(***********************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) (* x | MetaId (loc,_) -> error_syntactic_metavariables_not_allowed loc type ltac_type = | LtacFun of ltac_type | LtacBasic | LtacTactic (* Values for interpretation *) type value = | VTactic of tactic (* For mixed ML/Ltac tactics (e.g. Tauto) *) | VRTactic of (goal list sigma * validation) (* For Match results *) (* Not a true value *) | VFun of (identifier * value) list * identifier option list *raw_tactic_expr | VVoid | VInteger of int | VIdentifier of identifier (* idents which are not bound, as in "Intro H" *) (* but which may be bound later, as in "tac" in*) (* "Intro H; tac" *) | VConstr of constr (* includes idents known bound and references *) | VConstr_context of constr | VRec of value ref (* Signature for interpretation: val_interp and interpretation functions *) and interp_sign = { lfun : (identifier * value) list; lmatch : (int * constr) list; debug : debug_info } let check_is_value = function | VRTactic _ -> (* These are goals produced by Match *) error "Immediate Match producing tactics not allowed in local definitions" | _ -> () (* For tactic_of_value *) exception NotTactic (* Gives the constr corresponding to a Constr_context tactic_arg *) let constr_of_VConstr_context = function | VConstr_context c -> c | _ -> anomalylabstrm "constr_of_VConstr_context" (str "Not a Constr_context tactic_arg") (* (* Gives identifiers and makes the possible injection constr -> ident *) let make_ids ast = function | Identifier id -> id | Constr c -> (try destVar c with | Invalid_argument "destVar" -> anomalylabstrm "make_ids" (str "This term cannot be reduced to an identifier" ++ fnl () ++ print_ast ast)) | _ -> anomalylabstrm "make_ids" (str "Not an identifier") *) let pr_value env = function | VVoid -> str "()" | VInteger n -> int n | VIdentifier id -> pr_id id | VConstr c -> Printer.prterm_env env c | VConstr_context c -> Printer.prterm_env env c | (VTactic _ | VRTactic _ | VFun _ | VRec _) -> str "" (* Transforms a named_context into a (string * constr) list *) let make_hyps = List.map (fun (id,_,typ) -> (id, typ)) (* Transforms an id into a constr if possible, or fails *) let constr_of_id env id = construct_reference (Some (Environ.named_context env)) id (* To embed several objects in Coqast.t *) let ((tactic_in : (interp_sign -> raw_tactic_expr) -> Dyn.t), (tactic_out : Dyn.t -> (interp_sign -> raw_tactic_expr))) = create "tactic" let ((value_in : value -> Dyn.t), (value_out : Dyn.t -> value)) = create "value" let tacticIn t = TacArg (TacDynamic (dummy_loc,tactic_in t)) let tacticOut = function | TacArg (TacDynamic (_,d)) -> if (tag d) = "tactic" then tactic_out d else anomalylabstrm "tacticOut" (str "Dynamic tag should be tactic") | ast -> anomalylabstrm "tacticOut" (str "Not a Dynamic ast: " (* ++ print_ast ast*) ) let valueIn t = TacDynamic (dummy_loc,value_in t) let valueOut = function | TacDynamic (_,d) -> if (tag d) = "value" then value_out d else anomalylabstrm "valueOut" (str "Dynamic tag should be value") | ast -> anomalylabstrm "valueOut" (str "Not a Dynamic ast: ") (* To embed constr in Coqast.t *) let constrIn t = CDynamic (dummy_loc,Pretyping.constr_in t) let constrOut = function | CDynamic (_,d) -> if (Dyn.tag d) = "constr" then Pretyping.constr_out d else anomalylabstrm "constrOut" (str "Dynamic tag should be constr") | ast -> anomalylabstrm "constrOut" (str "Not a Dynamic ast") let loc = dummy_loc (* Table of interpretation functions *) let interp_tab = (Hashtbl.create 17 : (string , interp_sign -> Coqast.t -> value) Hashtbl.t) (* Adds an interpretation function *) let interp_add (ast_typ,interp_fun) = try Hashtbl.add interp_tab ast_typ interp_fun with Failure _ -> errorlabstrm "interp_add" (str "Cannot add the interpretation function for " ++ str ast_typ ++ str " twice") (* Adds a possible existing interpretation function *) let overwriting_interp_add (ast_typ,interp_fun) = if Hashtbl.mem interp_tab ast_typ then begin Hashtbl.remove interp_tab ast_typ; warning ("Overwriting definition of tactic interpreter command " ^ ast_typ) end; Hashtbl.add interp_tab ast_typ interp_fun (* Finds the interpretation function corresponding to a given ast type *) let look_for_interp = Hashtbl.find interp_tab (* Globalizes the identifier *) let find_reference env qid = (* We first look for a variable of the current proof *) match repr_qualid qid with | (d,id) when repr_dirpath d = [] & List.mem id (ids_of_context env) -> VarRef id | _ -> Nametab.locate qid let coerce_to_reference env = function | VConstr c -> (try reference_of_constr c with Not_found -> invalid_arg_loc (loc, "Not a reference")) (* | VIdentifier id -> VarRef id*) | v -> errorlabstrm "coerce_to_reference" (str "The value" ++ spc () ++ pr_value env v ++ str "cannot be coerced to a reference") (* turns a value into an evaluable reference *) let error_not_evaluable s = errorlabstrm "evalref_of_ref" (str "Cannot coerce" ++ spc () ++ s ++ spc () ++ str "to an evaluable reference") let coerce_to_evaluable_ref env c = let ev = match c with | VConstr c when isConst c -> EvalConstRef (destConst c) | VConstr c when isVar c -> EvalVarRef (destVar c) (* | VIdentifier id -> EvalVarRef id*) | _ -> error_not_evaluable (pr_value env c) in if not (Tacred.is_evaluable env ev) then error_not_evaluable (pr_value env c); ev let coerce_to_inductive = function | VConstr c when isInd c -> destInd c | x -> try let r = match x with | VConstr c -> reference_of_constr c | _ -> failwith "" in errorlabstrm "coerce_to_inductive" (Printer.pr_global r ++ str " is not an inductive type") with _ -> errorlabstrm "coerce_to_inductive" (str "Found an argument which should be an inductive type") (* Summary and Object declaration *) let mactab = ref Gmap.empty let lookup qid = Gmap.find (locate_tactic qid) !mactab let _ = let init () = mactab := Gmap.empty in let freeze () = !mactab in let unfreeze fs = mactab := fs in Summary.declare_summary "tactic-definition" { Summary.freeze_function = freeze; Summary.unfreeze_function = unfreeze; Summary.init_function = init; Summary.survive_section = false } (* Interpretation of extra generic arguments *) type genarg_interp_type = interp_sign -> goal sigma -> raw_generic_argument -> closed_generic_argument let extragenargtab = ref (Gmap.empty : (string,genarg_interp_type) Gmap.t) let add_genarg_interp id f = extragenargtab := Gmap.add id f !extragenargtab let lookup_genarg_interp id = try Gmap.find id !extragenargtab with Not_found -> failwith ("No interpretation function found for entry "^id) (* Unboxes VRec *) let unrec = function | VRec v -> !v | a -> a (************* GLOBALIZE ************) (* We have identifier <| global_reference <| constr *) let find_ident id (lfun,_,_,env) = List.mem id lfun or List.mem id (ids_of_named_context (Environ.named_context env)) (* Globalize a name which can be fresh *) let glob_ident l ist id = (* We use identifier both for variables and new names; thus nothing to do *) if find_ident id ist then () else l:=id::!l; id let glob_name l ist = function | Anonymous -> Anonymous | Name id -> Name (glob_ident l ist id) let get_current_context () = try Pfedit.get_current_goal_context () with e when Logic.catchable_exception e -> (Evd.empty, Global.env()) let weak = ref true (* Globalize a name which must be bound -- actually just check it is bound *) let glob_hyp ist (loc,id) = let (_,env) = get_current_context () in if !weak or find_ident id ist then id else (* try let _ = lookup (make_short_qualid id) in id with Not_found -> *) Pretype_errors.error_var_not_found_loc loc id let glob_lochyp ist (_loc,_ as locid) = (loc,glob_hyp ist locid) let error_unbound_metanum loc n = user_err_loc (loc,"glob_qualid_or_metanum", str "?" ++ int n ++ str " is unbound") let glob_metanum (_,lmeta,_,_) loc n = if List.mem n lmeta then n else error_unbound_metanum loc n let glob_hyp_or_metanum ist = function | AN id -> AN (glob_hyp ist (loc,id)) | MetaNum (_loc,n) -> MetaNum (loc,glob_metanum ist loc n) let glob_qualid_or_metanum ist = function | AN qid -> AN (Qualid(loc,qualid_of_sp (sp_of_global None (Nametab.global qid)))) | MetaNum (_loc,n) -> MetaNum (loc,glob_metanum ist loc n) let glob_reference ist = function | Ident (loc,id) as r when find_ident id ist -> r | r -> Qualid (loc,qualid_of_sp (sp_of_global None (Nametab.global r))) let glob_ltac_qualid ist ref = let (loc,qid) = qualid_of_reference ref in try Qualid (loc,qualid_of_sp (locate_tactic qid)) with Not_found -> glob_reference ist ref let glob_ltac_reference ist = function | Ident (_loc,id) when !weak or find_ident id ist -> Ident (loc,id) | r -> glob_ltac_qualid ist r let rec glob_intro_pattern lf ist = function | IntroOrAndPattern l -> IntroOrAndPattern (List.map (List.map (glob_intro_pattern lf ist)) l) | IntroWildcard -> IntroWildcard | IntroIdentifier id -> IntroIdentifier (glob_ident lf ist id) let glob_quantified_hypothesis ist x = (* We use identifier both for variables and quantified hyps (no way to statically check the existence of a quantified hyp); thus nothing to do *) x let glob_constr (lfun,_,sigma,env) c = let _ = Constrintern.for_grammar (Constrintern.interp_rawconstr_gen false sigma env [] false (lfun,[])) c in c (* Globalize bindings *) let glob_binding ist (loc,b,c) = (loc,glob_quantified_hypothesis ist b,glob_constr ist c) let glob_bindings ist = function | NoBindings -> NoBindings | ImplicitBindings l -> ImplicitBindings (List.map (glob_constr ist) l) | ExplicitBindings l -> ExplicitBindings (List.map (glob_binding ist) l) let glob_constr_with_bindings ist (c,bl) = (glob_constr ist c, glob_bindings ist bl) let glob_clause_pattern ist (l,occl) = let rec check = function | (hyp,l) :: rest -> let (_loc,_ as id) = skip_metaid hyp in (AI(loc,glob_hyp ist id),l)::(check rest) | [] -> [] in (l,check occl) let glob_induction_arg ist = function | ElimOnConstr c -> ElimOnConstr (glob_constr ist c) | ElimOnAnonHyp n as x -> x | ElimOnIdent (_loc,id) as x -> ElimOnIdent (loc,id) (* Globalize a reduction expression *) let glob_evaluable_or_metanum ist = function | AN qid -> AN (glob_reference ist qid) | MetaNum (_loc,n) -> MetaNum (loc,glob_metanum ist loc n) let glob_unfold ist (l,qid) = (l,glob_evaluable_or_metanum ist qid) let glob_flag ist red = { red with rConst = List.map (glob_evaluable_or_metanum ist) red.rConst } let glob_constr_occurrence ist (l,c) = (l,glob_constr ist c) let glob_redexp ist = function | Unfold l -> Unfold (List.map (glob_unfold ist) l) | Fold l -> Fold (List.map (glob_constr ist) l) | Cbv f -> Cbv (glob_flag ist f) | Lazy f -> Lazy (glob_flag ist f) | Pattern l -> Pattern (List.map (glob_constr_occurrence ist) l) | Simpl o -> Simpl (option_app (glob_constr_occurrence ist) o) | (Red _ | Hnf as r) -> r | ExtraRedExpr (s,c) -> ExtraRedExpr (s, glob_constr ist c) (* Interprets an hypothesis name *) let glob_hyp_location ist = function | InHyp id -> let (_loc,_ as id) = skip_metaid id in InHyp (AI(loc,glob_hyp ist id)) | InHypType id -> let (_loc,_ as id) = skip_metaid id in InHypType (AI(loc,glob_hyp ist id)) (* Reads a pattern *) let glob_pattern evc env lfun = function | Subterm (ido,pc) -> let lfun = List.map (fun id -> (id, mkVar id)) lfun in let (metas,_) = interp_constrpattern_gen evc env (lfun,[]) pc in metas, Subterm (ido,pc) | Term pc -> let lfun = List.map (fun id -> (id, mkVar id)) lfun in let (metas,_) = interp_constrpattern_gen evc env (lfun,[]) pc in metas, Term pc let glob_constr_may_eval ist = function | ConstrEval (r,c) -> ConstrEval (glob_redexp ist r,glob_constr ist c) | ConstrContext (locid,c) -> ConstrContext ((loc,glob_hyp ist locid),glob_constr ist c) | ConstrTypeOf c -> ConstrTypeOf (glob_constr ist c) | ConstrTerm c -> ConstrTerm (glob_constr ist c) (* Reads the hypotheses of a Match Context rule *) let rec glob_match_context_hyps evc env lfun = function | (NoHypId mp)::tl -> let metas1, pat = glob_pattern evc env lfun mp in let lfun, metas2, hyps = glob_match_context_hyps evc env lfun tl in lfun, metas1@metas2, (NoHypId pat)::hyps | (Hyp ((_,s) as locs,mp))::tl -> let metas1, pat = glob_pattern evc env lfun mp in let lfun, metas2, hyps = glob_match_context_hyps evc env lfun tl in s::lfun, metas1@metas2, Hyp (locs,pat)::hyps | [] -> lfun, [], [] (* Utilities *) let rec filter_some = function | None :: l -> filter_some l | Some a :: l -> a :: filter_some l | [] -> [] let extract_names lrc = List.fold_right (fun ((loc,name),_) l -> if List.mem name l then user_err_loc (loc, "glob_tactic", str "This variable is bound several times"); name::l) lrc [] let extract_let_names lrc = List.fold_right (fun ((loc,name),_,_) l -> if List.mem name l then user_err_loc (loc, "glob_tactic", str "This variable is bound several times"); name::l) lrc [] (* Globalizes tactics *) let rec glob_atomic lf (_,_,_,_ as ist) = function (* Basic tactics *) | TacIntroPattern l -> TacIntroPattern (List.map (glob_intro_pattern lf ist) l) | TacIntrosUntil hyp -> TacIntrosUntil (glob_quantified_hypothesis ist hyp) | TacIntroMove (ido,ido') -> TacIntroMove (option_app (glob_ident lf ist) ido, option_app (fun (_loc,_ as x) -> (loc,glob_hyp ist x)) ido') | TacAssumption -> TacAssumption | TacExact c -> TacExact (glob_constr ist c) | TacApply cb -> TacApply (glob_constr_with_bindings ist cb) | TacElim (cb,cbo) -> TacElim (glob_constr_with_bindings ist cb, option_app (glob_constr_with_bindings ist) cbo) | TacElimType c -> TacElimType (glob_constr ist c) | TacCase cb -> TacCase (glob_constr_with_bindings ist cb) | TacCaseType c -> TacCaseType (glob_constr ist c) | TacFix (idopt,n) -> TacFix (option_app (glob_ident lf ist) idopt,n) | TacMutualFix (id,n,l) -> let f (id,n,c) = (glob_ident lf ist id,n,glob_constr ist c) in TacMutualFix (glob_ident lf ist id, n, List.map f l) | TacCofix idopt -> TacCofix (option_app (glob_ident lf ist) idopt) | TacMutualCofix (id,l) -> let f (id,c) = (glob_ident lf ist id,glob_constr ist c) in TacMutualCofix (glob_ident lf ist id, List.map f l) | TacCut c -> TacCut (glob_constr ist c) | TacTrueCut (ido,c) -> TacTrueCut (option_app (glob_ident lf ist) ido, glob_constr ist c) | TacForward (b,na,c) -> TacForward (b,glob_name lf ist na,glob_constr ist c) | TacGeneralize cl -> TacGeneralize (List.map (glob_constr ist) cl) | TacGeneralizeDep c -> TacGeneralizeDep (glob_constr ist c) | TacLetTac (id,c,clp) -> TacLetTac (id,glob_constr ist c,glob_clause_pattern ist clp) | TacInstantiate (n,c) -> TacInstantiate (n,glob_constr ist c) (* Automation tactics *) | TacTrivial l -> TacTrivial l | TacAuto (n,l) -> TacAuto (n,l) | TacAutoTDB n -> TacAutoTDB n | TacDestructHyp (b,(_loc,_ as id)) -> TacDestructHyp(b,(loc,glob_hyp ist id)) | TacDestructConcl -> TacDestructConcl | TacSuperAuto (n,l,b1,b2) -> TacSuperAuto (n,l,b1,b2) | TacDAuto (n,p) -> TacDAuto (n,p) (* Derived basic tactics *) | TacOldInduction h -> TacOldInduction (glob_quantified_hypothesis ist h) | TacNewInduction (c,cbo,ids) -> TacNewInduction (glob_induction_arg ist c, option_app (glob_constr_with_bindings ist) cbo, List.map (List.map (glob_ident lf ist)) ids) | TacOldDestruct h -> TacOldDestruct (glob_quantified_hypothesis ist h) | TacNewDestruct (c,cbo,ids) -> TacNewDestruct (glob_induction_arg ist c, option_app (glob_constr_with_bindings ist) cbo, List.map (List.map (glob_ident lf ist)) ids) | TacDoubleInduction (h1,h2) -> let h1 = glob_quantified_hypothesis ist h1 in let h2 = glob_quantified_hypothesis ist h2 in TacDoubleInduction (h1,h2) | TacDecomposeAnd c -> TacDecomposeAnd (glob_constr ist c) | TacDecomposeOr c -> TacDecomposeOr (glob_constr ist c) | TacDecompose (l,c) -> let l = List.map (glob_qualid_or_metanum ist) l in TacDecompose (l,glob_constr ist c) | TacSpecialize (n,l) -> TacSpecialize (n,glob_constr_with_bindings ist l) | TacLApply c -> TacLApply (glob_constr ist c) (* Context management *) | TacClear l -> TacClear (List.map (glob_hyp_or_metanum ist) l) | TacClearBody l -> TacClearBody (List.map (glob_hyp_or_metanum ist) l) | TacMove (dep,id1,id2) -> TacMove (dep,glob_lochyp ist id1,glob_lochyp ist id2) | TacRename (id1,id2) -> TacRename (glob_lochyp ist id1, glob_lochyp ist id2) (* Constructors *) | TacLeft bl -> TacLeft (glob_bindings ist bl) | TacRight bl -> TacRight (glob_bindings ist bl) | TacSplit bl -> TacSplit (glob_bindings ist bl) | TacAnyConstructor t -> TacAnyConstructor (option_app (glob_tactic ist) t) | TacConstructor (n,bl) -> TacConstructor (n, glob_bindings ist bl) (* Conversion *) | TacReduce (r,cl) -> TacReduce (glob_redexp ist r, List.map (glob_hyp_location ist) cl) | TacChange (occl,c,cl) -> TacChange (option_app (glob_constr_occurrence ist) occl, glob_constr ist c, List.map (glob_hyp_location ist) cl) (* Equivalence relations *) | TacReflexivity -> TacReflexivity | TacSymmetry -> TacSymmetry | TacTransitivity c -> TacTransitivity (glob_constr ist c) (* For extensions *) | TacExtend (_loc,opn,l) -> let _ = lookup_tactic opn in TacExtend (loc,opn,List.map (glob_genarg ist) l) | TacAlias (_,l,body) as t -> (* failwith "TacAlias globalisation: TODO" *) t and glob_tactic ist tac = snd (glob_tactic_seq ist tac) and glob_tactic_seq (lfun,lmeta,sigma,env as ist) = function | TacAtom (_loc,t) -> let lf = ref lfun in let t = glob_atomic lf ist t in !lf, TacAtom (loc, t) | TacFun tacfun -> lfun, TacFun (glob_tactic_fun ist tacfun) | TacLetRecIn (lrc,u) -> let names = extract_names lrc in let ist = (names@lfun,lmeta,sigma,env) in let lrc = List.map (fun (n,b) -> (n,glob_tactic_fun ist b)) lrc in lfun, TacLetRecIn (lrc,glob_tactic ist u) | TacLetIn (l,u) -> let l = List.map (fun (n,c,b) -> (n,option_app (glob_constr_may_eval ist) c,glob_tacarg ist b)) l in let ist' = ((extract_let_names l)@lfun,lmeta,sigma,env) in lfun, TacLetIn (l,glob_tactic ist' u) | TacLetCut l -> let f (n,c,t) = (n,glob_constr_may_eval ist c,glob_tacarg ist t) in lfun, TacLetCut (List.map f l) | TacMatchContext (lr,lmr) -> lfun, TacMatchContext(lr, glob_match_rule ist lmr) | TacMatch (c,lmr) -> lfun, TacMatch (glob_constr_may_eval ist c,glob_match_rule ist lmr) | TacId -> lfun, TacId | TacFail n as x -> lfun, x | TacProgress tac -> lfun, TacProgress (glob_tactic ist tac) | TacAbstract (tac,s) -> lfun, TacAbstract (glob_tactic ist tac,s) | TacThen (t1,t2) -> let lfun', t1 = glob_tactic_seq ist t1 in let lfun'', t2 = glob_tactic_seq (lfun',lmeta,sigma,env) t2 in lfun'', TacThen (t1,t2) | TacThens (t,tl) -> let lfun', t = glob_tactic_seq ist t in (* Que faire en cas de (tac complexe avec Match et Thens; tac2) ?? *) lfun', TacThens (t, List.map (glob_tactic (lfun',lmeta,sigma,env)) tl) | TacDo (n,tac) -> lfun, TacDo (n,glob_tactic ist tac) | TacTry tac -> lfun, TacTry (glob_tactic ist tac) | TacInfo tac -> lfun, TacInfo (glob_tactic ist tac) | TacRepeat tac -> lfun, TacRepeat (glob_tactic ist tac) | TacOrelse (tac1,tac2) -> lfun, TacOrelse (glob_tactic ist tac1,glob_tactic ist tac2) | TacFirst l -> lfun, TacFirst (List.map (glob_tactic ist) l) | TacSolve l -> lfun, TacSolve (List.map (glob_tactic ist) l) | TacArg a -> lfun, TacArg (glob_tacarg ist a) and glob_tactic_fun (lfun,lmeta,sigma,env) (var,body) = let lfun' = List.rev_append (filter_some var) lfun in (var,glob_tactic (lfun',lmeta,sigma,env) body) and glob_tacarg ist = function | TacVoid -> TacVoid | Reference r -> Reference (glob_ltac_reference ist r) | Integer n -> Integer n | ConstrMayEval c -> ConstrMayEval (glob_constr_may_eval ist c) | MetaNumArg (_loc,n) -> MetaNumArg (loc,glob_metanum ist loc n) | MetaIdArg (_loc,_) -> error_syntactic_metavariables_not_allowed loc | TacCall (_loc,f,l) -> TacCall (_loc,glob_ltac_reference ist f,List.map (glob_tacarg ist) l) | Tacexp t -> Tacexp (glob_tactic ist t) | TacDynamic(_,t) as x -> (match tag t with | "tactic"|"value"|"constr" -> x | s -> anomaly_loc (loc, "Tacinterp.val_interp", str "Unknown dynamic: <" ++ str s ++ str ">")) (* Reads the rules of a Match Context or a Match *) and glob_match_rule (lfun,lmeta,sigma,env as ist) = function | (All tc)::tl -> (All (glob_tactic ist tc))::(glob_match_rule ist tl) | (Pat (rl,mp,tc))::tl -> let lfun',metas1,hyps = glob_match_context_hyps Evd.empty env lfun rl in let metas2,pat = glob_pattern Evd.empty env lfun mp in let metas = list_uniquize (metas1@metas2@lmeta) in (Pat (hyps,pat,glob_tactic (lfun',metas,sigma,env) tc)) ::(glob_match_rule ist tl) | [] -> [] and glob_genarg ist x = match genarg_tag x with | BoolArgType -> in_gen rawwit_bool (out_gen rawwit_bool x) | IntArgType -> in_gen rawwit_int (out_gen rawwit_int x) | IntOrVarArgType -> let f = function | ArgVar (_loc,id) -> ArgVar (loc,glob_hyp ist (loc,id)) | ArgArg n as x -> x in in_gen rawwit_int_or_var (f (out_gen rawwit_int_or_var x)) | StringArgType -> in_gen rawwit_string (out_gen rawwit_string x) | PreIdentArgType -> in_gen rawwit_pre_ident (out_gen rawwit_pre_ident x) | IdentArgType -> in_gen rawwit_ident (glob_hyp ist (dummy_loc,out_gen rawwit_ident x)) | RefArgType -> in_gen rawwit_ref (glob_ltac_reference ist (out_gen rawwit_ref x)) | SortArgType -> in_gen rawwit_sort (out_gen rawwit_sort x) | ConstrArgType -> in_gen rawwit_constr (glob_constr ist (out_gen rawwit_constr x)) | ConstrMayEvalArgType -> in_gen rawwit_constr_may_eval (glob_constr_may_eval ist (out_gen rawwit_constr_may_eval x)) | QuantHypArgType -> in_gen rawwit_quant_hyp (glob_quantified_hypothesis ist (out_gen rawwit_quant_hyp x)) | RedExprArgType -> in_gen rawwit_red_expr (glob_redexp ist (out_gen rawwit_red_expr x)) | TacticArgType -> in_gen rawwit_tactic (glob_tactic ist (out_gen rawwit_tactic x)) | CastedOpenConstrArgType -> in_gen rawwit_casted_open_constr (glob_constr ist (out_gen rawwit_casted_open_constr x)) | ConstrWithBindingsArgType -> in_gen rawwit_constr_with_bindings (glob_constr_with_bindings ist (out_gen rawwit_constr_with_bindings x)) | List0ArgType _ -> app_list0 (glob_genarg ist) x | List1ArgType _ -> app_list1 (glob_genarg ist) x | OptArgType _ -> app_opt (glob_genarg ist) x | PairArgType _ -> app_pair (glob_genarg ist) (glob_genarg ist) x | ExtraArgType s -> x (************* END GLOBALIZE ************) (* Associates variables with values and gives the remaining variables and values *) let head_with_value (lvar,lval) = let rec head_with_value_rec lacc = function | ([],[]) -> (lacc,[],[]) | (vr::tvr,ve::tve) -> (match vr with | None -> head_with_value_rec lacc (tvr,tve) | Some v -> head_with_value_rec ((v,ve)::lacc) (tvr,tve)) | (vr,[]) -> (lacc,vr,[]) | ([],ve) -> (lacc,[],ve) in head_with_value_rec [] (lvar,lval) (* Gives a context couple if there is a context identifier *) let give_context ctxt = function | None -> [] | Some id -> [id,VConstr_context ctxt] (* Reads a pattern *) let read_pattern evc env lfun = function | Subterm (ido,pc) -> Subterm (ido,snd (interp_constrpattern_gen evc env lfun pc)) | Term pc -> Term (snd (interp_constrpattern_gen evc env lfun pc)) (* Reads the hypotheses of a Match Context rule *) let rec read_match_context_hyps evc env lfun lidh = function | (NoHypId mp)::tl -> (NoHypId (read_pattern evc env lfun mp)):: (read_match_context_hyps evc env lfun lidh tl) | (Hyp ((loc,id) as locid,mp))::tl -> if List.mem id lidh then user_err_loc (loc,"Tacinterp.read_match_context_hyps", str ("Hypothesis pattern-matching variable "^(string_of_id id)^ " used twice in the same pattern")) else (Hyp (locid,read_pattern evc env lfun mp)):: (read_match_context_hyps evc env lfun (id::lidh) tl) | [] -> [] (* Reads the rules of a Match Context or a Match *) let rec read_match_rule evc env lfun = function | (All tc)::tl -> (All tc)::(read_match_rule evc env lfun tl) | (Pat (rl,mp,tc))::tl -> (Pat (read_match_context_hyps evc env lfun [] rl, read_pattern evc env lfun mp,tc)) ::(read_match_rule evc env lfun tl) | [] -> [] (* For Match Context and Match *) exception No_match exception Not_coherent_metas let is_match_catchable = function | No_match | FailError _ -> true | e -> Logic.catchable_exception e (* Verifies if the matched list is coherent with respect to lcm *) let rec verify_metas_coherence gl lcm = function | (num,csr)::tl -> if (List.for_all (fun (a,b) -> a<>num or pf_conv_x gl b csr) lcm) then (num,csr)::(verify_metas_coherence gl lcm tl) else raise Not_coherent_metas | [] -> [] (* Tries to match a pattern and a constr *) let apply_matching pat csr = try (Pattern.matches pat csr) with PatternMatchingFailure -> raise No_match (* Tries to match one hypothesis pattern with a list of hypotheses *) let apply_one_mhyp_context gl lmatch mhyp lhyps noccopt = let get_pattern = function | Hyp (_,pat) -> pat | NoHypId pat -> pat and get_id_couple id = function | Hyp((_,idpat),_) -> [idpat,VConstr (mkVar id)] | NoHypId _ -> [] in let rec apply_one_mhyp_context_rec mhyp