(************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) (* Proofview.NonLogical.print (str "bug in the debugger: an exception is raised while printing debug information"++fnl())) type value = tlevel generic_argument (* Values for interpretation *) type tacvalue = | VFun of ltac_trace * value Id.Map.t * Id.t option list * glob_tactic_expr | VRec of value Id.Map.t ref * glob_tactic_expr let (wit_tacvalue : (Empty.t, Empty.t, tacvalue) Genarg.genarg_type) = Genarg.create_arg None "tacvalue" let of_tacvalue v = in_gen (topwit wit_tacvalue) v let to_tacvalue v = out_gen (topwit wit_tacvalue) v module TacStore = Geninterp.TacStore let f_avoid_ids : Id.t list TacStore.field = TacStore.field () (* ids inherited from the call context (needed to get fresh ids) *) let f_debug : debug_info TacStore.field = TacStore.field () let f_trace : ltac_trace TacStore.field = TacStore.field () (* Signature for interpretation: val_interp and interpretation functions *) type interp_sign = Geninterp.interp_sign = { lfun : value Id.Map.t; extra : TacStore.t } let extract_trace ist = match TacStore.get ist.extra f_trace with | None -> [] | Some l -> l module Value = struct include Taccoerce.Value let of_closure ist tac = let closure = VFun (extract_trace ist, ist.lfun, [], tac) in of_tacvalue closure end let dloc = Loc.ghost let catching_error call_trace fail e = let inner_trace = Option.default [] (Exninfo.get e ltac_trace_info) in if List.is_empty call_trace && List.is_empty inner_trace then fail e else begin assert (Errors.noncritical e); (* preserved invariant *) let new_trace = inner_trace @ call_trace in let located_exc = Exninfo.add e ltac_trace_info new_trace in fail located_exc end let catch_error call_trace f x = try f x with e when Errors.noncritical e -> let e = Errors.push e in catching_error call_trace raise e let catch_error_tac call_trace tac = Proofview.tclORELSE tac (catching_error call_trace Proofview.tclZERO) let curr_debug ist = match TacStore.get ist.extra f_debug with | None -> DebugOff | Some level -> level (** TODO: unify printing of generic Ltac values in case of coercion failure. *) (* Displays a value *) let pr_value env v = let v = Value.normalize v in if has_type v (topwit wit_tacvalue) then str "a tactic" else if has_type v (topwit wit_constr_context) then let c = out_gen (topwit wit_constr_context) v in match env with | Some env -> pr_lconstr_env env c | _ -> str "a term" else if has_type v (topwit wit_constr) then let c = out_gen (topwit wit_constr) v in match env with | Some env -> pr_lconstr_env env c | _ -> str "a term" else if has_type v (topwit wit_constr_under_binders) then let c = out_gen (topwit wit_constr_under_binders) v in match env with | Some env -> pr_lconstr_under_binders_env env c | _ -> str "a term" else str "a value of type" ++ spc () ++ pr_argument_type (genarg_tag v) let pr_closure env ist body = let pp_body = Pptactic.pr_glob_tactic env body in let pr_sep () = fnl () in let pr_iarg (id, arg) = let arg = pr_argument_type (genarg_tag arg) in hov 0 (pr_id id ++ spc () ++ str ":" ++ spc () ++ arg) in let pp_iargs = v 0 (prlist_with_sep pr_sep pr_iarg (Id.Map.bindings ist)) in pp_body ++ fnl() ++ str "in environment " ++ fnl() ++ pp_iargs let pr_inspect env expr result = let pp_expr = Pptactic.pr_glob_tactic env expr in let pp_result = if has_type result (topwit wit_tacvalue) then match to_tacvalue result with | VFun (_, ist, ul, b) -> let body = if List.is_empty ul then b else (TacFun (ul, b)) in str "a closure with body " ++ fnl() ++ pr_closure env ist body | VRec (ist, body) -> str "a recursive closure" ++ fnl () ++ pr_closure env !ist body else let pp_type = pr_argument_type (genarg_tag result) in str "an object of type" ++ spc () ++ pp_type in pp_expr ++ fnl() ++ str "this is " ++ pp_result (* Transforms an id into a constr if possible, or fails with Not_found *) let constr_of_id env id = Term.mkVar (let _ = Environ.lookup_named id env in id) (* To embed tactics *) let ((tactic_in : (interp_sign -> glob_tactic_expr) -> Dyn.t), (tactic_out : Dyn.t -> (interp_sign -> glob_tactic_expr))) = Dyn.create "tactic" let ((value_in : value -> Dyn.t), (value_out : Dyn.t -> value)) = Dyn.create "value" let valueIn t = TacDynamic (Loc.ghost, value_in t) (** Generic arguments : table of interpretation functions *) let push_trace call ist = match TacStore.get ist.extra f_trace with | None -> [call] | Some trace -> call :: trace let propagate_trace ist loc id v = let v = Value.normalize v in if has_type v (topwit wit_tacvalue) then let tacv = to_tacvalue v in match tacv with | VFun (_,lfun,it,b) -> let t = if List.is_empty it then b else TacFun (it,b) in let ans = VFun (push_trace(loc,LtacVarCall (id,t)) ist,lfun,it,b) in of_tacvalue ans | _ -> v else v let append_trace trace v = let v = Value.normalize v in if has_type v (topwit wit_tacvalue) then match to_tacvalue v with | VFun (trace',lfun,it,b) -> of_tacvalue (VFun (trace'@trace,lfun,it,b)) | _ -> v else v (* Dynamically check that an argument is a tactic *) let coerce_to_tactic loc id v = let v = Value.normalize v in let fail () = user_err_loc (loc, "", str "Variable " ++ pr_id id ++ str " should be bound to a tactic.") in let v = Value.normalize v in if has_type v (topwit wit_tacvalue) then let tacv = to_tacvalue v in match tacv with | VFun _ -> v | _ -> fail () else fail () let value_of_ident id = in_gen (topwit wit_intro_pattern) (Loc.ghost, IntroNaming (IntroIdentifier id)) let (+++) lfun1 lfun2 = Id.Map.fold Id.Map.add lfun1 lfun2 let extend_values_with_bindings (ln,lm) lfun = let of_cub c = match c with | [], c -> Value.of_constr c | _ -> in_gen (topwit wit_constr_under_binders) c in (* For compatibility, bound variables are visible only if no other binding of the same name exists *) let accu = Id.Map.map value_of_ident ln in let accu = lfun +++ accu in Id.Map.fold (fun id c accu -> Id.Map.add id (of_cub c) accu) lm accu (***************************************************************************) (* Evaluation/interpretation *) let is_variable env id = Id.List.mem id (ids_of_named_context (Environ.named_context env)) (* Debug reference *) let debug = ref DebugOff (* Sets the debugger mode *) let set_debug pos = debug := pos (* Gives the state of debug *) let get_debug () = !debug let debugging_step ist pp = match curr_debug ist with | DebugOn lev -> safe_msgnl (str "Level " ++ int lev ++ str": " ++ pp () ++ fnl()) | _ -> Proofview.NonLogical.ret () let debugging_exception_step ist signal_anomaly e pp = let explain_exc = if signal_anomaly then explain_logic_error else explain_logic_error_no_anomaly in debugging_step ist (fun () -> pp() ++ spc() ++ str "raised the exception" ++ fnl() ++ !explain_exc e) let error_ltac_variable loc id env v s = user_err_loc (loc, "", str "Ltac variable " ++ pr_id id ++ strbrk " is bound to" ++ spc () ++ pr_value env v ++ spc () ++ strbrk "which cannot be coerced to " ++ str s ++ str".") (* Raise Not_found if not in interpretation sign *) let try_interp_ltac_var coerce ist env (loc,id) = let v = Id.Map.find id ist.lfun in try coerce v with CannotCoerceTo s -> error_ltac_variable loc id env v s let interp_ltac_var coerce ist env locid = try try_interp_ltac_var coerce ist env locid with Not_found -> anomaly (str "Detected '" ++ Id.print (snd locid) ++ str "' as ltac var at interning time") let interp_ident_gen fresh ist env id = try try_interp_ltac_var (coerce_to_ident fresh env) ist (Some env) (dloc,id) with Not_found -> id let interp_ident = interp_ident_gen false let interp_fresh_ident = interp_ident_gen true let pf_interp_ident id gl = interp_ident_gen false id (pf_env gl) (* Interprets an optional identifier which must be fresh *) let interp_fresh_name ist env = function | Anonymous -> Anonymous | Name id -> Name (interp_fresh_ident ist env id) let interp_intro_pattern_var loc ist env id = try try_interp_ltac_var (coerce_to_intro_pattern env) ist (Some env) (loc,id) with Not_found -> IntroNaming (IntroIdentifier id) let interp_intro_pattern_naming_var loc ist env id = try try_interp_ltac_var (coerce_to_intro_pattern_naming env) ist (Some env) (loc,id) with Not_found -> IntroIdentifier id let interp_hint_base ist s = try try_interp_ltac_var coerce_to_hint_base ist None (dloc,Id.of_string s) with Not_found -> s let interp_int ist locid = try try_interp_ltac_var coerce_to_int ist None locid with Not_found -> user_err_loc(fst locid,"interp_int", str "Unbound variable " ++ pr_id (snd locid) ++ str".") let interp_int_or_var ist = function | ArgVar locid -> interp_int ist locid | ArgArg n -> n let interp_int_or_var_as_list ist = function | ArgVar (_,id as locid) -> (try coerce_to_int_or_var_list (Id.Map.find id ist.lfun) with Not_found | CannotCoerceTo _ -> [ArgArg (interp_int ist locid)]) | ArgArg n as x -> [x] let interp_int_or_var_list ist l = List.flatten (List.map (interp_int_or_var_as_list ist) l) (* Interprets a bound variable (especially an existing hypothesis) *) let interp_hyp ist env (loc,id as locid) = (* Look first in lfun for a value coercible to a variable *) try try_interp_ltac_var (coerce_to_hyp env) ist (Some env) locid