(***********************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) (* (tclTHEN (tacfun x))) l tclIDTAC (* apply a tactic to the nth element of the signature *) let tclNTH_HYP m (tac : constr->tactic) gl = tac (try mkVar(let (id,_,_) = List.nth (pf_hyps gl) (m-1) in id) with Failure _ -> error "No such assumption") gl (* apply a tactic to the last element of the signature *) let tclLAST_HYP = tclNTH_HYP 1 let tclTRY_sign (tac : constr->tactic) sign gl = let rec arec = function | [] -> tclFAIL 0 "no applicable hypothesis" | [s] -> tac (mkVar s) (*added in order to get useful error messages *) | (s::sl) -> tclORELSE (tac (mkVar s)) (arec sl) in arec (ids_of_named_context sign) gl let tclTRY_HYPS (tac : constr->tactic) gl = tclTRY_sign tac (pf_hyps gl) gl (* OR-branch *) let tryClauses tac = let rec firstrec = function | [] -> tclFAIL 0 "no applicable hypothesis" | [cls] -> tac cls (* added in order to get a useful error message *) | cls::tl -> (tclORELSE (tac cls) (firstrec tl)) in firstrec (***************************************) (* Clause Tacticals *) (***************************************) (* The following functions introduce several tactic combinators and functions useful for working with clauses. A clause is either None or (Some id), where id is an identifier. This type is useful for defining tactics that may be used either to transform the conclusion (None) or to transform a hypothesis id (Some id). -- --Eduardo (8/8/97) *) (* The type of clauses *) type clause = identifier option (* A clause corresponding to the |n|-th hypothesis or None *) let nth_clause n gl = if n = 0 then None else if n < 0 then let id = List.nth (pf_ids_of_hyps gl) (-n-1) in Some id else let id = List.nth (pf_ids_of_hyps gl) (n-1) in Some id (* Gets the conclusion or the type of a given hypothesis *) let clause_type cls gl = match cls with | None -> pf_concl gl | Some id -> pf_get_hyp_typ gl id (* Functions concerning matching of clausal environments *) let pf_is_matching gls pat n = let (wc,_) = startWalk gls in is_matching_conv (w_env wc) (w_Underlying wc) pat n let pf_matches gls pat n = matches_conv (pf_env gls) (project gls) pat n (* [OnCL clausefinder clausetac] * executes the clausefinder to find the clauses, and then executes the * clausetac on the list so obtained. *) let onCL cfind cltac gl = cltac (cfind gl) gl (* [OnHyps hypsfinder hypstac] * idem [OnCL] but only for hypotheses, not for conclusion *) let onHyps find tac gl = tac (find gl) gl (* Create a clause list with all the hypotheses from the context *) let allHyps gl = pf_ids_of_hyps gl (* Create a clause list with all the hypotheses from the context, occuring after id *) let afterHyp id gl = fst (list_splitby (fun (hyp,_,_) -> hyp = id) (pf_hyps gl)) (* Create a singleton clause list with the last hypothesis from then context *) let lastHyp gl = List.hd (pf_ids_of_hyps gl) (* Create a clause list with the n last hypothesis from then context *) let nLastHyps n gl = try list_firstn n (pf_hyps gl) with Failure "firstn" -> error "Not enough hypotheses in the goal" (* A clause list with the conclusion and all the hypotheses *) let allClauses gl = let ids = pf_ids_of_hyps gl in (None::(List.map in_some ids)) let onClause t cls gl = t cls gl let tryAllClauses tac = onCL allClauses (tryClauses tac) let onAllClauses tac = onCL allClauses (tclMAP tac) let onAllClausesLR tac = onCL (compose List.rev allClauses) (tclMAP tac) let onNthLastHyp n tac gls = tac (nth_clause n gls) gls let tryAllHyps tac gls = tryClauses tac (allHyps gls) gls let onNLastHyps n tac = onHyps (nLastHyps n) (tclMAP