lhyps_acc nocc = function | (id,hyp)::tl -> (match (get_pattern mhyp) with | Term t -> (try let lmeta = verify_metas_coherence gl lmatch (Pattern.matches t hyp) in (get_id_couple id mhyp,[],lmeta,tl,(id,hyp),None) with | PatternMatchingFailure | Not_coherent_metas -> apply_one_mhyp_context_rec mhyp (lhyps_acc@[id,hyp]) 0 tl) | Subterm (ic,t) -> (try let (lm,ctxt) = sub_match nocc t hyp in let lmeta = verify_metas_coherence gl lmatch lm in (get_id_couple id mhyp,give_context ctxt ic,lmeta,tl,(id,hyp),Some nocc) with | NextOccurrence _ -> apply_one_mhyp_context_rec mhyp (lhyps_acc@[id,hyp]) 0 tl | Not_coherent_metas -> apply_one_mhyp_context_rec mhyp lhyps_acc (nocc + 1) ((id,hyp)::tl))) | [] -> raise No_match in let nocc = match noccopt with | None -> 0 | Some n -> n in apply_one_mhyp_context_rec mhyp [] nocc lhyps let constr_to_id loc c = if isVar c then destVar c else invalid_arg_loc (loc, "Not an identifier") let constr_to_qid loc c = try qualid_of_sp (sp_of_global None (reference_of_constr c)) with _ -> invalid_arg_loc (loc, "Not a global reference") (* Check for LetTac *) let check_clause_pattern ist gl (l,occl) = let sign = pf_hyps gl in let rec check acc = function | (hyp,l) :: rest -> let _,hyp = skip_metaid hyp in if List.mem hyp acc then error ("Hypothesis "^(string_of_id hyp)^" occurs twice"); if not (mem_named_context hyp sign) then error ("No such hypothesis: " ^ (string_of_id hyp)); (hyp,l)::(check (hyp::acc) rest) | [] -> [] in (l,check [] occl) (* Debug reference *) let debug = ref DebugOff (* Sets the debugger mode *) let set_debug pos = debug := pos (* Gives the state of debug *) let get_debug () = !debug (* Interprets an identifier which must be fresh *) let eval_ident ist id = try match List.assoc id ist.lfun with | VIdentifier id -> id | _ -> user_err_loc(loc,"eval_ident",str "should be bound to an identifier") with Not_found -> id let eval_integer lfun (loc,id) = try match List.assoc id lfun with | VInteger n -> ArgArg n | _ -> user_err_loc(loc,"eval_integer",str "should be bound to an integer") with Not_found -> user_err_loc (loc,"eval_integer",str "Unbound variable") let constr_of_value env = function | VConstr csr -> csr | VIdentifier id -> constr_of_id env id | _ -> raise Not_found let is_variable env id = List.mem id (ids_of_named_context (Environ.named_context env)) let variable_of_value env = function | VConstr c as v when isVar c -> destVar c | VIdentifier id' when is_variable env id' -> id' | _ -> raise Not_found (* Extract a variable from a value, if any *) let id_of_Identifier = variable_of_value (* Extract a constr from a value, if any *) let constr_of_VConstr = constr_of_value (* Interprets a variable *) let eval_variable ist gl (loc,id) = (* Look first in lfun for a value coercible to a variable *) try let v = List.assoc id ist.lfun in try variable_of_value (pf_env gl) v with Not_found -> errorlabstrm "coerce_to_variable" (str "Cannot coerce" ++ spc () ++ pr_value (pf_env gl) v ++ spc () ++ str "to a variable") with Not_found -> (* Then look if bound in the proof context at calling time *) if is_variable (pf_env gl) id then id else user_err_loc (loc,"eval_variable",pr_id id ++ str " not found") let hyp_interp = eval_variable let eval_name ist = function | Anonymous -> Anonymous | Name id -> Name (eval_ident ist id) let hyp_or_metanum_interp ist gl = function | AN id -> eval_variable ist gl (dummy_loc,id) | MetaNum (loc,n) -> constr_to_id loc (List.assoc n ist.lmatch) let interp_pure_qualid is_applied env (loc,qid) = try VConstr (constr_of_reference (find_reference env qid)) with Not_found -> let (dir,id) = repr_qualid qid in if not is_applied & dir = empty_dirpath then VIdentifier id else user_err_loc (loc,"interp_pure_qualid",str "Unknown reference") (* Interprets a qualified name *) let eval_ref ist env = function | Qualid locqid -> interp_pure_qualid false env locqid | Ident (loc,id) -> try unrec (List.assoc id ist.lfun) with Not_found -> interp_pure_qualid false env (loc,make_short_qualid id) let reference_interp ist env qid = let v = eval_ref ist env qid in coerce_to_reference env v let pf_reference_interp ist gl = reference_interp ist (pf_env gl) (* Interprets a qualified name. This can be a metavariable to be injected *) let qualid_or_metanum_interp ist = function | AN qid -> qid | MetaNum (loc,n) -> constr_to_qid loc (List.assoc n ist.lmatch) let eval_ref_or_metanum ist gl = function | AN qid -> eval_ref ist gl qid | MetaNum (loc,n) -> VConstr (List.assoc n ist.lmatch) let interp_evaluable_or_metanum ist env c = let c = eval_ref_or_metanum ist env c in coerce_to_evaluable_ref env c let interp_inductive_or_metanum ist gl c = let c = eval_ref_or_metanum ist (pf_env gl) c in coerce_to_inductive c (* Interprets an hypothesis name *) let interp_hyp_location ist gl = function | InHyp id -> InHyp (hyp_interp ist gl (skip_metaid id)) | InHypType id -> InHypType (hyp_interp ist gl (skip_metaid id)) let