.tclZERO ~info e end let intros_reflexivity = (Tacticals.New.tclTHEN intros reflexivity) (* Symmetry tactics *) (* This tactic first tries to apply a constant named sym_eq, where eq is the name of the equality predicate. If this constant is not defined and the conclusion is a=b, it solves the goal doing (Cut b=a;Intro H;Case H;Constructor 1) *) let (forward_setoid_symmetry, setoid_symmetry) = Hook.make () (* This is probably not very useful any longer *) let prove_symmetry hdcncl eq_kind = let symc = match eq_kind with | MonomorphicLeibnizEq (c1,c2) -> mkApp(hdcncl,[|c2;c1|]) | PolymorphicLeibnizEq (typ,c1,c2) -> mkApp(hdcncl,[|typ;c2;c1|]) | HeterogenousEq (t1,c1,t2,c2) -> mkApp(hdcncl,[|t2;c2;t1;c1|]) in Tacticals.New.tclTHENFIRST (cut symc) (Tacticals.New.tclTHENLIST [ intro; Tacticals.New.onLastHyp simplest_case; one_constructor 1 NoBindings ]) let match_with_equation sigma c = try let res = match_with_equation sigma c in Proofview.tclUNIT res with NoEquationFound -> Proofview.tclZERO NoEquationFound let symmetry_red allowred = Proofview.Goal.enter { enter = begin fun gl -> (* PL: usual symmetry don't perform any reduction when searching for an equality, but we may need to do some when called back from inside setoid_reflexivity (see Optimize cases in setoid_replace.ml). *) let sigma = Tacmach.New.project gl in let concl = maybe_betadeltaiota_concl allowred gl in match_with_equation sigma concl >>= fun with_eqn -> match with_eqn with | Some eq_data,_,_ -> Tacticals.New.tclTHEN (convert_concl_no_check concl DEFAULTcast) (Tacticals.New.pf_constr_of_global eq_data.sym >>= apply) | None,eq,eq_kind -> prove_symmetry eq eq_kind end } let symmetry = Proofview.tclORELSE (symmetry_red false) begin function (e, info) -> match e with | NoEquationFound -> Hook.get forward_setoid_symmetry | e -> Proofview.tclZERO ~info e end let (forward_setoid_symmetry_in, setoid_symmetry_in) = Hook.make () let symmetry_in id = Proofview.Goal.enter { enter = begin fun gl -> let sigma = Tacmach.New.project gl in let ctype = Tacmach.New.pf_unsafe_type_of gl (mkVar id) in let sign,t = decompose_prod_assum sigma ctype in Proofview.tclORELSE begin match_with_equation sigma t >>= fun (_,hdcncl,eq) -> let symccl = match eq with | MonomorphicLeibnizEq (c1,c2) -> mkApp (hdcncl, [| c2; c1 |]) | PolymorphicLeibnizEq (typ,c1,c2) -> mkApp (hdcncl, [| typ; c2; c1 |]) | HeterogenousEq (t1,c1,t2,c2) -> mkApp (hdcncl, [| t2; c2; t1; c1 |]) in Tacticals.New.tclTHENS (cut (EConstr.it_mkProd_or_LetIn symccl sign)) [ intro_replacing id; Tacticals.New.tclTHENLIST [ intros; symmetry; apply (mkVar id); assumption ] ] end begin function (e, info) -> match e with | NoEquationFound -> Hook.get forward_setoid_symmetry_in id | e -> Proofview.tclZERO ~info e end end } let intros_symmetry = Tacticals.New.onClause (function | None -> Tacticals.New.tclTHEN intros symmetry | Some id -> symmetry_in id) (* Transitivity tactics *) (* This tactic first tries to apply a constant named eq_trans, where eq is the name of the equality predicate. If this constant is not defined and the conclusion is a=b, it solves the goal doing Cut x1=x2; [Cut x2=x3; [Intros e1 e2; Case e2;Assumption | Idtac] | Idtac] --Eduardo (19/8/97) *) let (forward_setoid_transitivity, setoid_transitivity) = Hook.make () (* This is probably not very useful any longer *) let prove_transitivity hdcncl eq_kind t = Proofview.Goal.enter { enter = begin fun gl -> let (eq1,eq2) = match eq_kind with | MonomorphicLeibnizEq (c1,c2) -> mkApp (hdcncl, [| c1; t|]), mkApp (hdcncl, [| t; c2 |]) | PolymorphicLeibnizEq (typ,c1,c2) -> mkApp (hdcncl, [| typ; c1; t |]), mkApp (hdcncl, [| typ; t; c2 |]) | HeterogenousEq (typ1,c1,typ2,c2) -> let env = Proofview.Goal.env gl in let sigma = Tacmach.New.project gl in let type_of = Typing.unsafe_type_of env sigma in let typt = type_of t in (mkApp(hdcncl, [| typ1; c1; typt ;t |]), mkApp(hdcncl, [| typt; t; typ2; c2 |])) in Tacticals.New.tclTHENFIRST (cut eq2) (Tacticals.New.tclTHENFIRST (cut eq1) (Tacticals.New.tclTHENLIST [ Tacticals.New.tclDO 2 intro; Tacticals.New.onLastHyp simplest_case; assumption ])) end } let transitivity_red allowred t = Proofview.Goal.enter { enter = begin fun gl -> (* PL: usual transitivity don't perform any reduction when searching for an equality, but we may need to do some when called back from inside setoid_reflexivity (see Optimize cases in setoid_replace.ml). *) let