with Not_found -> (* Then look if bound in the proof context at calling time *) if is_variable env id then id else Loc.raise loc (Logic.RefinerError (Logic.NoSuchHyp id)) let interp_hyp_list_as_list ist env (loc,id as x) = try coerce_to_hyp_list env (Id.Map.find id ist.lfun) with Not_found | CannotCoerceTo _ -> [interp_hyp ist env x] let interp_hyp_list ist gl l = List.flatten (List.map (interp_hyp_list_as_list ist gl) l) let interp_move_location ist gl = function | MoveAfter id -> MoveAfter (interp_hyp ist gl id) | MoveBefore id -> MoveBefore (interp_hyp ist gl id) | MoveFirst -> MoveFirst | MoveLast -> MoveLast let interp_reference ist env = function | ArgArg (_,r) -> r | ArgVar (loc, id) -> try try_interp_ltac_var (coerce_to_reference env) ist (Some env) (loc, id) with Not_found -> try let (v, _, _) = Environ.lookup_named id env in VarRef v with Not_found -> error_global_not_found_loc loc (qualid_of_ident id) let try_interp_evaluable env (loc, id) = let v = Environ.lookup_named id env in match v with | (_, Some _, _) -> EvalVarRef id | _ -> error_not_evaluable (VarRef id) let interp_evaluable ist env = function | ArgArg (r,Some (loc,id)) -> (* Maybe [id] has been introduced by Intro-like tactics *) begin try try_interp_evaluable env (loc, id) with Not_found -> match r with | EvalConstRef _ -> r | _ -> error_global_not_found_loc loc (qualid_of_ident id) end | ArgArg (r,None) -> r | ArgVar (loc, id) -> try try_interp_ltac_var (coerce_to_evaluable_ref env) ist (Some env) (loc, id) with Not_found -> try try_interp_evaluable env (loc, id) with Not_found -> error_global_not_found_loc loc (qualid_of_ident id) (* Interprets an hypothesis name *) let interp_occurrences ist occs = Locusops.occurrences_map (interp_int_or_var_list ist) occs let interp_hyp_location ist gl ((occs,id),hl) = ((interp_occurrences ist occs,interp_hyp ist gl id),hl) let interp_clause ist gl { onhyps=ol; concl_occs=occs } : clause = { onhyps=Option.map(List.map (interp_hyp_location ist gl)) ol; concl_occs=interp_occurrences ist occs } (* Interpretation of constructions *) (* Extract the constr list from lfun *) let extract_ltac_constr_values ist env = let fold id v accu = try let c = coerce_to_constr env v in Id.Map.add id c accu with CannotCoerceTo _ -> accu in Id.Map.fold fold ist.lfun Id.Map.empty (** ppedrot: I have changed the semantics here. Before this patch, closure was implemented as a list and a variable could be bound several times with different types, resulting in its possible appearance on both sides. This could barely be defined as a feature... *) (* Extract the identifier list from lfun: join all branches (what to do else?)*) let rec intropattern_ids (loc,pat) = match pat with | IntroNaming (IntroIdentifier id) -> [id] | IntroAction (IntroOrAndPattern ll) -> List.flatten (List.map intropattern_ids (List.flatten ll)) | IntroAction (IntroInjection l) -> List.flatten (List.map intropattern_ids l) | IntroAction (IntroApplyOn (c,pat)) -> intropattern_ids pat | IntroNaming (IntroWildcard | IntroAnonymous | IntroFresh _) | IntroAction (IntroRewrite _) | IntroForthcoming _ -> [] let extract_ids ids lfun = let fold id v accu = let v = Value.normalize v in if has_type v (topwit wit_intro_pattern) then let (_, ipat) = out_gen (topwit wit_intro_pattern) v in if Id.List.mem id ids then accu else accu @ intropattern_ids (dloc, ipat) else accu in Id.Map.fold fold lfun [] let default_fresh_id = Id.of_string "H" let interp_fresh_id ist env l = let ids = List.map_filter (function ArgVar (_, id) -> Some id | _ -> None) l in let avoid = match TacStore.get ist.extra f_avoid_ids with | None -> [] | Some l -> l in let avoid = (extract_ids ids ist.lfun) @ avoid in let id = if List.is_empty l then default_fresh_id else let s = String.concat "" (List.map (function | ArgArg s -> s | ArgVar (_,id) -> Id.to_string (interp_ident ist env id)) l) in let s = if Lexer.is_keyword s then s^"0" else s in Id.of_string s in Tactics.fresh_id_in_env avoid id env (* Extract the uconstr list from lfun *) let extract_ltac_constr_context ist env = let open Glob_term in let fold id v ({idents;typed;untyped} as accu) = try let c = coerce_to_uconstr env v in { idents ; typed ; untyped = Id.Map.add id c untyped } with CannotCoerceTo _ -> try let c = coerce_to_constr env v in { idents ; typed = Id.Map.add id c typed ; untyped } with CannotCoerceTo _ -> try let id' = coerce_to_ident false env v in { idents = Id.Map.add id id' idents ; typed ; untyped } with CannotCoerceTo _ -> accu in let empty = { idents = Id.Map.empty ;typed = Id.Map.empty ; untyped = Id.Map.empty } in Id.Map.fold fold ist.lfun empty (** Significantly simpler than [interp_constr], to interpret an untyped constr, it suffices to adjoin a closure environment. *) let interp_uconstr ist env = function | (term,None) -> { closure = extract_ltac_constr_context ist env ; term } | (_,Some ce) -> let ( {typed ; untyped } as closure) = extract_ltac_constr_context ist env in let ltacvars = { Constrintern.ltac_vars = Id.(Set.union (Map.domain typed) (Map.domain untyped)); ltac_bound = Id.Map.domain ist.lfun; } in { closure ; term = intern_gen WithoutTypeConstraint ~ltacvars env ce } let interp_gen kind ist allow_patvar flags env sigma (c,ce) = let constrvars = extract_ltac_constr_context ist env in let vars = { Pretyping.ltac_constrs = constrvars.typed; Pretyping.ltac_uconstrs = constrvars.untyped; Pretyping.ltac_idents = constrvars.idents; Pretyping.ltac_genargs = ist.lfun; } in let c = match ce with | None -> c (* If at toplevel (ce<>None), the error can be due to an incorrect context at globalization time: we retype with the now known intros/lettac/inversion hypothesis names *) | Some c -> let constr_context = Id.Set.union (Id.Map.domain constrvars.typed) (Id.Set.union (Id.Map.domain constrvars.untyped) (Id.Map.domain constrvars.idents)) in let ltacvars = { ltac_vars = constr_context; ltac_bound = Id.Map.domain ist.lfun; } in intern_gen kind ~allow_patvar ~ltacvars env c in let trace = push_trace (loc_of_glob_constr c,LtacConstrInterp (c,vars)) ist in let (evd,c) = catch_error trace (understand_ltac flags sigma env vars kind) c in (* spiwack: to avoid unnecessary modifications of tacinterp, as this function already use effect, I call [run] hoping it doesn't mess up with any assumption. *) Proofview.NonLogical.run (db_constr (curr_debug ist) env c); (evd,c) let constr_flags = { use_typeclasses = true; use_unif_heuristics = true; use_hook = Some solve_by_implicit_tactic; fail_evar = true; expand_evars = true } (* Interprets a constr; expects evars to be solved *) let interp_constr_gen kind ist env sigma c = interp_gen kind ist false constr_flags env sigma c let interp_constr = interp_constr_gen WithoutTypeConstraint let interp_type = interp_constr_gen IsType let open_constr_use_classes_flags = { use_typeclasses = true; use_unif_heuristics = true; use_hook = Some solve_by_implicit_tactic; fail_evar = false; expand_evars = true } let open_constr_no_classes_flags = { use_typeclasses = false; use_unif_heuristics = true; use_hook = Some solve_by_implicit_tactic; fail_evar = false; expand_evars = true } let pure_open_constr_flags = { use_typeclasses = false; use_unif_heuristics = true; use_hook = None; fail_evar = false; expand_evars = false } (* Interprets an open constr *) let interp_open_constr ?(expected_type=WithoutTypeConstraint) ist = let flags = if expected_type == WithoutTypeConstraint then open_constr_no_classes_flags else open_constr_use_classes_flags in interp_gen expected_type ist false flags let interp_pure_open_constr ist = interp_gen WithoutTypeConstraint ist false pure_open_constr_flags let interp_typed_pattern ist env sigma (c,_) = let sigma, c = interp_gen WithoutTypeConstraint ist true pure_open_constr_flags env sigma c in pattern_of_constr sigma c (* Interprets a constr expression casted by the current goal *) let pf_interp_casted_constr ist gl c = interp_constr_gen (OfType (pf_concl gl)) ist (pf_env gl) (project gl) c (* Interprets a constr expression *) let pf_interp_constr ist gl = interp_constr ist (pf_env gl) (project gl) let new_interp_constr ist c k = let open Proofview in Proofview.Goal.enter begin fun gl -> let (sigma, c) = interp_constr ist (Goal.env gl) (Goal.sigma gl) c in Proofview.tclTHEN (Proofview.V82.tclEVARS sigma) (k c) end let interp_constr_in_compound_list inj_fun dest_fun interp_fun ist env sigma l = let try_expand_ltac_var sigma x = try match dest_fun x with | GVar (_,id), _ -> let v = Id.Map.find id ist.lfun in sigma, List.map inj_fun (coerce_to_constr_list env v) | _ -> raise Not_found with CannotCoerceTo _ | Not_found -> (* dest_fun, List.assoc may raise Not_found *) let sigma, c = interp_fun ist env sigma x in sigma, [c] in let sigma, l = List.fold_map try_expand_ltac_var sigma l in sigma, List.flatten l let interp_constr_list ist env sigma c = interp_constr_in_compound_list (fun x -> x) (fun x -> x) interp_constr ist env sigma c let interp_open_constr_list = interp_constr_in_compound_list (fun x -> x) (fun x -> x) interp_open_constr let interp_auto_lemmas ist env sigma lems = let local_sigma, lems = interp_open_constr_list ist env sigma lems in List.map (fun lem -> (local_sigma,lem)) lems (* Interprets a type expression *) let pf_interp_type ist gl = interp_type ist (pf_env gl) (project gl) (* Interprets a reduction expression *) let interp_unfold ist env (occs,qid) = (interp_occurrences ist occs,interp_evaluable ist env qid) let interp_flag ist env red = { red with rConst = List.map (interp_evaluable ist env) red.rConst } let interp_constr_with_occurrences ist sigma env (occs,c) = let (sigma,c_interp) = interp_constr ist sigma env c in sigma , (interp_occurrences ist occs, c_interp) let interp_closed_typed_pattern_with_occurrences ist env sigma (occs, c) = let _, p = interp_typed_pattern ist env sigma c in interp_occurrences ist occs, p let interp_constr_with_occurrences_and_name_as_list = interp_constr_in_compound_list (fun c -> ((AllOccurrences,c),Anonymous)) (function ((occs,c),Anonymous) when occs == AllOccurrences -> c | _ -> raise Not_found) (fun ist env sigma (occ_c,na) -> let (sigma,c_interp) = interp_constr_with_occurrences ist env sigma occ_c in sigma, (c_interp, interp_fresh_name ist env na)) let interp_red_expr ist sigma env = function | Unfold l -> sigma , Unfold (List.map (interp_unfold ist env) l) | Fold l -> let (sigma,l_interp) = interp_constr_list ist env sigma l in sigma , Fold l_interp | Cbv f -> sigma , Cbv (interp_flag ist env f) | Cbn f -> sigma , Cbn (interp_flag ist env f) | Lazy f -> sigma , Lazy (interp_flag ist env f) | Pattern l -> let (sigma,l_interp) = Evd.MonadR.List.map_right (fun c sigma -> interp_constr_with_occurrences ist env sigma c) l sigma in sigma , Pattern l_interp | Simpl o -> sigma , Simpl (Option.map (interp_closed_typed_pattern_with_occurrences ist env sigma) o) | CbvVm o -> sigma , CbvVm (Option.map (interp_closed_typed_pattern_with_occurrences ist env sigma) o) | CbvNative o -> sigma , CbvNative (Option.map (interp_closed_typed_pattern_with_occurrences ist env sigma) o) | (Red _ | Hnf | ExtraRedExpr _ as r) -> sigma , r let interp_may_eval f ist env sigma = function | ConstrEval (r,c) -> let (sigma,redexp) = interp_red_expr ist sigma env r in let (sigma,c_interp) = f ist env sigma c in sigma , (fst (Redexpr.reduction_of_red_expr env redexp) env sigma c_interp) | ConstrContext ((loc,s),c) -> (try let (sigma,ic) = f ist env sigma c in let ctxt = coerce_to_constr_context (Id.Map.find s ist.lfun) in let evdref = ref sigma in let c = subst_meta [ConstrMatching.special_meta,ic] ctxt in let c = Typing.solve_evars env evdref c in !evdref , c with | Not_found -> user_err_loc (loc, "interp_may_eval", str "Unbound context identifier" ++ pr_id s ++ str".")) | ConstrTypeOf c -> let (sigma,c_interp) = f ist env sigma c in Typing.e_type_of ~refresh:true env sigma c_interp | ConstrTerm c -> try f ist env sigma c with reraise -> let reraise = Errors.push reraise in (* spiwack: to avoid unnecessary modifications of tacinterp, as this function already use effect, I call [run] hoping it doesn't mess up with any assumption. *) Proofview.NonLogical.run (debugging_exception_step ist false reraise (fun () -> str"interpretation of term " ++ pr_glob_constr_env env (fst c))); raise reraise (* Interprets a constr expression possibly to first evaluate *) let interp_constr_may_eval ist env sigma c = let (sigma,csr) = try interp_may_eval interp_constr ist env sigma c with reraise -> let reraise = Errors.push reraise in (* spiwack: to avoid unnecessary modifications of tacinterp, as this function already use effect, I call [run] hoping it doesn't mess up with any assumption. *) Proofview.NonLogical.run (debugging_exception_step ist false reraise (fun () -> str"evaluation of term")); raise reraise in begin (* spiwack: to avoid unnecessary modifications of tacinterp, as this function already use effect, I call [run] hoping it doesn't mess up with any assumption. *) Proofview.NonLogical.run (db_constr (curr_debug ist) env csr); sigma , csr end (** TODO: should use dedicated printers *) let rec message_of_value v = let v = Value.normalize v in let open Tacmach.New in let open Ftactic in if has_type v (topwit wit_tacvalue) then Ftactic.return (str "") else if has_type v (topwit wit_constr) then let v = out_gen (topwit wit_constr) v in Ftactic.nf_enter begin fun gl -> Ftactic.return (pr_constr_env (pf_env gl) v) end else if has_type v (topwit wit_constr_under_binders) then let c = out_gen (topwit wit_constr_under_binders) v in Ftactic.nf_enter begin fun gl -> Ftactic.return (pr_constr_under_binders_env (pf_env gl) c) end else if has_type v (topwit wit_unit) then Ftactic.return (str "()") else if has_type v (topwit wit_int) then Ftactic.return (int (out_gen (topwit wit_int) v)) else if has_type v (topwit wit_intro_pattern) then let p = out_gen (topwit wit_intro_pattern) v in let print env c = pr_constr_env env (snd (c env Evd.empty)) in Ftactic.nf_enter begin fun gl -> Ftactic.return (Miscprint.pr_intro_pattern (fun c -> print (pf_env gl) c) p) end else if has_type v (topwit wit_constr_context) then let c = out_gen (topwit wit_constr_context) v in Ftactic.nf_enter begin fun gl -> Ftactic.return (pr_constr_env (pf_env gl) c) end else match Value.to_list v with | Some l -> Ftactic.List.map message_of_value l >>= fun l -> Ftactic.return (prlist_with_sep spc (fun x -> x) l) | None -> let tag = pr_argument_type (genarg_tag v) in Ftactic.return (str "<" ++ tag ++ str ">") (** TODO *) let interp_message_token ist = function | MsgString s -> Ftactic.return (str s) | MsgInt n -> Ftactic.return (int n) | MsgIdent (loc,id) -> let v = try Some (Id.Map.find id ist.lfun) with Not_found -> None in match v with | None -> Ftactic.lift (Tacticals.New.tclZEROMSG (pr_id id ++ str" not found.")) | Some v -> message_of_value v let interp_message_nl ist l = let open Ftactic in Ftactic.List.map (interp_message_token ist) l >>= function | [] -> Ftactic.return (mt ()) | l -> Ftactic.return (prlist_with_sep spc (fun x -> x) l ++ fnl ()) let interp_message ist l = let open Ftactic in Ftactic.List.map (interp_message_token ist) l >>= fun l -> Ftactic.return (prlist_with_sep spc (fun x -> x) l) let rec interp_intro_pattern ist env sigma = function | loc, IntroAction pat -> let (sigma,pat) = interp_intro_pattern_action ist env sigma pat in sigma, (loc, IntroAction pat) | loc, IntroNaming (IntroIdentifier id) -> sigma, (loc, interp_intro_pattern_var loc ist env id) | loc, IntroNaming pat -> sigma, (loc, IntroNaming (interp_intro_pattern_naming loc ist env pat)) | loc, IntroForthcoming _ as x -> sigma, x and interp_intro_pattern_naming loc ist env = function | IntroFresh id -> IntroFresh (interp_fresh_ident ist env id) | IntroIdentifier id -> interp_intro_pattern_naming_var loc ist env id | (IntroWildcard | IntroAnonymous) as x -> x and interp_intro_pattern_action ist env sigma = function | IntroOrAndPattern l -> let (sigma,l) = interp_or_and_intro_pattern ist env sigma l in sigma, IntroOrAndPattern l | IntroInjection l -> let sigma,l = interp_intro_pattern_list_as_list ist env sigma l in sigma, IntroInjection l | IntroApplyOn (c,ipat) -> let c = fun env sigma -> interp_constr ist env sigma c in let sigma,ipat = interp_intro_pattern ist env sigma ipat in sigma, IntroApplyOn (c,ipat) | IntroRewrite _ as x -> sigma, x and interp_or_and_intro_pattern ist env sigma = List.fold_map (interp_intro_pattern_list_as_list ist env) sigma and interp_intro_pattern_list_as_list ist env sigma = function | [loc,IntroNaming (IntroIdentifier id)] as l -> (try sigma, coerce_to_intro_pattern_list loc env (Id.Map.find id ist.lfun) with Not_found | CannotCoerceTo _ -> List.fold_map (interp_intro_pattern ist env) sigma l) | l -> List.fold_map (interp_intro_pattern ist env) sigma l let interp_intro_pattern_naming_option ist env = function | None -> None | Some (loc,pat) -> Some (loc, interp_intro_pattern_naming loc ist env pat) let interp_or_and_intro_pattern_option ist env sigma = function | None -> sigma, None | Some (loc,l) -> let sigma, l = match l with | [[loc',IntroNaming (IntroIdentifier id)]] when (* Hack, see g_tactic.ml4 *) loc' = dloc -> (match coerce_to_intro_pattern env (Id.Map.find id ist.lfun) with | IntroAction (IntroOrAndPattern l) -> sigma, l | _ -> raise (CannotCoerceTo "a disjunctive/conjunctive introduction pattern")) | l -> interp_or_and_intro_pattern ist env sigma l in sigma, Some (loc,l) let interp_intro_pattern_option ist env sigma = function | None -> sigma, None | Some ipat -> let sigma, ipat = interp_intro_pattern ist env sigma ipat in sigma, Some ipat let interp_in_hyp_as ist env sigma (clear,id,ipat) = let sigma, ipat = interp_intro_pattern_option ist env sigma ipat in sigma,(clear,interp_hyp ist env id,ipat) let interp_quantified_hypothesis ist = function | AnonHyp n -> AnonHyp n | NamedHyp id -> try try_interp_ltac_var coerce_to_quantified_hypothesis ist None(dloc,id) with Not_found -> NamedHyp id let interp_binding_name ist = function | AnonHyp n -> AnonHyp n | NamedHyp id -> (* If a name is bound, it has to be a quantified hypothesis *) (* user has to use other names for variables if these ones clash with *) (* a name intented to be used as a (non-variable) identifier *) try try_interp_ltac_var coerce_to_quantified_hypothesis ist None(dloc,id) with Not_found -> NamedHyp id let interp_declared_or_quantified_hypothesis ist env = function | AnonHyp n -> AnonHyp n | NamedHyp id -> try try_interp_ltac_var (coerce_to_decl_or_quant_hyp env) ist (Some env) (dloc,id) with Not_found -> NamedHyp id let interp_binding ist env sigma (loc,b,c) = let sigma, c = interp_open_constr ist env sigma c in sigma, (loc,interp_binding_name ist b,c) let interp_bindings ist env sigma = function | NoBindings -> sigma, NoBindings | ImplicitBindings l -> let sigma, l = interp_open_constr_list ist env sigma l in sigma, ImplicitBindings l | ExplicitBindings l -> let sigma, l = List.fold_map (interp_binding ist env) sigma l in sigma, ExplicitBindings l let interp_constr_with_bindings ist env sigma (c,bl) = let sigma, bl = interp_bindings ist env sigma bl in let sigma, c = interp_open_constr ist env sigma c in sigma, (c,bl) let interp_constr_with_bindings_arg ist env sigma (keep,c) = let sigma, c = interp_constr_with_bindings ist env sigma c in sigma, (keep,c) let interp_open_constr_with_bindings ist env sigma (c,bl) = let sigma, bl = interp_bindings ist env sigma bl in let sigma, c = interp_open_constr ist env sigma c in sigma, (c, bl) let interp_open_constr_with_bindings_arg ist env sigma (keep,c) = let sigma, c = interp_open_constr_with_bindings ist env sigma c in sigma,(keep,c) let loc_of_bindings = function | NoBindings -> Loc.ghost | ImplicitBindings l -> loc_of_glob_constr (fst (List.last l)) | ExplicitBindings l -> pi1 (List.last l) let interp_open_constr_with_bindings_loc ist env sigma ((c,_),bl as cb) = let loc1 = loc_of_glob_constr c in let loc2 = loc_of_bindings bl in let loc = if Loc.is_ghost loc2 then loc1 else Loc.merge loc1 loc2 in let sigma, cb = interp_open_constr_with_bindings ist env sigma cb in sigma, (loc,cb) let interp_open_constr_with_bindings_arg_loc ist env sigma (keep,c) = let sigma, c = interp_open_constr_with_bindings_loc ist env sigma c in sigma,(keep,c) let interp_induction_arg ist gl arg = let env = pf_env gl and sigma = project gl in match arg with | keep,ElimOnConstr c -> keep,ElimOnConstr (interp_constr_with_bindings ist env sigma c) | keep,ElimOnAnonHyp n as x -> x | keep,ElimOnIdent (loc,id) -> let error () = user_err_loc (loc, "", strbrk "Cannot coerce " ++ pr_id id ++ strbrk " neither to a quantified hypothesis nor to a term.") in let try_cast_id id' = if Tactics.is_quantified_hypothesis id' gl then keep,ElimOnIdent (loc,id') else (try keep,ElimOnConstr (sigma,(constr_of_id env id',NoBindings)) with Not_found -> user_err_loc (loc,"", pr_id id ++ strbrk " binds to " ++ pr_id id' ++ strbrk " which is neither a declared or a quantified hypothesis.")) in try (** FIXME: should be moved to taccoerce *) let v = Id.Map.find id ist.lfun in let v = Value.normalize v in if has_type v (topwit wit_intro_pattern) then let v = out_gen (topwit wit_intro_pattern) v in match v with | _, IntroNaming (IntroIdentifier id) -> try_cast_id id | _ -> error () else if has_type v (topwit wit_var) then let id = out_gen (topwit wit_var) v in try_cast_id id else if has_type v (topwit wit_int) then keep,ElimOnAnonHyp (out_gen (topwit wit_int) v) else match Value.to_constr v with | None -> error () | Some c -> keep,ElimOnConstr (sigma,(c,NoBindings)) with Not_found -> (* We were in non strict (interactive) mode *) if Tactics.is_quantified_hypothesis id gl then keep,ElimOnIdent (loc,id) else let c = (GVar (loc,id),Some (CRef (Ident (loc,id),None))) in let (sigma,c) = interp_constr ist env sigma c in keep,ElimOnConstr (sigma,(c,NoBindings)) (* Associates variables with values and gives the remaining variables and values *) let head_with_value (lvar,lval) = let rec head_with_value_rec lacc = function | ([],[]) -> (lacc,[],[]) | (vr::tvr,ve::tve) -> (match vr with | None -> head_with_value_rec lacc (tvr,tve) | Some v -> head_with_value_rec ((v,ve)::lacc) (tvr,tve)) | (vr,[]) -> (lacc,vr,[]) | ([],ve) -> (lacc,[],ve) in head_with_value_rec [] (lvar,lval) (** [interp_context ctxt] interprets a context (as in {!Matching.matching_result}) into a context value of Ltac. *) let interp_context ctxt = in_gen (topwit wit_constr_context) ctxt (* Reads a pattern by substituting vars of lfun *) let use_types = false let eval_pattern lfun ist env sigma (_,pat as c) = if use_types then snd (interp_typed_pattern ist env sigma c) else instantiate_pattern sigma lfun pat let read_pattern lfun ist env sigma = function | Subterm (b,ido,c) -> Subterm (b,ido,eval_pattern lfun ist env sigma c) | Term c -> Term (eval_pattern lfun ist env sigma c) (* Reads the hypotheses of a Match Context rule *) let cons_and_check_name id l = if Id.List.mem id l then user_err_loc (dloc,"read_match_goal_hyps", strbrk ("Hypothesis pattern-matching variable "^(Id.to_string id)^ " used twice in the same pattern.")) else id::l let rec read_match_goal_hyps lfun ist env sigma lidh = function | (Hyp ((loc,na) as locna,mp))::tl -> let lidh' = name_fold cons_and_check_name na lidh in Hyp (locna,read_pattern lfun ist env sigma mp):: (read_match_goal_hyps lfun ist env sigma lidh' tl) | (Def ((loc,na) as locna,mv,mp))::tl -> let lidh' = name_fold cons_and_check_name na lidh in Def (locna,read_pattern lfun ist env sigma mv, read_pattern lfun ist env sigma mp):: (read_match_goal_hyps lfun ist env sigma lidh' tl) | [] -> [] (* Reads the rules of a Match Context or a Match *) let rec read_match_rule lfun ist env sigma = function | (All tc)::tl -> (All tc)::(read_match_rule lfun ist env sigma tl) | (Pat (rl,mp,tc))::tl -> Pat (read_match_goal_hyps lfun ist env sigma [] rl, read_pattern lfun ist env sigma mp,tc) :: read_match_rule lfun ist env sigma tl | [] -> [] (* misc *) let mk_constr_value ist gl c = let (sigma,c_interp) = pf_interp_constr ist gl c in sigma, Value.of_constr c_interp let mk_open_constr_value ist gl c = let (sigma,c_interp) = pf_apply (interp_open_constr ist) gl c in sigma, Value.of_constr c_interp let mk_hyp_value ist gl c = Value.of_constr (mkVar (interp_hyp ist gl c)) let mk_int_or_var_value ist c = in_gen (topwit wit_int) (interp_int_or_var ist c) let pack_sigma (sigma,c) = {it=c;sigma=sigma;} (* Interprets an l-tac expression into a value *) let rec val_interp ist (tac:glob_tactic_expr) : typed_generic_argument Ftactic.t = let value_interp ist = match tac with | TacFun (it, body) -> Ftactic.return (of_tacvalue (VFun (extract_trace ist, ist.lfun, it, body))) | TacLetIn (true,l,u) -> interp_letrec ist l u | TacLetIn (false,l,u) -> interp_letin ist l u | TacMatchGoal (lz,lr,lmr) -> interp_match_goal ist lz lr lmr | TacMatch (lz,c,lmr) -> interp_match ist lz c lmr | TacArg (loc,a) -> interp_tacarg ist a | t -> (** Delayed evaluation *) Ftactic.return (of_tacvalue (VFun (extract_trace ist, ist.lfun, [], t))) in Control.check_for_interrupt (); match curr_debug ist with | DebugOn lev -> let eval v = let ist = { ist with extra = TacStore.set ist.extra f_debug v } in value_interp ist in Ftactic.debug_prompt lev tac eval | _ -> value_interp ist and eval_tactic ist tac : unit Proofview.tactic = match tac with | TacAtom (loc,t) -> let call = LtacAtomCall t in catch_error_tac (push_trace(loc,call) ist) (interp_atomic ist t) | TacFun _ | TacLetIn _ -> assert false | TacMatchGoal _ | TacMatch _ -> assert false | TacId [] -> (** Optimization *) Proofview.tclLIFT (db_breakpoint (curr_debug ist) []) | TacId s -> let msg = interp_message_nl ist s in let tac l = Proofview.tclLIFT (Proofview.NonLogical.print (hov 0 l)) in Proofview.tclTHEN (Ftactic.run msg tac) (Proofview.tclLIFT (db_breakpoint (curr_debug ist) s)) | TacFail (n,s) -> let msg = interp_message ist s in let tac l = Proofview.V82.tactic (fun gl -> tclFAIL (interp_int_or_var ist n) l gl) in Ftactic.run msg tac | TacProgress tac -> Tacticals.New.tclPROGRESS (interp_tactic ist tac) | TacShowHyps tac -> Proofview.V82.tactic begin tclSHOWHYPS (Proofview.V82.of_tactic (interp_tactic ist tac)) end | TacAbstract (tac,ido) -> Proofview.Goal.nf_enter begin fun gl -> Tactics.tclABSTRACT (Option.map (Tacmach.New.of_old (pf_interp_ident ist) gl) ido) (interp_tactic ist tac) end | TacThen (t1,t) -> Tacticals.New.tclTHEN (interp_tactic ist t1) (interp_tactic ist t) | TacDispatch tl -> Proofview.tclDISPATCH (List.map (interp_tactic ist) tl) | TacExtendTac (tf,t,tl) -> Proofview.tclEXTEND (Array.map_to_list (interp_tactic ist) tf) (interp_tactic ist t) (Array.map_to_list (interp_tactic ist) tl) | TacThens (t1,tl) -> Tacticals.New.tclTHENS (interp_tactic ist t1) (List.map (interp_tactic ist) tl) | TacThens3parts (t1,tf,t,tl) -> Tacticals.New.tclTHENS3PARTS (interp_tactic ist t1) (Array.map (interp_tactic ist) tf) (interp_tactic ist t) (Array.map (interp_tactic ist) tl) | TacDo (n,tac) -> Tacticals.New.tclDO (interp_int_or_var ist n) (interp_tactic ist tac) | TacTimeout (n,tac) -> Tacticals.New.tclTIMEOUT (interp_int_or_var ist n) (interp_tactic ist tac) | TacTime (s,tac) -> Tacticals.New.tclTIME s (interp_tactic ist tac) | TacTry tac -> Tacticals.New.tclTRY (interp_tactic ist tac) | TacRepeat tac -> Tacticals.New.tclREPEAT (interp_tactic ist tac) | TacOr (tac1,tac2) -> Tacticals.New.tclOR (interp_tactic ist tac1) (interp_tactic ist tac2) | TacOnce tac -> Tacticals.New.tclONCE (interp_tactic ist tac) | TacExactlyOnce tac -> Tacticals.New.tclEXACTLY_ONCE (interp_tactic ist tac) | TacOrelse (tac1,tac2) -> Tacticals.New.tclORELSE (interp_tactic ist tac1) (interp_tactic ist tac2) | TacFirst l -> Tacticals.New.tclFIRST (List.map (interp_tactic ist) l) | TacSolve l -> Tacticals.New.tclSOLVE (List.map (interp_tactic ist) l) | TacComplete tac -> Tacticals.New.tclCOMPLETE (interp_tactic ist tac) | TacArg a -> interp_tactic ist (TacArg a) | TacInfo tac -> msg_warning (strbrk "The general \"info\" tactic is currently not working." ++ fnl () ++ strbrk "Some specific verbose tactics may exist instead, such as info_trivial, info_auto, info_eauto."); eval_tactic ist tac (* For extensions *) | TacAlias (loc,s,l) -> let body = Tacenv.interp_alias s in let rec f x = match genarg_tag x with | QuantHypArgType | RedExprArgType | ConstrWithBindingsArgType | BindingsArgType | OptArgType _ | PairArgType _ -> (** generic handler *) Ftactic.nf_enter begin fun gl -> let sigma = Proofview.Goal.sigma gl in let env = Proofview.Goal.env gl in let concl = Proofview.Goal.concl gl in let goal = Proofview.Goal.goal gl in let (sigma, arg) = interp_genarg ist env sigma concl goal x in Ftactic.