tac) let onLastHyp tac gls = tac (lastHyp gls) gls let clauseTacThen tac continuation = (fun cls -> (tclTHEN (tac cls) continuation)) let if_tac pred tac1 tac2 gl = if pred gl then tac1 gl else tac2 gl let ifOnClause pred tac1 tac2 cls gl = if pred (cls,clause_type cls gl) then tac1 cls gl else tac2 cls gl let ifOnHyp pred tac1 tac2 id gl = if pred (id,pf_get_hyp_typ gl id) then tac1 id gl else tac2 id gl (***************************************) (* Elimination Tacticals *) (***************************************) (* The following tacticals allow to apply a tactic to the branches generated by the application of an elimination tactic. Two auxiliary types --branch_args and branch_assumptions-- are used to keep track of some information about the ``branches'' of the elimination. *) type branch_args = { ity : inductive; (* the type we were eliminating on *) largs : constr list; (* its arguments *) branchnum : int; (* the branch number *) pred : constr; (* the predicate we used *) nassums : int; (* the number of assumptions to be introduced *) branchsign : bool list; (* the signature of the branch. true=recursive argument, false=constant *) branchnames : intro_pattern_expr list} type branch_assumptions = { ba : branch_args; (* the branch args *) assums : named_context} (* the list of assumptions introduced *) let compute_induction_names n names = let names = if names = [] then Array.make n [] else Array.of_list names in if Array.length names <> n then errorlabstrm "" (str "Expects " ++ int n ++ str " lists of names"); names let compute_construtor_signatures isrec (_,k as ity) = let rec analrec c recargs = match kind_of_term c, recargs with | Prod (_,_,c), recarg::rest -> let b = match dest_recarg recarg with | Norec | Imbr _ -> false | Mrec j -> isrec & j=k in b :: (analrec c rest) | LetIn (_,_,_,c), rest -> false :: (analrec c rest) | _, [] -> [] | _ -> anomaly "compute_construtor_signatures" in let (mib,mip) = Global.lookup_inductive ity in let n = mip.mind_nparams in let lc = Array.map (fun c -> snd (decompose_prod_n_assum n c)) mip.mind_nf_lc in let lrecargs = dest_subterms mip.mind_recargs in array_map2 analrec lc lrecargs let elimination_sort_of_goal gl = match kind_of_term (hnf_type_of gl (pf_concl gl)) with | Sort s -> (match s with | Prop Null -> InProp | Prop Pos -> InSet | Type _ -> InType) | _ -> anomaly "goal should be a type" let elimination_sort_of_hyp id gl = match kind_of_term (hnf_type_of gl (pf_get_hyp_typ gl id)) with | Sort s -> (match s with | Prop Null -> InProp | Prop Pos -> InSet | Type _ -> InType) | _ -> anomaly "goal should be a type" (* Find the right elimination suffix corresponding to the sort of the goal *) (* c should be of type A1->.. An->B with B an inductive definition *) let last_arg c = match kind_of_term c with | App (f,cl) -> array_last cl | _ -> anomaly "last_arg" let general_elim_then_using elim isrec allnames tac predicate (indbindings,elimbindings) c gl = let (ity,t) = pf_reduce_to_quantified_ind gl (pf_type_of gl c) in (* applying elimination_scheme just a little modified *) let (wc,kONT) = startWalk gl in let indclause = mk_clenv_from wc (c,t) in let indclause' = clenv_constrain_with_bindings indbindings indclause in let elimclause = mk_clenv_from () (elim,w_type_of wc elim) in let indmv = match kind_of_term (last_arg (clenv_template elimclause).rebus) with | Meta mv -> mv | _ -> error "elimination" in let pmv = let p, _ = decompose_app (clenv_template_type elimclause).rebus in match kind_of_term p with | Meta p -> p | _ -> let name_elim = match kind_of_term elim with | Const kn -> string_of_kn kn | Var id -> string_of_id id | _ -> "\b" in error ("The elimination combinator " ^ name_elim ^ " is not known") in let elimclause' = clenv_fchain indmv elimclause indclause' in let elimclause' = clenv_constrain_with_bindings elimbindings elimclause' in let branchsigns = compute_construtor_signatures isrec ity in let brnames = compute_induction_names (Array.length branchsigns) allnames in let after_tac ce i gl = let (hd,largs) = decompose_app (clenv_template_type ce).rebus in let ba = { branchsign = branchsigns.