sigma = Tacmach.New.project gl in let concl = maybe_betadeltaiota_concl allowred gl in match_with_equation sigma concl >>= fun with_eqn -> match with_eqn with | Some eq_data,_,_ -> Tacticals.New.tclTHEN (convert_concl_no_check concl DEFAULTcast) (match t with | None -> Tacticals.New.pf_constr_of_global eq_data.trans >>= eapply | Some t -> Tacticals.New.pf_constr_of_global eq_data.trans >>= fun trans -> apply_list [trans; t]) | None,eq,eq_kind -> match t with | None -> Tacticals.New.tclZEROMSG (str"etransitivity not supported for this relation.") | Some t -> prove_transitivity eq eq_kind t end } let transitivity_gen t = Proofview.tclORELSE (transitivity_red false t) begin function (e, info) -> match e with | NoEquationFound -> Hook.get forward_setoid_transitivity t | e -> Proofview.tclZERO ~info e end let etransitivity = transitivity_gen None let transitivity t = transitivity_gen (Some t) let intros_transitivity n = Tacticals.New.tclTHEN intros (transitivity_gen n) (* tactical to save as name a subproof such that the generalisation of the current goal, abstracted with respect to the local signature, is solved by tac *) (** d1 is the section variable in the global context, d2 in the goal context *) let interpretable_as_section_decl evd d1 d2 = let open Context.Named.Declaration in let e_eq_constr_univs sigma c1 c2 = match eq_constr_universes !sigma c1 c2 with | None -> false | Some cstr -> try ignore (Evd.add_universe_constraints !sigma cstr); true with UniversesDiffer -> false in match d2, d1 with | LocalDef _, LocalAssum _ -> false | LocalDef (_,b1,t1), LocalDef (_,b2,t2) -> e_eq_constr_univs evd b1 b2 && e_eq_constr_univs evd t1 t2 | LocalAssum (_,t1), d2 -> e_eq_constr_univs evd t1 (NamedDecl.get_type d2) let rec decompose len c t accu = let open Context.Rel.Declaration in if len = 0 then (c, t, accu) else match kind_of_term c, kind_of_term t with | Lambda (na, u, c), Prod (_, _, t) -> decompose (pred len) c t (LocalAssum (na, u) :: accu) | LetIn (na, b, u, c), LetIn (_, _, _, t) -> decompose (pred len) c t (LocalDef (na, b, u) :: accu) | _ -> assert false let rec shrink ctx sign c t accu = let open Term in let open CVars in match ctx, sign with | [], [] -> (c, t, accu) | p :: ctx, decl :: sign -> if noccurn 1 c && noccurn 1 t then let c = subst1 mkProp c in let t = subst1 mkProp t in shrink ctx sign c t accu else let c = mkLambda_or_LetIn p c in let t = mkProd_or_LetIn p t in let accu = if RelDecl.is_local_assum p then mkVar (NamedDecl.get_id decl) :: accu else accu in shrink ctx sign c t accu | _ -> assert false let shrink_entry sign const = let open Entries in let typ = match const.const_entry_type with | None -> assert false | Some t -> t in (** The body has been forced by the call to [build_constant_by_tactic] *) let () = assert (Future.is_over const.const_entry_body) in let ((body, uctx), eff) = Future.force const.const_entry_body in let (body, typ, ctx) = decompose (List.length sign) body typ [] in let (body, typ, args) = shrink ctx sign body typ [] in let const = { const with const_entry_body = Future.from_val ((body, uctx), eff); const_entry_type = Some typ; } in (const, args) let cache_term_by_tactic_then ~opaque ?(goal_type=None) id gk tac tacK = let open Tacticals.New in let open Tacmach.New in let open Proofview.Notations in Proofview.Goal.s_enter { s_enter = begin fun gl -> let sigma = Proofview.Goal.sigma gl in let current_sign = Global.named_context_val () and global_sign = Proofview.Goal.hyps gl in let sigma = Sigma.to_evar_map sigma in let evdref = ref sigma in let sign,secsign = List.fold_right (fun d (s1,s2) -> let id = NamedDecl.get_id d in if mem_named_context_val id current_sign && interpretable_as_section_decl evdref (lookup_named_val id current_sign) d then (s1,push_named_context_val d s2) else (Context.Named.add d s1,s2)) global_sign (Context.Named.empty, empty_named_context_val) in let id = next_global_ident_away id (pf_ids_of_hyps gl) in let concl = match goal_type with | None -> Proofview.Goal.concl gl | Some ty -> ty in let concl = it_mkNamedProd_or_LetIn concl sign in let concl = try flush_and_check_evars !evdref concl with Uninstantiated_evar _ -> error "\"abstract\" cannot handle existentials." in let evd, ctx, concl = (* FIXME: should be done only if the tactic succeeds *) let evd, nf = nf_evars_and_universes !evdref in let ctx = Evd.universe_context_set evd in evd, ctx, nf concl