(lift (Proofview.V82.tclEVARS sigma) <*> return arg) end | _ as tag -> (** Special treatment. TODO: use generic handler *) Ftactic.nf_enter begin fun gl -> let sigma = Proofview.Goal.sigma gl in let env = Proofview.Goal.env gl in match tag with | IntOrVarArgType -> Ftactic.return (mk_int_or_var_value ist (out_gen (glbwit wit_int_or_var) x)) | IdentArgType -> Ftactic.return (value_of_ident (interp_fresh_ident ist env (out_gen (glbwit wit_ident) x))) | VarArgType -> Ftactic.return (mk_hyp_value ist env (out_gen (glbwit wit_var) x)) | GenArgType -> f (out_gen (glbwit wit_genarg) x) | ConstrArgType -> let (sigma,v) = Tacmach.New.of_old (fun gl -> mk_constr_value ist gl (out_gen (glbwit wit_constr) x)) gl in Ftactic.(lift (Proofview.V82.tclEVARS sigma) <*> return v) | OpenConstrArgType -> let (sigma,v) = Tacmach.New.of_old (fun gl -> mk_open_constr_value ist gl (snd (out_gen (glbwit wit_open_constr) x))) gl in Ftactic.(lift (Proofview.V82.tclEVARS sigma) <*> return v) | ConstrMayEvalArgType -> let (sigma,c_interp) = interp_constr_may_eval ist env sigma (out_gen (glbwit wit_constr_may_eval) x) in Ftactic.(lift (Proofview.V82.tclEVARS sigma) <*> return (Value.of_constr c_interp)) | ListArgType ConstrArgType -> let wit = glbwit (wit_list wit_constr) in let (sigma,l_interp) = Tacmach.New.of_old begin fun gl -> Evd.MonadR.List.map_right (fun c sigma -> mk_constr_value ist { gl with sigma=sigma } c) (out_gen wit x) (project gl) end gl in Ftactic.(lift (Proofview.V82.tclEVARS sigma) <*> return (in_gen (topwit (wit_list wit_genarg)) l_interp)) | ListArgType VarArgType -> let wit = glbwit (wit_list wit_var) in Ftactic.return ( let ans = List.map (mk_hyp_value ist env) (out_gen wit x) in in_gen (topwit (wit_list wit_genarg)) ans ) | ListArgType IntOrVarArgType -> let wit = glbwit (wit_list wit_int_or_var) in let ans = List.map (mk_int_or_var_value ist) (out_gen wit x) in Ftactic.return (in_gen (topwit (wit_list wit_genarg)) ans) | ListArgType IdentArgType -> let wit = glbwit (wit_list wit_ident) in let mk_ident x = value_of_ident (interp_fresh_ident ist env x) in let ans = List.map mk_ident (out_gen wit x) in Ftactic.return (in_gen (topwit (wit_list wit_genarg)) ans) | ListArgType t -> let open Ftactic in let list_unpacker wit l = let map x = f (in_gen (glbwit wit) x) >>= fun v -> Ftactic.return (out_gen (topwit wit) v) in Ftactic.List.map map (glb l) >>= fun l -> Ftactic.return (in_gen (topwit (wit_list wit)) l) in list_unpack { list_unpacker } x | ExtraArgType _ -> (** Special treatment of tactics *) if has_type x (glbwit wit_tactic) then let tac = out_gen (glbwit wit_tactic) x in val_interp ist tac else let goal = Proofview.Goal.goal gl in let (newsigma,v) = Geninterp.generic_interp ist {Evd.it=goal;sigma} x in Ftactic.(lift (Proofview.V82.tclEVARS newsigma) <*> return v) | _ -> assert false end in let (>>=) = Ftactic.bind in let addvar (x, v) accu = f v >>= fun v -> Ftactic.return (Id.Map.add x v accu) in let tac = Ftactic.List.fold_right addvar l ist.lfun >>= fun lfun -> let trace = push_trace (loc,LtacNotationCall s) ist in let ist = { lfun = lfun; extra = TacStore.set ist.extra f_trace trace; } in val_interp ist body in Ftactic.run tac (fun v -> tactic_of_value ist v) | TacML (loc,opn,l) when List.for_all global_genarg l -> let trace = push_trace (loc,LtacMLCall tac) ist in let ist = { ist with extra = TacStore.set ist.extra f_trace trace; } in (* spiwack: a special case for tactics (from TACTIC EXTEND) when every argument can be interpreted without a [Proofview.Goal.nf_enter]. *) let tac = Tacenv.interp_ml_tactic opn in (* dummy values, will be ignored *) let env = Environ.empty_env in let sigma = Evd.empty in let concl = Term.mkRel (-1) in let goal = sig_it Goal.V82.dummy_goal in (* /dummy values *) let args = List.map (fun a -> snd(interp_genarg ist env sigma concl goal a)) l in catch_error_tac trace (tac args ist) | TacML (loc,opn,l) -> let trace = push_trace (loc,LtacMLCall tac) ist in let ist = { ist with extra = TacStore.set ist.extra f_trace trace; } in Proofview.Goal.nf_enter begin fun gl -> let env = Proofview.Goal.env gl in let goal_sigma = Proofview.Goal.sigma gl in let concl = Proofview.Goal.concl gl in let goal = Proofview.Goal.goal gl in let tac = Tacenv.interp_ml_tactic opn in let (sigma,args) = Evd.MonadR.List.map_right (fun a sigma -> interp_genarg ist env sigma concl goal a) l goal_sigma in Proofview.V82.tclEVARS sigma <*> catch_error_tac trace (tac args ist) end and force_vrec ist v : typed_generic_argument Ftactic.t = let v = Value.normalize v in if has_type v (topwit wit_tacvalue) then let v = to_tacvalue v in match v with | VRec (lfun,body) -> val_interp {ist with lfun = !lfun} body | v -> Ftactic.return (of_tacvalue v) else Ftactic.return v and interp_ltac_reference loc' mustbetac ist r : typed_generic_argument Ftactic.t = match r with | ArgVar (loc,id) -> let v = try Id.Map.find id ist.lfun with Not_found -> in_gen (topwit wit_var) id in Ftactic.bind (force_vrec ist v) begin fun v -> let v = propagate_trace ist loc id v in if mustbetac then Ftactic.return (coerce_to_tactic loc id v) else Ftactic.return v end | ArgArg (loc,r) -> let ids = extract_ids [] ist.lfun in let loc_info = ((if Loc.is_ghost loc' then loc else loc'),LtacNameCall r) in let extra = TacStore.set ist.extra f_avoid_ids ids in let extra = TacStore.set extra f_trace (push_trace loc_info ist) in let ist = { lfun = Id.Map.empty; extra = extra; } in val_interp ist (Tacenv.interp_ltac r) and interp_tacarg ist arg : typed_generic_argument Ftactic.t = match arg with | TacGeneric arg -> Ftactic.nf_enter begin fun gl -> let sigma = Proofview.Goal.sigma gl in let goal = Proofview.Goal.goal gl in let (sigma,v) = Geninterp.generic_interp ist {Evd.it=goal;sigma} arg in Ftactic.(lift (Proofview.V82.tclEVARS sigma) <*> return v) end | Reference r -> interp_ltac_reference dloc false ist r | ConstrMayEval c -> Ftactic.enter begin fun gl -> let sigma = Proofview.Goal.sigma gl in let env = Proofview.Goal.env gl in let (sigma,c_interp) = interp_constr_may_eval ist env sigma c in Ftactic.(lift (Proofview.V82.tclEVARS sigma) <*> return (Value.of_constr c_interp)) end | UConstr c -> Ftactic.enter begin fun gl -> let env = Proofview.Goal.env gl in Ftactic.return (Value.of_uconstr (interp_uconstr ist env c)) end | MetaIdArg (loc,_,id) -> assert false | TacCall (loc,r,[]) -> interp_ltac_reference loc true ist r | TacCall (loc,f,l) -> let (>>=) = Ftactic.bind in interp_ltac_reference loc true ist f >>= fun fv -> Ftactic.List.map (fun a -> interp_tacarg ist a) l >>= fun largs -> interp_app loc ist fv largs | TacFreshId l -> Ftactic.enter begin fun gl -> let id = interp_fresh_id ist (Tacmach.New.pf_env gl) l in Ftactic.return (in_gen (topwit wit_intro_pattern) (dloc, IntroNaming (IntroIdentifier id))) end | TacPretype c -> Ftactic.enter begin fun gl -> let sigma = Proofview.Goal.sigma gl in let env = Proofview.Goal.env gl in let {closure;term} = interp_uconstr ist env c in let vars = { Pretyping.ltac_constrs = closure.typed; Pretyping.ltac_uconstrs = closure.untyped; Pretyping.ltac_idents = closure.idents; Pretyping.ltac_genargs = ist.lfun; } in let (sigma,c_interp) = Pretyping.understand_ltac constr_flags sigma env vars WithoutTypeConstraint term in Ftactic.