(************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) (* error "No such assumption." let nthHypId m gl = nthDecl m gl |> NamedDecl.get_id let nthHyp m gl = mkVar (nthHypId m gl) let lastDecl gl = nthDecl 1 gl let lastHypId gl = nthHypId 1 gl let lastHyp gl = nthHyp 1 gl let nLastDecls n gl = try List.firstn n (pf_hyps gl) with Failure _ -> error "Not enough hypotheses in the goal." let nLastHypsId n gl = List.map NamedDecl.get_id (nLastDecls n gl) let nLastHyps n gl = List.map mkVar (nLastHypsId n gl) let onNthDecl m tac gl = tac (nthDecl m gl) gl let onNthHypId m tac gl = tac (nthHypId m gl) gl let onNthHyp m tac gl = tac (nthHyp m gl) gl let onLastDecl = onNthDecl 1 let onLastHypId = onNthHypId 1 let onLastHyp = onNthHyp 1 let onHyps find tac gl = tac (find gl) gl let onNLastDecls n tac = onHyps (nLastDecls n) tac let onNLastHypsId n tac = onHyps (nLastHypsId n) tac let onNLastHyps n tac = onHyps (nLastHyps n) tac let afterHyp id gl = fst (List.split_when (NamedDecl.get_id %> Id.equal id) (pf_hyps gl)) (***************************************) (* Clause Tacticals *) (***************************************) (* The following functions introduce several tactic combinators and functions useful for working with clauses. A clause is either None or (Some id), where id is an identifier. This type is useful for defining tactics that may be used either to transform the conclusion (None) or to transform a hypothesis id (Some id). -- --Eduardo (8/8/97) *) let fullGoal gl = None :: List.map Option.make (pf_ids_of_hyps gl) let onAllHyps tac gl = tclMAP tac (pf_ids_of_hyps gl) gl let onAllHypsAndConcl tac gl = tclMAP tac (fullGoal gl) gl let onClause tac cl gls = let hyps () = pf_ids_of_hyps gls in tclMAP tac (Locusops.simple_clause_of hyps cl) gls let onClauseLR tac cl gls = let hyps () = pf_ids_of_hyps gls in tclMAP tac (List.rev (Locusops.simple_clause_of hyps cl)) gls let ifOnHyp pred tac1 tac2 id gl = if pred (id,pf_get_hyp_typ gl id) then tac1 id gl else tac2 id gl (************************************************************************) (* Elimination Tacticals *) (************************************************************************) (* The following tacticals allow to apply a tactic to the branches generated by the application of an elimination tactic. Two auxiliary types --branch_args and branch_assumptions-- are used to keep track of some information about the ``branches'' of the elimination. *) type branch_args = { ity : pinductive; (* the type we were eliminating on *) largs : constr list; (* its arguments *) branchnum : int; (* the branch number *) pred : constr; (* the predicate we used *) nassums : int; (* number of assumptions/letin to be introduced *) branchsign : bool list; (* the signature of the branch. true=assumption, false=let-in *) branchnames : intro_patterns} type branch_assumptions = { ba : branch_args; (* the branch args *) assums : Context.Named.t} (* the list of assumptions introduced *) open Misctypes let fix_empty_or_and_pattern nv l = (* 1- The syntax does not distinguish between "[ ]" for one clause with no names and "[ ]" for no clause at all *) (* 2- More generally, we admit "[ ]" for any disjunctive pattern of arbitrary length *) match l with | IntroOrPattern [[]] -> IntroOrPattern (List.make nv []) | _ -> l let check_or_and_pattern_size check_and loc names branchsigns = let n = Array.length branchsigns in let msg p1 p2 = strbrk "a conjunctive pattern made of " ++ int p1 ++ (if p1 == p2 then mt () else str " or " ++ int p2) ++ str " patterns" in let err1 p1 p2 = user_err ~loc (str "Expects " ++ msg p1 p2 ++ str ".") in let errn n = user_err ~loc (str "Expects a disjunctive pattern with " ++ int n ++ str " branches.") in let err1' p1 p2 = user_err ~loc (strbrk "Expects a disjunctive pattern with 1 branch or " ++ msg p1 p2 ++ str ".") in let errforthcoming loc = user_err ~loc (strbrk "Unexpected non atomic pattern.") in match names with | IntroAndPattern l -> if not (Int.equal n 1) then errn n; let l' = List.filter (function _,IntroForthcoming _ -> true | _,IntroNaming _ | _,IntroAction _ -> false) l in if l' != [] then errforthcoming (fst (List.hd l')); if check_and then let p1 = List.count (fun x -> x) branchsigns.(0) in let p2 = List.length branchsigns.(0) in let p = List.length l in if not (Int.equal p p1 || Int.equal p p2) then err1 p1 p2; if Int.equal p p1 then IntroAndPattern (List.extend branchsigns.(0) (Loc.ghost,IntroNaming IntroAnonymous) l) else names else names | IntroOrPattern ll -> if not (Int.equal n (List.length ll)) then if Int.equal n 1 then let p1 = List.count (fun x -> x) branchsigns.(0) in let p2 = List.length branchsigns.(0) in err1' p1 p2 else errn n; names let get_and_check_or_and_pattern_gen check_and loc names branchsigns = let names = check_or_and_pattern_size check_and loc names branchsigns in match names with | IntroAndPattern l -> [|l|] | IntroOrPattern l -> Array.of_list l let get_and_check_or_and_pattern = get_and_check_or_and_pattern_gen true let compute_induction_names_gen check_and branchletsigns = function | None -> Array.make (Array.length branchletsigns) [] | Some (loc,names) -> let names = fix_empty_or_and_pattern (Array.length branchletsigns) names in get_and_check_or_and_pattern_gen check_and loc names branchletsigns let compute_induction_names = compute_induction_names_gen true (* Compute the let-in signature of case analysis or standard induction scheme *) let compute_constructor_signatures isrec ((_,k as ity),u) = let rec analrec c recargs = match kind_of_term c, recargs with | Prod (_,_,c), recarg::rest -> let rest = analrec c rest in begin match Declareops.dest_recarg recarg with | Norec | Imbr _ -> true :: rest | Mrec (_,j) -> if isrec && Int.equal j k then true :: true :: rest else true :: rest end | LetIn (_,_,_,c), rest -> false :: analrec c rest | _, [] -> [] | _ -> anomaly (Pp.str "compute_constructor_signatures") in let (mib,mip) = Global.lookup_inductive ity in let n = mib.mind_nparams in let lc = Array.map (fun c -> snd (decompose_prod_n_assum n c)) mip.mind_nf_lc in let lrecargs = Declareops.dest_subterms mip.mind_recargs in Array.map2 analrec lc lrecargs let elimination_sort_of_goal gl = pf_apply Retyping.get_sort_family_of gl (pf_concl gl) let elimination_sort_of_hyp id gl = pf_apply Retyping.get_sort_family_of gl (pf_get_hyp_typ gl id) let elimination_sort_of_clause = function | None -> elimination_sort_of_goal | Some id -> elimination_sort_of_hyp id let pf_with_evars glsev k gls = let evd, a = glsev gls in tclTHEN (Refiner.tclEVARS evd) (k a) gls let pf_constr_of_global gr k = pf_with_evars (fun gls -> pf_apply Evd.fresh_global gls gr) k (* computing the case/elim combinators *) let gl_make_elim ind gl = let gr = Indrec.lookup_eliminator (fst ind) (elimination_sort_of_goal gl) in pf_apply Evd.fresh_global gl gr let gl_make_case_dep ind gl = let sigma = Sigma.Unsafe.of_evar_map (Tacmach.project gl) in let Sigma (r, sigma, _) = Indrec.build_case_analysis_scheme (pf_env gl) sigma ind true (elimination_sort_of_goal gl) in (Sigma.to_evar_map sigma, r) let gl_make_case_nodep ind gl = let sigma = Sigma.Unsafe.of_evar_map (Tacmach.project gl) in let Sigma (r, sigma, _) = Indrec.build_case_analysis_scheme (pf_env gl) sigma ind false (elimination_sort_of_goal gl) in (Sigma.to_evar_map sigma, r) let make_elim_branch_assumptions ba gl = let assums = try List.rev (List.firstn ba.nassums (pf_hyps gl)) with Failure _ -> anomaly (Pp.str "make_elim_branch_assumptions") in { ba = ba; assums = assums } let elim_on_ba tac ba gl = tac (make_elim_branch_assumptions ba gl) gl let make_case_branch_assumptions = make_elim_branch_assumptions let case_on_ba tac ba gl = tac (make_case_branch_assumptions ba gl) gl (** Tacticals of Ltac defined directly in term of Proofview *) module New = struct open Proofview open Proofview.Notations open Tacmach.New let tclIDTAC = tclUNIT () let tclTHEN t1 t2 = t1 <*> t2 let tclFAIL lvl msg = tclZERO (Refiner.FailError (lvl,lazy msg)) let tclZEROMSG ?loc msg = let err = UserError (None, msg) in let info = match loc with | None -> Exninfo.null | Some loc -> Loc.add_loc Exninfo.null loc in tclZERO ~info err let catch_failerror e = try Refiner.catch_failerror e; tclUNIT () with e -> tclZERO e (* spiwack: I chose to give the Ltac + the same semantics as [Proofview.tclOR], however, for consistency with the or-else tactical, we may consider wrapping the first argument with [tclPROGRESS]. It strikes me as a bad idea, but consistency can be considered valuable. *) let tclOR t1 t2 = tclINDEPENDENT begin Proofview.tclOR t1 begin fun e -> catch_failerror e <*> t2 end end let tclORD t1 t2 = tclINDEPENDENT begin Proofview.tclOR t1 begin fun e -> catch_failerror e <*> t2 () end end let tclONCE = Proofview.tclONCE let tclEXACTLY_ONCE t = Proofview.tclEXACTLY_ONCE (Refiner.FailError(0,lazy (assert false))) t let tclIFCATCH t tt te = tclINDEPENDENT begin Proofview.tclIFCATCH t tt (fun e -> catch_failerror e <*> te ()) end let tclORELSE0 t1 t2 = tclINDEPENDENT begin tclORELSE t1 begin fun e -> catch_failerror e <*> t2 end end let tclORELSE t1 t2 = tclORELSE0 (tclPROGRESS t1) t2 let tclTHENS3PARTS t1 l1 repeat l2 = tclINDEPENDENT begin t1 <*> Proofview.tclORELSE (* converts the [SizeMismatch] error into an ltac error *) begin tclEXTEND (Array.to_list l1) repeat (Array.to_list l2) end begin function (e, info) -> match e with | SizeMismatch (i,_)-> let errmsg = str"Incorrect number of goals" ++ spc() ++ str"(expected "++int i++str(String.plural i " tactic") ++ str")" in tclFAIL 0 errmsg | reraise -> tclZERO ~info reraise end end let tclTHENSFIRSTn t1 l repeat = tclTHENS3PARTS t1 l repeat [||] let tclTHENFIRSTn t1 l = tclTHENSFIRSTn t1 l (tclUNIT()) let tclTHENFIRST t1 t2 = tclTHENFIRSTn t1 [|t2|] let tclTHENLASTn t1 l = tclTHENS3PARTS t1 [||] (tclUNIT()) l let tclTHENLAST t1 t2 = tclTHENLASTn t1 [|t2|] let tclTHENS t l = tclINDEPENDENT begin t <*>Proofview.tclORELSE (* converts the [SizeMismatch] error into an ltac error *) begin tclDISPATCH l end begin function (e, info) -> match e with | SizeMismatch (i,_)-> let errmsg = str"Incorrect number of goals" ++ spc() ++ str"(expected "++int i++str(String.plural i " tactic") ++ str")" in tclFAIL 0 errmsg | reraise -> tclZERO ~info reraise end end let tclTHENLIST l = List.fold_left tclTHEN (tclUNIT()) l (* [tclMAP f [x1..xn]] builds [(f x1);(f x2);...