in let concl = EConstr.of_constr concl in let solve_tac = tclCOMPLETE (tclTHEN (tclDO (List.length sign) intro) tac) in let ectx = Evd.evar_universe_context evd in let (const, safe, ectx) = try Pfedit.build_constant_by_tactic ~goal_kind:gk id ectx secsign concl solve_tac with Logic_monad.TacticFailure e as src -> (* if the tactic [tac] fails, it reports a [TacticFailure e], which is an error irrelevant to the proof system (in fact it means that [e] comes from [tac] failing to yield enough success). Hence it reraises [e]. *) let (_, info) = CErrors.push src in iraise (e, info) in let const, args = if !shrink_abstract then shrink_entry sign const else (const, List.rev (Context.Named.to_instance Constr.mkVar sign)) in let args = List.map EConstr.of_constr args in let cd = Entries.DefinitionEntry { const with Entries.const_entry_opaque = opaque } in let decl = (cd, if opaque then IsProof Lemma else IsDefinition Definition) in let cst () = (** do not compute the implicit arguments, it may be costly *) let () = Impargs.make_implicit_args false in (** ppedrot: seems legit to have abstracted subproofs as local*) Declare.declare_constant ~internal:Declare.InternalTacticRequest ~local:true id decl in let cst = Impargs.with_implicit_protection cst () in (* let evd, lem = Evd.fresh_global (Global.env ()) evd (ConstRef cst) in *) let lem, ctx = Universes.unsafe_constr_of_global (ConstRef cst) in let lem = EConstr.of_constr lem in let evd = Evd.set_universe_context evd ectx in let open Safe_typing in let eff = private_con_of_con (Global.safe_env ()) cst in let effs = add_private eff Entries.(snd (Future.force const.const_entry_body)) in let solve = Proofview.tclEFFECTS effs <*> tacK lem args in let tac = if not safe then Proofview.mark_as_unsafe <*> solve else solve in Sigma.Unsafe.of_pair (tac, evd) end } let abstract_subproof ~opaque id gk tac = cache_term_by_tactic_then ~opaque id gk tac (fun lem args -> exact_no_check (applist (lem, args))) let anon_id = Id.of_string "anonymous" let name_op_to_name name_op object_kind suffix = let open Proof_global in let default_gk = (Global, false, object_kind) in match name_op with | Some s -> (try let _, gk, _ = current_proof_statement () in s, gk with NoCurrentProof -> s, default_gk) | None -> let name, gk = try let name, gk, _ = current_proof_statement () in name, gk with NoCurrentProof -> anon_id, default_gk in add_suffix name suffix, gk let tclABSTRACT ?(opaque=true) name_op tac = let s, gk = if opaque then name_op_to_name name_op (Proof Theorem) "_subproof" else name_op_to_name name_op (DefinitionBody Definition) "_subterm" in abstract_subproof ~opaque s gk tac let unify ?(state=full_transparent_state) x y = Proofview.Goal.s_enter { s_enter = begin fun gl -> let sigma = Proofview.Goal.sigma gl in try let core_flags = { (default_unify_flags ()).core_unify_flags with modulo_delta = state; modulo_conv_on_closed_terms = Some state} in (* What to do on merge and subterm flags?? *) let flags = { (default_unify_flags ()) with core_unify_flags = core_flags; merge_unify_flags = core_flags; subterm_unify_flags = { core_flags with modulo_delta = empty_transparent_state } } in let sigma = Sigma.to_evar_map sigma in let sigma = w_unify (Tacmach.New.pf_env gl) sigma Reduction.CONV ~flags x y in Sigma.Unsafe.of_pair (Proofview.tclUNIT (), sigma) with e when CErrors.noncritical e -> Sigma.here (Tacticals.New.tclFAIL 0 (str"Not unifiable")) sigma end } module Simple = struct (** Simplified version of some of the above tactics *) let intro x = intro_move (Some x) MoveLast let apply c = apply_with_bindings_gen false false [None,(Loc.tag (c,NoBindings))] let eapply c = apply_with_bindings_gen false true [None,(Loc.tag (c,NoBindings))] let elim c = elim false None (c,NoBindings) None let case c = general_case_analysis false None (c,NoBindings) let apply_in id c = apply_in false false id [None,(Loc.tag (c, NoBindings))] None end (** Tacticals defined directly in term of Proofview *) module New = struct open Genredexpr open Locus let reduce_after_refine = let onhyps = (** We reduced everywhere in the hyps before 8.6 *) if Flags.version_compare !Flags.compat_version Flags.V8_5 == 0 then None else Some [] in reduce (Lazy {rBeta=true;rMatch=true;rFix=true;rCofix=true; rZeta=false;rDelta=false;rConst=[]}) {onhyps; concl_occs=AllOccurrences } let refine ?unsafe c = Refine.refine ?unsafe c <*> reduce_after_refine end