(lift (Proofview.V82.tclEVARS sigma) <*> return (Value.of_constr c_interp)) end | TacNumgoals -> Ftactic.lift begin let open Proofview.Notations in Proofview.numgoals >>= fun i -> Proofview.tclUNIT (Value.of_int i) end | Tacexp t -> val_interp ist t | TacDynamic(_,t) -> let tg = (Dyn.tag t) in if String.equal tg "tactic" then val_interp ist (tactic_out t ist) else if String.equal tg "value" then Ftactic.return (value_out t) else if String.equal tg "constr" then Ftactic.return (Value.of_constr (constr_out t)) else Errors.anomaly ~loc:dloc ~label:"Tacinterp.val_interp" (str "Unknown dynamic: <" ++ str (Dyn.tag t) ++ str ">") (* Interprets an application node *) and interp_app loc ist fv largs : typed_generic_argument Ftactic.t = let (>>=) = Ftactic.bind in let fail = Tacticals.New.tclZEROMSG (str "Illegal tactic application.") in let fv = Value.normalize fv in if has_type fv (topwit wit_tacvalue) then match to_tacvalue fv with (* if var=[] and body has been delayed by val_interp, then body is not a tactic that expects arguments. Otherwise Ltac goes into an infinite loop (val_interp puts a VFun back on body, and then interp_app is called again...) *) | (VFun(trace,olfun,(_::_ as var),body) |VFun(trace,olfun,([] as var), (TacFun _|TacLetIn _|TacMatchGoal _|TacMatch _| TacArg _ as body))) -> let (extfun,lvar,lval)=head_with_value (var,largs) in let fold accu (id, v) = Id.Map.add id v accu in let newlfun = List.fold_left fold olfun extfun in if List.is_empty lvar then begin Proofview.tclORELSE begin let ist = { lfun = newlfun; extra = TacStore.set ist.extra f_trace []; } in catch_error_tac trace (val_interp ist body) end begin fun e -> Proofview.tclLIFT (debugging_exception_step ist false e (fun () -> str "evaluation")) <*> Proofview.tclZERO e end end >>= fun v -> (* No errors happened, we propagate the trace *) let v = append_trace trace v in Proofview.tclLIFT begin debugging_step ist (fun () -> str"evaluation returns"++fnl()++pr_value None v) end <*> if List.is_empty lval then Ftactic.return v else interp_app loc ist v lval else Ftactic.return (of_tacvalue (VFun(trace,newlfun,lvar,body))) | _ -> fail else fail (* Gives the tactic corresponding to the tactic value *) and tactic_of_value ist vle = let vle = Value.normalize vle in if has_type vle (topwit wit_tacvalue) then match to_tacvalue vle with | VFun (trace,lfun,[],t) -> let ist = { lfun = lfun; extra = TacStore.set ist.extra f_trace []; } in let tac = eval_tactic ist t in catch_error_tac trace tac | (VFun _|VRec _) -> Proofview.tclZERO (UserError ("" , str "A fully applied tactic is expected.")) else if has_type vle (topwit wit_tactic) then let tac = out_gen (topwit wit_tactic) vle in eval_tactic ist tac else Proofview.tclZERO (UserError ("" , str"Expression does not evaluate to a tactic.")) (* Interprets the clauses of a recursive LetIn *) and interp_letrec ist llc u = Proofview.tclUNIT () >>= fun () -> (* delay for the effects of [lref], just in case. *) let lref = ref ist.lfun in let fold accu ((_, id), b) = let v = of_tacvalue (VRec (lref, TacArg (dloc, b))) in Id.Map.add id v accu in let lfun = List.fold_left fold ist.lfun llc in let () = lref := lfun in let ist = { ist with lfun } in val_interp ist u (* Interprets the clauses of a LetIn *) and interp_letin ist llc u = let rec fold lfun = function | [] -> let ist = { ist with lfun } in val_interp ist u | ((_, id), body) :: defs -> Ftactic.bind (interp_tacarg ist body) (fun v -> fold (Id.Map.add id v lfun) defs) in fold ist.lfun llc (** [interp_match_success lz ist succ] interprets a single matching success (of type {!TacticMatching.t}). *) and interp_match_success ist { TacticMatching.subst ; context ; terms ; lhs } = let (>>=) = Ftactic.bind in let lctxt = Id.Map.map interp_context context in let hyp_subst = Id.Map.map Value.of_constr terms in let lfun = extend_values_with_bindings subst (lctxt +++ hyp_subst +++ ist.lfun) in let ist = { ist with lfun } in val_interp ist lhs >>= fun v -> if has_type v (topwit wit_tacvalue) then match to_tacvalue v with | VFun (trace,lfun,[],t) -> let ist = { lfun = lfun; extra = TacStore.set ist.extra f_trace trace; } in let tac = eval_tactic ist t in let dummy = VFun (extract_trace ist, Id.Map.empty, [], TacId []) in catch_error_tac trace (tac <*> Ftactic.return (of_tacvalue dummy)) | _ -> Ftactic.return v else Ftactic.return v (** [interp_match_successes lz ist s] interprets the stream of matching of successes [s]. If [lz] is set to true, then only the first success is considered, otherwise further successes are tried if the left-hand side fails. *) and interp_match_successes lz ist tac = if lz then (** Only keep the first matching result, we don't backtrack on it *) let tac = Proofview.tclONCE tac in tac >>= fun ans -> interp_match_success ist ans else let decrease e = match e with | FailError (0, _) -> e | FailError (n, s) -> FailError (pred n, s) | _ -> e in let break e = match e with | FailError (0, _) -> false | FailError (n, s) -> true | _ -> false in let tac = Proofview.tclBREAK break tac >>= fun ans -> interp_match_success ist ans in (** Once a tactic has succeeded, do not backtrack anymore *) Proofview.tclONCE (Proofview.tclOR tac (fun e -> Proofview.tclZERO (decrease e))) (* Interprets the Match expressions *) and interp_match ist lz constr lmr = let (>>=) = Ftactic.bind in begin Proofview.tclORELSE (interp_ltac_constr ist constr) begin function | e -> Proofview.tclLIFT (debugging_exception_step ist true e (fun () -> str "evaluation of the matched expression")) <*> Proofview.tclZERO e end end >>= fun constr -> Ftactic.enter begin fun gl -> let sigma = Proofview.Goal.sigma gl in let env = Proofview.Goal.env gl in let ilr = read_match_rule (extract_ltac_constr_values ist env) ist env sigma lmr in interp_match_successes lz ist (TacticMatching.match_term env sigma constr ilr) end (* Interprets the Match Context expressions *) and interp_match_goal ist lz lr lmr = Ftactic.nf_enter begin fun gl -> let sigma = Proofview.Goal.sigma gl in let env = Proofview.Goal.env gl in let hyps = Proofview.Goal.hyps gl in let hyps = if lr then List.rev hyps else hyps in let concl = Proofview.Goal.concl gl in let ilr = read_match_rule (extract_ltac_constr_values ist env) ist env sigma lmr in interp_match_successes lz ist (TacticMatching.match_goal env sigma hyps concl ilr) end (* Interprets extended tactic generic arguments *) (* spiwack: interp_genarg has an argument [concl] for the case of "casted open constr". And [gl] for [Geninterp]. I haven't changed the interface for geninterp yet as it is used by ARGUMENT EXTEND (in turn used by plugins). At the time I'm writing this comment though, the only concerned plugins are the declarative mode (which needs the [extra] field of goals to interprete rules) and ssreflect (a handful of time). I believe we'd need to address "casted open constr" and the declarative mode rules to provide a reasonable interface. *) and interp_genarg ist env sigma concl gl x = let evdref = ref sigma in let rec interp_genarg x = match genarg_tag x with | IntOrVarArgType -> in_gen (topwit wit_int_or_var) (ArgArg (interp_int_or_var ist (out_gen (glbwit wit_int_or_var) x))) | IdentArgType -> in_gen (topwit wit_ident) (interp_fresh_ident ist env (out_gen (glbwit wit_ident) x)) | VarArgType -> in_gen (topwit wit_var) (interp_hyp ist env (out_gen (glbwit wit_var) x)) | GenArgType -> in_gen (topwit wit_genarg) (interp_genarg (out_gen (glbwit wit_genarg) x)) | ConstrArgType -> let (sigma,c_interp) = interp_constr ist env !evdref (out_gen (glbwit wit_constr) x) in evdref := sigma; in_gen (topwit wit_constr) c_interp | ConstrMayEvalArgType -> let (sigma,c_interp) = interp_constr_may_eval ist env !evdref (out_gen (glbwit wit_constr_may_eval) x) in evdref := sigma; in_gen (topwit wit_constr_may_eval) c_interp | QuantHypArgType -> in_gen (topwit wit_quant_hyp) (interp_declared_or_quantified_hypothesis ist env (out_gen (glbwit wit_quant_hyp) x)) | RedExprArgType -> let (sigma,r_interp) = interp_red_expr ist !evdref env (out_gen (glbwit wit_red_expr) x) in evdref := sigma; in_gen (topwit wit_red_expr) r_interp | OpenConstrArgType -> let expected_type = WithoutTypeConstraint in in_gen (topwit wit_open_constr) (interp_open_constr ~expected_type ist env !evdref (snd (out_gen (glbwit wit_open_constr) x))) | ConstrWithBindingsArgType -> in_gen (topwit wit_constr_with_bindings) (pack_sigma (interp_constr_with_bindings ist env !evdref (out_gen (glbwit wit_constr_with_bindings) x))) | BindingsArgType -> in_gen (topwit wit_bindings) (pack_sigma (interp_bindings ist env !evdref (out_gen (glbwit wit_bindings) x))) | ListArgType ConstrArgType -> let (sigma,v) = interp_genarg_constr_list ist env !evdref x in evdref := sigma; v | ListArgType VarArgType -> interp_genarg_var_list ist env x | ListArgType _ -> let list_unpacker wit l = let map x = out_gen (topwit wit) (interp_genarg (in_gen (glbwit wit) x)) in in_gen (topwit (wit_list wit)) (List.map map (glb l)) in list_unpack { list_unpacker } x | OptArgType _ -> let opt_unpacker wit o = match glb o with | None -> in_gen (topwit (wit_opt wit)) None | Some x -> let x = out_gen (topwit wit) (interp_genarg (in_gen (glbwit wit) x)) in in_gen (topwit (wit_opt wit)) (Some x) in opt_unpack { opt_unpacker } x | PairArgType _ -> let pair_unpacker wit1 wit2 o = let (p, q) = glb o in let p = out_gen (topwit wit1) (interp_genarg (in_gen (glbwit wit1) p)) in let q = out_gen (topwit wit2) (interp_genarg (in_gen (glbwit wit2) q)) in in_gen (topwit (wit_pair wit1 wit2)) (p, q) in pair_unpack { pair_unpacker } x | ExtraArgType s -> let (sigma,v) = Geninterp.generic_interp ist { Evd.it=gl;sigma=(!evdref) } x