(f xn)] *) let tclMAP tacfun l = List.fold_right (fun x -> (tclTHEN (tacfun x))) l (tclUNIT()) let tclTRY t = tclORELSE0 t (tclUNIT ()) let tclIFTHENELSE t1 t2 t3 = tclINDEPENDENT begin Proofview.tclIFCATCH t1 (fun () -> t2) (fun (e, info) -> Proofview.tclORELSE t3 (fun e' -> tclZERO ~info e)) end let tclIFTHENSVELSE t1 a t3 = Proofview.tclIFCATCH t1 (fun () -> tclDISPATCH (Array.to_list a)) (fun _ -> t3) let tclIFTHENTRYELSEMUST t1 t2 = tclIFTHENELSE t1 (tclTRY t2) t2 (* Try the first tactic that does not fail in a list of tactics *) let rec tclFIRST = function | [] -> tclZEROMSG (str"No applicable tactic.") | t::rest -> tclORELSE0 t (tclFIRST rest) let rec tclFIRST_PROGRESS_ON tac = function | [] -> tclFAIL 0 (str "No applicable tactic") | [a] -> tac a (* so that returned failure is the one from last item *) | a::tl -> tclORELSE (tac a) (tclFIRST_PROGRESS_ON tac tl) let rec tclDO n t = if n < 0 then tclZEROMSG (str"Wrong argument : Do needs a positive integer.") else if n = 0 then tclUNIT () else if n = 1 then t else tclTHEN t (tclDO (n-1) t) let rec tclREPEAT0 t = tclINDEPENDENT begin Proofview.tclIFCATCH t (fun () -> tclCHECKINTERRUPT <*> tclREPEAT0 t) (fun e -> catch_failerror e <*> tclUNIT ()) end let tclREPEAT t = tclREPEAT0 (tclPROGRESS t) let rec tclREPEAT_MAIN0 t = Proofview.tclIFCATCH t (fun () -> tclTRYFOCUS 1 1 (tclREPEAT_MAIN0 t)) (fun e -> catch_failerror e <*> tclUNIT ()) let tclREPEAT_MAIN t = tclREPEAT_MAIN0 (tclPROGRESS t) let tclCOMPLETE t = t >>= fun res -> (tclINDEPENDENT (tclZEROMSG (str"Proof is not complete.")) ) <*> tclUNIT res (* Try the first thats solves the current goal *) let tclSOLVE tacl = tclFIRST (List.map tclCOMPLETE tacl) let tclPROGRESS t = Proofview.tclINDEPENDENT (Proofview.tclPROGRESS t) (* Select a subset of the goals *) let tclSELECT = function | Vernacexpr.SelectNth i -> Proofview.tclFOCUS i i | Vernacexpr.SelectList l -> Proofview.tclFOCUSLIST l | Vernacexpr.SelectId id -> Proofview.tclFOCUSID id | Vernacexpr.SelectAll -> fun tac -> tac (* Check that holes in arguments have been resolved *) let check_evars env sigma extsigma origsigma = let rec is_undefined_up_to_restriction sigma evk = let evi = Evd.find sigma evk in match Evd.evar_body evi with | Evd.Evar_empty -> Some (evk,evi) | Evd.Evar_defined c -> match Term.kind_of_term c with | Term.Evar (evk,l) -> is_undefined_up_to_restriction sigma evk | _ -> (* We make the assumption that there is no way to refine an evar remaining after typing from the initial term given to apply/elim and co tactics, is it correct? *) None in let rest = Evd.fold_undefined (fun evk evi acc -> match is_undefined_up_to_restriction sigma evk with | Some (evk',evi) when not (Evd.mem origsigma evk) -> (evk',evi)::acc | _ -> acc) extsigma [] in match rest with | [] -> () | (evk,evi) :: _ -> let (loc,_) = evi.Evd.evar_source