(i); branchnames = brnames.(i); nassums = List.fold_left (fun acc b -> if b then acc+2 else acc+1) 0 branchsigns.(i); branchnum = i+1; ity = ity; largs = List.map (clenv_instance_term ce) largs; pred = clenv_instance_term ce hd } in tac ba gl in let branchtacs ce = Array.init (Array.length branchsigns) (after_tac ce) in let elimclause' = match predicate with | None -> elimclause' | Some p -> clenv_assign pmv p elimclause' in elim_res_pf_THEN_i kONT elimclause' branchtacs gl let elimination_then_using tac predicate (indbindings,elimbindings) c gl = let (ind,t) = pf_reduce_to_quantified_ind gl (pf_type_of gl c) in let elim = Indrec.lookup_eliminator ind (elimination_sort_of_goal gl) in general_elim_then_using elim true [] tac predicate (indbindings,elimbindings) c gl let elimination_then tac = elimination_then_using tac None let simple_elimination_then tac = elimination_then tac ([],[]) let case_then_using allnames tac predicate (indbindings,elimbindings) c gl = (* finding the case combinator *) let (ity,t) = pf_reduce_to_quantified_ind gl (pf_type_of gl c) in let sigma = project gl in let sort = elimination_sort_of_goal gl in let elim = Indrec.make_case_dep (pf_env gl) sigma ity sort in general_elim_then_using elim false allnames tac predicate (indbindings,elimbindings) c gl let case_nodep_then_using allnames tac predicate (indbindings,elimbindings) c gl = (* finding the case combinator *) let (ity,t) = pf_reduce_to_quantified_ind gl (pf_type_of gl c) in let sigma = project gl in let sort = elimination_sort_of_goal gl in let elim = Indrec.make_case_nodep (pf_env gl) sigma ity sort in general_elim_then_using elim false allnames tac predicate (indbindings,elimbindings) c gl let make_elim_branch_assumptions ba gl = let rec makerec (assums,cargs,constargs,recargs,indargs) lb lc = match lb,lc with | ([], _) -> { ba = ba; assums = assums} | ((true::tl), ((idrec,_,_ as recarg)::(idind,_,_ as indarg)::idtl)) -> makerec (recarg::indarg::assums, idrec::cargs, idrec::recargs, constargs, idind::indargs) tl idtl | ((false::tl), ((id,_,_ as constarg)::idtl)) -> makerec (constarg::assums, id::cargs, id::constargs, recargs, indargs) tl idtl | (_, _) -> error "make_elim_branch_assumptions" in makerec ([],[],[],[],[]) ba.branchsign (try list_firstn ba.nassums (pf_hyps gl) with Failure _ -> anomaly "make_elim_branch_assumptions") let elim_on_ba tac ba gl = tac (make_elim_branch_assumptions ba gl) gl let make_case_branch_assumptions ba gl = let rec makerec (assums,cargs,constargs,recargs) p_0 p_1 = match p_0,p_1 with | ([], _) -> { ba = ba; assums = assums} | ((true::tl), ((idrec,_,_ as recarg)::idtl)) -> makerec (recarg::assums, idrec::cargs, idrec::recargs, constargs) tl idtl | ((false::tl), ((id,_,_ as constarg)::idtl)) -> makerec (constarg::assums, id::cargs, recargs, id::constargs) tl idtl | (_, _) -> error "make_case_branch_assumptions" in makerec ([],[],[],[]) ba.branchsign (try list_firstn ba.nassums (pf_hyps gl) with Failure _ -> anomaly "make_case_branch_assumptions") let case_on_ba tac ba gl = tac (make_case_branch_assumptions ba gl) gl