in evdref:=sigma; v in let v = interp_genarg x in !evdref , v (** returns [true] for genargs which have the same meaning independently of goals. *) and global_genarg = let rec global_tag = function | IntOrVarArgType | GenArgType -> true | ListArgType t | OptArgType t -> global_tag t | PairArgType (t1,t2) -> global_tag t1 && global_tag t2 | _ -> false in fun x -> global_tag (genarg_tag x) and interp_genarg_constr_list ist env sigma x = let lc = out_gen (glbwit (wit_list wit_constr)) x in let (sigma,lc) = interp_constr_list ist env sigma lc in sigma , in_gen (topwit (wit_list wit_constr)) lc and interp_genarg_var_list ist env x = let lc = out_gen (glbwit (wit_list wit_var)) x in let lc = interp_hyp_list ist env lc in in_gen (topwit (wit_list wit_var)) lc (* Interprets tactic expressions : returns a "constr" *) and interp_ltac_constr ist e : constr Ftactic.t = let (>>=) = Ftactic.bind in begin Proofview.tclORELSE (val_interp ist e) begin function | Not_found -> Ftactic.enter begin fun gl -> let env = Proofview.Goal.env gl in Proofview.tclLIFT begin debugging_step ist (fun () -> str "evaluation failed for" ++ fnl() ++ Pptactic.pr_glob_tactic env e) end <*> Proofview.tclZERO Not_found end | e -> Proofview.tclZERO e end end >>= fun result -> Ftactic.enter begin fun gl -> let env = Proofview.Goal.env gl in let result = Value.normalize result in try let cresult = coerce_to_closed_constr env result in Proofview.tclLIFT begin debugging_step ist (fun () -> Pptactic.pr_glob_tactic env e ++ fnl() ++ str " has value " ++ fnl() ++ pr_constr_env env cresult) end <*> Ftactic.return cresult with CannotCoerceTo _ -> let env = Proofview.Goal.env gl in Proofview.tclZERO (UserError ( "", errorlabstrm "" (str "Must evaluate to a closed term" ++ fnl() ++ str "offending expression: " ++ fnl() ++ pr_inspect env e result))) end (* Interprets tactic expressions : returns a "tactic" *) and interp_tactic ist tac : unit Proofview.tactic = Ftactic.run (val_interp ist tac) (fun v -> tactic_of_value ist v) (* Interprets a primitive tactic *) and interp_atomic ist tac : unit Proofview.tactic = match tac with (* Basic tactics *) | TacIntroPattern l -> Proofview.Goal.enter begin fun gl -> let env = Proofview.Goal.env gl in let sigma = Proofview.Goal.sigma gl in let sigma,l' = interp_intro_pattern_list_as_list ist env sigma l in Proofview.V82.tclEVARS sigma <*> Tactics.intros_patterns l' end | TacIntroMove (ido,hto) -> Proofview.Goal.enter begin fun gl -> let env = Proofview.Goal.env gl in let mloc = interp_move_location ist env hto in Tactics.intro_move (Option.map (interp_fresh_ident ist env) ido) mloc end | TacExact c -> Proofview.V82.tactic begin fun gl -> let (sigma,c_interp) = pf_interp_casted_constr ist gl c in tclTHEN (tclEVARS sigma) (Tactics.exact_no_check c_interp) gl end | TacApply (a,ev,cb,cl) -> Proofview.Goal.enter begin fun gl -> let env = Proofview.Goal.env gl in let sigma = Proofview.Goal.sigma gl in let sigma, l = List.fold_map (interp_open_constr_with_bindings_arg_loc ist env) sigma cb in let sigma,tac = match cl with | None -> sigma, fun l -> Tactics.apply_with_bindings_gen a ev l | Some cl -> let sigma,(clear,id,cl) = interp_in_hyp_as ist env sigma cl in sigma, fun l -> Tactics.apply_in a ev clear id l cl in Tacticals.New.tclWITHHOLES ev tac sigma l end | TacElim (ev,(keep,cb),cbo) -> Proofview.Goal.enter begin fun gl -> let env = Proofview.Goal.env gl in let sigma = Proofview.Goal.sigma gl in let sigma, cb = interp_constr_with_bindings ist env sigma cb in let sigma, cbo = Option.fold_map (interp_constr_with_bindings ist env) sigma cbo in Tacticals.New.tclWITHHOLES ev (Tactics.elim ev keep cb) sigma cbo end | TacCase (ev,(keep,cb)) -> Proofview.Goal.enter begin fun gl -> let sigma = Proofview.Goal.sigma gl in let env = Proofview.Goal.env gl in let sigma, cb = interp_constr_with_bindings ist env sigma cb in Tacticals.New.tclWITHHOLES ev (Tactics.general_case_analysis ev keep) sigma cb end | TacFix (idopt,n) -> Proofview.Goal.enter begin fun gl -> let env = Proofview.Goal.env gl in Proofview.V82.tactic (Tactics.fix (Option.map (interp_fresh_ident ist env) idopt) n) end | TacMutualFix (id,n,l) -> Proofview.V82.tactic begin fun gl -> let env = pf_env gl in let f sigma (id,n,c) = let (sigma,c_interp) = pf_interp_type ist { gl with sigma=sigma } c in sigma , (interp_fresh_ident ist env id,n,c_interp) in let (sigma,l_interp) = Evd.MonadR.List.map_right (fun c sigma -> f sigma c) l (project gl) in tclTHEN (tclEVARS sigma) (Tactics.mutual_fix (interp_fresh_ident ist env id) n l_interp 0) gl end | TacCofix idopt -> Proofview.Goal.enter begin fun gl -> let env = Proofview.Goal.env gl in Proofview.V82.tactic (Tactics.cofix (Option.map (interp_fresh_ident ist env) idopt)) end | TacMutualCofix (id,l) -> Proofview.V82.tactic begin fun gl -> let env = pf_env gl in let f sigma (id,c) = let (sigma,c_interp) = pf_interp_type ist { gl with sigma=sigma } c in sigma , (interp_fresh_ident ist env id,c_interp) in let (sigma,l_interp) = Evd.MonadR.List.map_right (fun c sigma -> f sigma c) l (project gl) in tclTHEN (tclEVARS sigma) (Tactics.mutual_cofix (interp_fresh_ident ist env id) l_interp 0) gl end | TacAssert (b,t,ipat,c) -> Proofview.Goal.enter begin fun gl -> let env = Proofview.Goal.env gl in let sigma = Proofview.Goal.sigma gl in let (sigma,c) = (if Option.is_empty t then interp_constr else interp_type) ist env sigma c in let sigma, ipat = interp_intro_pattern_option ist env sigma ipat in let tac = Option.map (interp_tactic ist) t in Proofview.V82.tclEVARS sigma <*> Tactics.forward b tac ipat c end | TacGeneralize cl -> let tac arg = Proofview.V82.tactic (Tactics.Simple.generalize_gen arg) in Proofview.Goal.enter begin fun gl -> let sigma = Proofview.Goal.sigma gl in let env = Proofview.Goal.env gl in let sigma, cl = interp_constr_with_occurrences_and_name_as_list ist env sigma cl in Proofview.V82.tclEVARS sigma <*> tac cl end | TacGeneralizeDep c -> (new_interp_constr ist c) (fun c -> Proofview.V82.tactic (Tactics.generalize_dep c)) | TacLetTac (na,c,clp,b,eqpat) -> Proofview.V82.nf_evar_goals <*> Proofview.Goal.nf_enter begin fun gl -> let env = Proofview.Goal.env gl in let sigma = Proofview.Goal.sigma gl in let clp = interp_clause ist env clp in let eqpat = interp_intro_pattern_naming_option ist env eqpat in if Locusops.is_nowhere clp then (* We try to fully-typecheck the term *) let (sigma,c_interp) = Tacmach.New.of_old (fun gl -> pf_interp_constr ist gl c) gl in let let_tac b na c cl eqpat = let id = Option.default (Loc.ghost,IntroAnonymous) eqpat in let with_eq = if b then None else Some (true,id) in Tactics.letin_tac with_eq na c None cl in Proofview.V82.tclEVARS sigma <*> let_tac b (interp_fresh_name ist env na) c_interp clp eqpat else (* We try to keep the pattern structure as much as possible *) let let_pat_tac b na c cl eqpat = let id = Option.default (Loc.ghost,IntroAnonymous) eqpat in let with_eq = if b then None else Some (true,id) in Tactics.letin_pat_tac with_eq na c cl in let_pat_tac b (interp_fresh_name ist env na) (interp_pure_open_constr ist env sigma c) clp eqpat end (* Automation tactics *) | TacTrivial (debug,lems,l) -> Proofview.Goal.enter begin fun gl -> let env = Proofview.Goal.env gl in let sigma = Proofview.Goal.sigma gl in Auto.h_trivial ~debug (interp_auto_lemmas ist env sigma lems) (Option.map (List.map (interp_hint_base ist)) l) end | TacAuto (debug,n,lems,l) -> Proofview.Goal.enter begin fun gl -> let env = Proofview.Goal.env gl in let sigma = Proofview.Goal.sigma gl in Auto.h_auto ~debug (Option.map (interp_int_or_var ist) n) (interp_auto_lemmas ist env sigma lems) (Option.map (List.map (interp_hint_base ist)) l) end (* Derived basic tactics *) | TacInductionDestruct (isrec,ev,(l,el,cls)) -> (* spiwack: some unknown part of destruct needs the goal to be prenormalised. *) Proofview.V82.nf_evar_goals <*> Proofview.Goal.nf_enter begin fun gl -> let env = Proofview.Goal.env gl in let sigma = Proofview.Goal.sigma gl in let sigma,l = List.fold_map begin fun sigma (c,(ipato,ipats)) -> (* TODO: move sigma as a side-effect *) let c = Tacmach.New.of_old (fun gl -> interp_induction_arg ist gl c) gl in let ipato = interp_intro_pattern_naming_option ist env ipato in let sigma,ipats = interp_or_and_intro_pattern_option ist env sigma ipats in sigma,(c,(ipato,ipats)) end sigma l in let sigma,el = Option.fold_map (interp_constr_with_bindings ist env) sigma el in let interp_clause = interp_clause ist env in let cls = Option.map interp_clause cls in Tacticals.New.tclWITHHOLES ev (Tactics.induction_destruct isrec ev) sigma (l,el,cls) end | TacDoubleInduction (h1,h2) -> let h1 = interp_quantified_hypothesis ist h1 in let h2 = interp_quantified_hypothesis ist h2 in Elim.h_double_induction h1 h2 (* Context management *) | TacClear (b,l) -> Proofview.V82.tactic begin fun gl -> let l = interp_hyp_list ist (pf_env gl) l in if b then Tactics.keep l gl else Tactics.clear l gl end | TacClearBody l -> Proofview.Goal.enter begin fun gl -> Tactics.clear_body (interp_hyp_list ist (Tacmach.New.pf_env gl) l) end | TacMove (dep,id1,id2) -> Proofview.V82.tactic begin