in Pretype_errors.error_unsolvable_implicit ~loc env sigma evk None let tclWITHHOLES accept_unresolved_holes tac sigma = tclEVARMAP >>= fun sigma_initial -> if sigma == sigma_initial then tac else let check_evars_if x = if not accept_unresolved_holes then tclEVARMAP >>= fun sigma_final -> tclENV >>= fun env -> try let () = check_evars env sigma_final sigma sigma_initial in tclUNIT x with e when CErrors.noncritical e -> tclZERO e else tclUNIT x in Proofview.Unsafe.tclEVARS sigma <*> tac >>= check_evars_if let tclDELAYEDWITHHOLES check x tac = Proofview.Goal.nf_enter { enter = begin fun gl -> let env = Proofview.Goal.env gl in let sigma = Proofview.Goal.sigma gl in let Sigma (x, sigma, _) = x.delayed env sigma in tclWITHHOLES check (tac x) (Sigma.to_evar_map sigma) end } let tclTIMEOUT n t = Proofview.tclOR (Proofview.tclTIMEOUT n t) begin function (e, info) -> match e with | Proofview.Timeout as e -> Proofview.tclZERO (Refiner.FailError (0,lazy (CErrors.print e))) | e -> Proofview.tclZERO ~info e end let tclTIME s t = Proofview.tclTIME s t let nthDecl m gl = let hyps = Proofview.Goal.hyps gl in try List.nth hyps (m-1) with Failure _ -> CErrors.error "No such assumption." let nLastDecls gl n = try List.firstn n (Proofview.Goal.hyps gl) with Failure _ -> error "Not enough hypotheses in the goal." let nthHypId m gl = (** We only use [id] *) let gl = Proofview.Goal.assume gl in nthDecl m gl |> NamedDecl.get_id let nthHyp m gl = mkVar (nthHypId m gl) let onNthHypId m tac = Proofview.Goal.enter { enter = begin fun gl -> tac (nthHypId m gl) end } let onNthHyp m tac = Proofview.Goal.enter { enter = begin fun gl -> tac (nthHyp m gl) end } let onLastHypId = onNthHypId 1 let onLastHyp = onNthHyp 1 let onNthDecl m tac = Proofview.Goal.nf_enter { enter = begin fun gl -> Proofview.tclUNIT (nthDecl m gl) >>= tac end } let onLastDecl = onNthDecl 1 let ifOnHyp pred tac1 tac2 id = Proofview.Goal.nf_enter { enter = begin fun gl -> let typ = Tacmach.New.pf_get_hyp_typ id gl in if pred (id,typ) then tac1 id else tac2 id end } let onHyps find tac = Proofview.Goal.nf_enter { enter = begin fun gl -> tac (find.enter gl) end } let afterHyp id tac = Proofview.Goal.enter { enter = begin fun gl -> let hyps = Proofview.Goal.hyps (Proofview.Goal.assume gl) in let rem, _ = List.split_when (NamedDecl.get_id %> Id.equal id) hyps in tac rem end } let fullGoal gl = let hyps = Tacmach.New.pf_ids_of_hyps gl in None :: List.map Option.make hyps let tryAllHyps tac = Proofview.Goal.enter { enter = begin fun gl -> let hyps = Tacmach.New.pf_ids_of_hyps gl in tclFIRST_PROGRESS_ON tac hyps end } let tryAllHypsAndConcl tac = Proofview.Goal.enter { enter = begin fun gl -> tclFIRST_PROGRESS_ON tac (fullGoal gl) end } let onClause tac cl = Proofview.Goal.enter { enter = begin fun gl -> let hyps = Tacmach.New.pf_ids_of_hyps gl in tclMAP tac (Locusops.simple_clause_of (fun () -> hyps) cl) end } (* Find the right elimination suffix corresponding to the sort of the goal *) (* c should be of type A1->.. An->B with B an inductive definition *) let general_elim_then_using mk_elim isrec allnames tac predicate ind (c, t) = Proofview.Goal.nf_enter { enter = begin fun gl -> let sigma, elim = Tacmach.New.of_old (mk_elim ind) gl in Proofview.tclTHEN (Proofview.Unsafe.tclEVARS sigma) (Proofview.Goal.nf_enter { enter = begin fun gl -> let indclause = Tacmach.New.of_old (fun gl -> mk_clenv_from gl (c, t)) gl in (* applying elimination_scheme just a little modified *) let elimclause = Tacmach.New.of_old (fun gls -> mk_clenv_from gls (elim,Tacmach.New.pf_unsafe_type_of gl elim)) gl in let indmv = match kind_of_term (last_arg elimclause.templval.Evd.rebus) with | Meta mv -> mv | _ -> anomaly (str"elimination") in let pmv = let p, _ = decompose_app elimclause.templtyp.Evd.rebus in match kind_of_term p with | Meta p -> p | _ -> let name_elim = match kind_of_term elim with | Const (kn, _) -> string_of_con kn | Var id -> string_of_id id | _ -> "\b" in user_err ~hdr:"Tacticals.general_elim_then_using" (str "The elimination combinator " ++ str name_elim ++ str " is unknown.") in let elimclause' = clenv_fchain ~with_univs:false indmv elimclause indclause in let branchsigns = compute_constructor_signatures isrec ind in let brnames = compute_induction_names_gen false branchsigns allnames in let flags = Unification.elim_flags () in let elimclause' = match predicate with | None -> elimclause' | Some p -> clenv_unify ~flags Reduction.CONV (mkMeta pmv) p elimclause' in let clenv' = Tacmach.New.of_old (clenv_unique_resolver ~flags elimclause') gl in let after_tac i = let (hd,largs) = decompose_app clenv'.templtyp.Evd.rebus in let ba = { branchsign = branchsigns.(i); branchnames = brnames.(i); nassums = List.length branchsigns.(i); branchnum = i+1; ity = ind; largs = List.map (clenv_nf_meta clenv') largs; pred = clenv_nf_meta clenv' hd } in tac ba in let branchtacs = List.init (Array.length branchsigns) after_tac in Proofview.tclTHEN (Clenvtac.clenv_refine false clenv') (Proofview.tclEXTEND [] tclIDTAC branchtacs) end }) end } let elimination_then tac c = Proofview.Goal.nf_enter { enter = begin fun gl -> let (ind,t) = pf_reduce_to_quantified_ind gl (pf_unsafe_type_of gl c) in let isrec,mkelim = match (Global.lookup_mind (fst (fst ind))).mind_record with | None -> true,gl_make_elim | Some _ -> false,gl_make_case_dep in general_elim_then_using mkelim isrec None tac None ind (c, t) end } let case_then_using = general_elim_then_using gl_make_case_dep false let case_nodep_then_using = general_elim_then_using gl_make_case_nodep false let elim_on_ba tac ba = Proofview.Goal.nf_enter { enter = begin fun gl -> let branches = Tacmach.New.of_old (make_elim_branch_assumptions ba) gl in tac branches end } let case_on_ba tac ba = Proofview.Goal.nf_enter { enter = begin fun gl -> let branches = Tacmach.New.of_old (make_case_branch_assumptions ba) gl in tac branches end } let elimination_sort_of_goal gl = (** Retyping will expand evars anyway. *) let c = Proofview.Goal.concl (Goal.assume gl) in pf_apply Retyping.get_sort_family_of gl c let elimination_sort_of_hyp id gl = (** Retyping will expand evars anyway. *) let c = pf_get_hyp_typ id (Goal.assume gl) in pf_apply Retyping.get_sort_family_of gl c let elimination_sort_of_clause id gl = match id with | None -> elimination_sort_of_goal gl | Some id -> elimination_sort_of_hyp id gl let pf_constr_of_global ref tac = Proofview.Goal.nf_enter { enter = begin fun gl -> let env = Proofview.Goal.env gl in let sigma = Tacmach.New.project gl in let (sigma, c) = Evd.fresh_global env sigma ref in Proofview.Unsafe.tclEVARS sigma <*> (tac c) end } end