fun gl -> Tactics.move_hyp dep (interp_hyp ist (pf_env gl) id1) (interp_move_location ist (pf_env gl) id2) gl end | TacRename l -> Proofview.V82.tactic begin fun gl -> let env = pf_env gl in Tactics.rename_hyp (List.map (fun (id1,id2) -> interp_hyp ist env id1, interp_fresh_ident ist env (snd id2)) l) gl end (* Constructors *) | TacSplit (ev,bll) -> Proofview.Goal.enter begin fun gl -> let env = Proofview.Goal.env gl in let sigma = Proofview.Goal.sigma gl in let sigma, bll = List.fold_map (interp_bindings ist env) sigma bll in Tacticals.New.tclWITHHOLES ev (Tactics.split_with_bindings ev) sigma bll end (* Conversion *) | TacReduce (r,cl) -> Proofview.V82.tactic begin fun gl -> let (sigma,r_interp) = interp_red_expr ist (project gl) (pf_env gl) r in tclTHEN (tclEVARS sigma) (Tactics.reduce r_interp (interp_clause ist (pf_env gl) cl)) gl end | TacChange (None,c,cl) -> Proofview.V82.nf_evar_goals <*> Proofview.V82.tactic begin fun gl -> let is_onhyps = match cl.onhyps with | None | Some [] -> true | _ -> false in let is_onconcl = match cl.concl_occs with | AllOccurrences | NoOccurrences -> true | _ -> false in let c_interp env sigma = if is_onhyps && is_onconcl then interp_type ist env sigma c else interp_constr ist env sigma c in (Tactics.change None c_interp (interp_clause ist (pf_env gl) cl)) gl end | TacChange (Some op,c,cl) -> Proofview.V82.nf_evar_goals <*> Proofview.Goal.enter begin fun gl -> let env = Proofview.Goal.env gl in let sigma = Proofview.Goal.sigma gl in Proofview.V82.tactic begin fun gl -> let sign,op = interp_typed_pattern ist env sigma op in let to_catch = function Not_found -> true | e -> Errors.is_anomaly e in let c_interp env sigma = let env' = Environ.push_named_context sign env in try interp_constr ist env' sigma c with e when to_catch e (* Hack *) -> errorlabstrm "" (strbrk "Failed to get enough information from the left-hand side to type the right-hand side.") in (Tactics.change (Some op) c_interp (interp_clause ist env cl)) gl end end (* Equivalence relations *) | TacSymmetry c -> Proofview.Goal.enter begin fun gl -> let env = Proofview.Goal.env gl in let cl = interp_clause ist env c in Tactics.intros_symmetry cl end (* Equality and inversion *) | TacRewrite (ev,l,cl,by) -> Proofview.Goal.enter begin fun gl -> let l = List.map (fun (b,m,(keep,c)) -> let f env sigma = interp_open_constr_with_bindings ist env sigma c in (b,m,keep,f)) l in let env = Proofview.Goal.env gl in let cl = interp_clause ist env cl in Equality.general_multi_rewrite ev l cl (Option.map (fun by -> Tacticals.New.tclCOMPLETE (interp_tactic ist by), Equality.Naive) by) end | TacInversion (DepInversion (k,c,ids),hyp) -> Proofview.Goal.nf_enter begin fun gl -> let env = Proofview.Goal.env gl in let sigma = Proofview.Goal.sigma gl in let (sigma,c_interp) = match c with | None -> sigma , None | Some c -> let (sigma,c_interp) = Tacmach.New.of_old (fun gl -> pf_interp_constr ist gl c) gl in sigma , Some c_interp in let dqhyps = interp_declared_or_quantified_hypothesis ist env hyp in let sigma,ids = interp_or_and_intro_pattern_option ist env sigma ids in Proofview.V82.tclEVARS sigma <*> Inv.dinv k c_interp ids dqhyps end | TacInversion (NonDepInversion (k,idl,ids),hyp) -> Proofview.Goal.enter begin fun gl -> let env = Proofview.Goal.env gl in let sigma = Proofview.Goal.sigma gl in let hyps = interp_hyp_list ist env idl in let dqhyps = interp_declared_or_quantified_hypothesis ist env hyp in let sigma, ids = interp_or_and_intro_pattern_option ist env sigma ids in Proofview.V82.tclEVARS sigma <*> Inv.inv_clause k ids hyps dqhyps end | TacInversion (InversionUsing (c,idl),hyp) -> Proofview.Goal.enter begin fun gl -> let env = Proofview.Goal.env gl in let sigma = Proofview.Goal.sigma gl in let (sigma,c_interp) = interp_constr ist env sigma c in let dqhyps = interp_declared_or_quantified_hypothesis ist env hyp in let hyps = interp_hyp_list ist env idl in Proofview.V82.tclEVARS sigma <*> Leminv.lemInv_clause dqhyps c_interp hyps end (* Initial call for interpretation *) let default_ist () = let extra = TacStore.set TacStore.empty f_debug (get_debug ()) in { lfun = Id.Map.empty; extra = extra } let eval_tactic t = Proofview.tclUNIT () >>= fun () -> (* delay for [default_ist] *) Proofview.tclLIFT db_initialize <*> interp_tactic (default_ist ()) t let eval_tactic_ist ist t = Proofview.tclLIFT db_initialize <*> interp_tactic ist t (* globalization + interpretation *) let interp_tac_gen lfun avoid_ids debug t = Proofview.Goal.enter begin fun gl -> let env = Proofview.Goal.env gl in let extra = TacStore.set TacStore.empty f_debug debug in let extra = TacStore.set extra f_avoid_ids avoid_ids in let ist = { lfun = lfun; extra = extra } in let ltacvars = Id.Map.domain lfun in interp_tactic ist (intern_pure_tactic { ltacvars; ltacrecvars = Id.Map.empty; genv = env } t) end let interp t = interp_tac_gen Id.Map.empty [] (get_debug()) t let _ = Proof_global.set_interp_tac interp (* Used to hide interpretation for pretty-print, now just launch tactics *) (* [global] means that [t] should be internalized outside of goals. *) let hide_interp global t ot = let hide_interp env = let ist = { ltacvars = Id.Set.empty; ltacrecvars = Id.Map.empty; genv = env } in let te = intern_pure_tactic ist t in let t = eval_tactic te in match ot with | None -> t | Some t' -> Tacticals.New.tclTHEN t t' in if global then Proofview.tclENV >>= fun env -> hide_interp env else Proofview.Goal.enter begin fun gl -> hide_interp (Proofview.Goal.env gl) end (***************************************************************************) (** Register standard arguments *) let def_intern ist x = (ist, x) let def_subst _ x = x let def_interp ist gl x = (project gl, x) let declare_uniform t = Genintern.register_intern0 t def_intern; Genintern.register_subst0 t def_subst; Geninterp.register_interp0 t def_interp let () = declare_uniform wit_unit let () = declare_uniform wit_int let () = declare_uniform wit_bool let () = declare_uniform wit_string let () = declare_uniform wit_pre_ident let () = let interp ist gl ref = (project gl, interp_reference ist (pf_env gl) ref) in Geninterp.register_interp0 wit_ref interp; let interp ist gl pat = interp_intro_pattern ist (pf_env gl) (project gl) pat in Geninterp.register_interp0 wit_intro_pattern interp; let interp ist gl pat = (project gl, interp_clause ist (pf_env gl) pat) in Geninterp.register_interp0 wit_clause_dft_concl interp; let interp ist gl s = interp_sort (project gl) s in Geninterp.register_interp0 wit_sort interp let () = let interp ist gl tac = let f = VFun (extract_trace ist, ist.lfun, [], tac) in (project gl, TacArg (dloc, valueIn (of_tacvalue f))) in Geninterp.register_interp0 wit_tactic interp let () = Geninterp.register_interp0 wit_uconstr (fun ist gl c -> project gl , interp_uconstr ist (pf_env gl) c ) (***************************************************************************) (* Other entry points *) let val_interp ist tac k = Ftactic.run (val_interp ist tac) k let interp_ltac_constr ist c k = Ftactic.run (interp_ltac_constr ist c) k let interp_redexp env sigma r = let ist = default_ist () in let gist = { fully_empty_glob_sign with genv = env; } in interp_red_expr ist sigma env (intern_red_expr gist r) (***************************************************************************) (* Embed tactics in raw or glob tactic expr *) let globTacticIn t = TacArg (dloc,TacDynamic (dloc,tactic_in t)) let tacticIn t = globTacticIn (fun ist -> try glob_tactic (t ist) with e when Errors.noncritical e -> anomaly ~label:"tacticIn" (str "Incorrect tactic expression. Received exception is:" ++ Errors.print e)) (***************************************************************************) (* Backwarding recursive needs of tactic glob/interp/eval functions *) let _ = let eval ty env sigma lfun arg = let ist = { lfun = lfun; extra = TacStore.empty; } in if has_type arg (glbwit wit_tactic) then let tac = out_gen (glbwit wit_tactic) arg in let tac = interp_tactic ist tac in let prf = Proof.start sigma [env, ty] in let (prf, _) = try Proof.run_tactic env tac prf with Proofview_monad.TacticFailure e as src -> (** Catch the inner error of the monad tactic *) let src = Errors.push src in let e = Backtrace.app_backtrace ~src ~dst:e in raise e in let sigma = Proof.in_proof prf (fun sigma -> sigma) in let ans = match Proof.initial_goals prf with | [c, _] -> c | _ -> assert false in ans, sigma else failwith "not a tactic" in Hook.set Pretyping.genarg_interp_hook eval let _ = Hook.set Auto.extern_interp (fun l -> let lfun = Id.Map.map (fun c -> Value.of_constr c) l in let ist = { (default_ist ()) with lfun; } in interp_tactic ist) (** Used in tactic extension **) let dummy_id = Id.of_string "_" let lift_constr_tac_to_ml_tac vars tac = let tac _ ist = Proofview.Goal.enter begin fun gl -> let env = Proofview.Goal.env gl in let map = function | None -> None | Some id -> let c = Id.Map.find id ist.lfun in try Some (coerce_to_closed_constr env c) with CannotCoerceTo ty -> error_ltac_variable Loc.ghost dummy_id (Some env) c ty in let args = List.map_filter map vars in tac args ist end in tac