eval_opt_ident ist = option_app (eval_ident ist) (* Interpretation of constructions *) (* Extracted the constr list from lfun *) let rec constr_list_aux env = function | (id,v)::tl -> let (l1,l2) = constr_list_aux env tl in (try ((id,constr_of_value env v)::l1,l2) with Not_found -> (l1,(id,match v with VIdentifier id0 -> Some id0 | _ -> None)::l2)) | [] -> ([],[]) let constr_list ist env = constr_list_aux env ist.lfun let interp_constr ocl ist sigma env c = interp_constr_gen sigma env (constr_list ist env) ist.lmatch c ocl let interp_openconstr ist gl c ocl = interp_openconstr_gen (project gl) (pf_env gl) (constr_list ist (pf_env gl)) ist.lmatch c ocl let pf_interp_constr ist gl = interp_constr None ist (project gl) (pf_env gl) (* Interprets a constr expression *) let constr_interp ist sigma env c = let csr = interp_constr None ist sigma env c in begin db_constr ist.debug env csr; csr end let pf_constr_interp ist gl c = constr_interp ist (project gl) (pf_env gl) c (* Interprets a constr expression casted by the current goal *) let cast_constr_interp ist gl c = let csr = interp_constr (Some (pf_concl gl)) ist (project gl) (pf_env gl) c in db_constr ist.debug (pf_env gl) csr; csr (* Interprets an open constr expression casted by the current goal *) let cast_openconstr_interp ist gl c = interp_openconstr ist gl c (Some (pf_concl gl)) (* Interprets a reduction expression *) let unfold_interp ist env (l,qid) = (l,interp_evaluable_or_metanum ist env qid) let flag_interp ist env red = { red with rConst = List.map (interp_evaluable_or_metanum ist env) red.rConst } let pattern_interp ist sigma env (l,c) = (l,constr_interp ist sigma env c) let pf_pattern_interp ist gl = pattern_interp ist (project gl) (pf_env gl) let redexp_interp ist sigma env = function | Unfold l -> Unfold (List.map (unfold_interp ist env) l) | Fold l -> Fold (List.map (constr_interp ist sigma env) l) | Cbv f -> Cbv (flag_interp ist env f) | Lazy f -> Lazy (flag_interp ist env f) | Pattern l -> Pattern (List.map (pattern_interp ist sigma env) l) | Simpl o -> Simpl (option_app (pattern_interp ist sigma env) o) | (Red _ | Hnf as r) -> r | ExtraRedExpr (s,c) -> ExtraRedExpr (s,constr_interp ist sigma env c) let pf_redexp_interp ist gl = redexp_interp ist (project gl) (pf_env gl) let interp_may_eval f ist gl = function | ConstrEval (r,c) -> let redexp = pf_redexp_interp ist gl r in pf_reduction_of_redexp gl redexp (f ist gl c) | ConstrContext ((loc,s),c) -> (try let ic = f ist gl c and ctxt = constr_of_VConstr_context (List.assoc s ist.lfun) in subst_meta [-1,ic] ctxt with | Not_found -> user_err_loc (loc, "constr_interp", str "Unbound context identifier" ++ pr_id s)) | ConstrTypeOf c -> pf_type_of gl (f ist gl c) | ConstrTerm c -> f ist gl c (* Interprets a constr expression possibly to first evaluate *) let constr_interp_may_eval ist gl c = let csr = interp_may_eval pf_interp_constr ist gl c in begin db_constr ist.debug (pf_env gl) csr; csr end let rec interp_intro_pattern ist = function | IntroOrAndPattern l -> IntroOrAndPattern (List.map (List.map (interp_intro_pattern ist)) l) | IntroWildcard -> IntroWildcard | IntroIdentifier id -> IntroIdentifier (eval_ident ist id) (* Quantified named or numbered hypothesis or hypothesis in context *) (* (as in Inversion) *) let interp_quantified_hypothesis ist gl = function | AnonHyp n -> AnonHyp n | NamedHyp id -> try match List.assoc id ist.lfun with | VInteger n -> AnonHyp n | VIdentifier id -> NamedHyp id | v -> NamedHyp (variable_of_value (pf_env gl) v) with Not_found -> NamedHyp id let interp_induction_arg ist gl = function | ElimOnConstr c -> ElimOnConstr (pf_constr_interp ist gl c) | ElimOnAnonHyp n as x -> x | ElimOnIdent (loc,id) -> if Tactics.is_quantified_hypothesis id gl then ElimOnIdent (loc,id) else ElimOnConstr (pf_constr_interp ist gl (CRef (Ident (loc,id)))) let binding_interp ist gl (loc,b,c) = (loc,interp_quantified_hypothesis ist gl b,pf_constr_interp ist gl c) let bindings_interp ist gl = function | NoBindings -> NoBindings | ImplicitBindings l -> ImplicitBindings (List.map (pf_constr_interp ist gl) l) | ExplicitBindings l -> ExplicitBindings (List.map (binding_interp ist gl) l) let interp_constr_with_bindings ist gl (c,bl) = (pf_constr_interp ist gl c, bindings_interp ist gl bl) (* Interprets a l-tac expression into a value *) let rec val_interp ist gl tac = let value_interp ist = match tac with (* Immediate evaluation *) | TacFun (it,body) -> VFun (ist.lfun,it,body) | TacLetRecIn (lrc,u) -> letrec_interp ist gl lrc u | TacLetIn (l,u) -> let addlfun = letin_interp ist gl l in val_interp { ist with lfun=addlfun@ist.lfun } gl u | TacMatchContext (lr,lmr) -> match_context_interp ist gl lr lmr | TacMatch (c,lmr) -> match_interp ist gl c lmr | TacArg a -> tacarg_interp ist gl a (* Delayed evaluation *) | t -> VTactic (eval_tactic ist t) in match ist.debug with | DebugOn n -> debug_prompt n (Some gl) tac (fun v -> value_interp {ist with debug=v}) (fun () -> VTactic tclIDTAC) | _ -> value_interp ist and eval_tactic ist = function | TacAtom (loc,t) -> fun gl -> (try (interp_atomic ist gl t) gl with e -> Stdpp.raise_with_loc loc e) | TacFun (it,body) -> assert false | TacLetRecIn (lrc,u) -> assert false | TacLetIn (l,u) -> assert false | TacLetCut l -> letcut_interp ist l | TacMatchContext _ -> assert false | TacMatch (c,lmr) -> assert false | TacId -> tclIDTAC | TacFail n -> tclFAIL n | TacProgress tac -> tclPROGRESS (tactic_interp ist tac) | TacAbstract (tac,s) -> Tactics.tclABSTRACT s (tactic_interp ist tac) | TacThen (t1,t2) -> tclTHEN (tactic_interp ist t1) (tactic_interp ist t2) | TacThens (t,tl) -> tclTHENS (tactic_interp ist t) (List.map (tactic_interp ist) tl) | TacDo (n,tac) -> tclDO n (tactic_interp ist tac) | TacTry tac -> tclTRY (tactic_interp ist tac) | TacInfo tac -> tclINFO (tactic_interp ist tac) | TacRepeat tac -> tclREPEAT (tactic_interp ist tac) | TacOrelse (tac1,tac2) -> tclORELSE (tactic_interp ist tac1) (tactic_interp ist tac2) | TacFirst l -> tclFIRST (List.map (tactic_interp ist) l) | TacSolve l -> tclSOLVE (List.map (tactic_interp ist) l) | TacArg a -> assert false and interp_ltac_qualid is_applied ist gl (loc,qid as lqid) = try val_interp ist gl (lookup qid) with Not_found -> interp_pure_qualid is_applied (pf_env gl) lqid and interp_ltac_reference isapplied ist gl = function | Ident (loc,id) -> (try unrec (List.assoc id ist.lfun) with | Not_found -> interp_ltac_qualid isapplied ist gl (loc,make_short_qualid id)) | Qualid qid -> interp_ltac_qualid isapplied ist gl qid and tacarg_interp ist gl = function | TacVoid -> VVoid | Reference r -> interp_ltac_reference false ist gl r | Integer n -> VInteger n | ConstrMayEval c -> VConstr (constr_interp_may_eval ist gl c) | MetaNumArg (_,n) -> VConstr (List.assoc n ist.lmatch) | MetaIdArg (loc,id) -> (try (* $id can occur in Grammar tactic... *) (unrec (List.assoc (id_of_string id) ist.lfun)) with | Not_found -> error_syntactic_metavariables_not_allowed loc) | TacCall (loc,f,l) -> let fv = interp_ltac_reference true ist gl f and largs = List.map (tacarg_interp ist gl) l in List.iter check_is_value largs; app_interp ist gl fv largs loc | Tacexp t -> val_interp ist gl t | TacDynamic(_,t) -> let tg = (tag t) in if tg = "tactic" then let f = (tactic_out t) in val_interp ist gl (f ist) else if tg = "value" then value_out t else if tg = "constr" then VConstr (Pretyping.constr_out t) else anomaly_loc (loc, "Tacinterp.val_interp", (str "Unknown dynamic: <" ++ str (Dyn.tag t) ++ str ">")) (* Interprets an application node *) and app_interp ist gl fv largs loc = match fv with | VFun(olfun,var,body) -> let (newlfun,lvar,lval)=head_with_value (var,largs) in if lvar=[] then let v = val_interp { ist with lfun=newlfun@olfun } gl body in if lval=[] then v else app_interp ist gl v lval loc else VFun(newlfun@olfun,lvar,body) | _ -> user_err_loc (loc, "Tacinterp.app_interp", (str"Illegal tactic application")) (* Gives the tactic corresponding to the tactic value *) and tactic_of_value vle g = match vle with | VRTactic res -> res | VTactic tac -> tac g | VFun _ -> error "A fully applied tactic is expected" | _ -> raise NotTactic (* Evaluation with FailError catching *) and eval_with_fail interp tac goal = try (match interp goal tac with | VTactic tac -> VRTactic (tac goal) | a -> a) with | FailError lvl -> if lvl = 0 then raise No_match else raise (FailError (lvl - 1)) (* Interprets recursive expressions *) and letrec_interp ist gl lrc u = let lref = Array.to_list (Array.make (List.length lrc) (ref VVoid)) in let lenv = List.fold_right2 (fun ((loc,name),_) vref l -> (name,VRec vref)::l) lrc lref [] in let lve = List.map (fun ((loc,name),(var,body)) -> (name,VFun(lenv@ist.lfun,var,body))) lrc in begin List.iter2 (fun vref (_,ve) -> vref:=ve) lref lve; val_interp { ist with lfun=lve@ist.lfun } gl u end (* Interprets the clauses of a LetIn *) and letin_interp ist gl = function | [] -> [] | ((loc,id),None,t)::tl -> let v = tacarg_interp ist gl t in check_is_value v; (id,v):: (letin_interp ist gl tl) | ((loc,id),Some com,tce)::tl -> let typ = interp_may_eval pf_interp_constr ist gl com and v = tacarg_interp ist gl tce in let csr = try constr_of_value (pf_env gl) v with Not_found -> try let t = tactic_of_value v in let ndc = Environ.named_context (pf_env gl) in start_proof id IsLocal ndc typ (fun _ _ -> ()); by t; let (_,({const_entry_body = pft},_,_)) = cook_proof () in delete_proof (dummy_loc,id); pft with | NotTactic -> delete_proof (dummy_loc,id); errorlabstrm "Tacinterp.letin_interp" (str "Term or fully applied tactic expected in Let") in (id,VConstr (mkCast (csr,typ)))::(letin_interp ist gl tl) (* Interprets the clauses of a LetCut *) and letcut_interp ist = function | [] -> tclIDTAC | (id,c,tce)::tl -> fun gl -> let typ = constr_interp_may_eval ist gl c and v = tacarg_interp ist gl tce in let csr = try constr_of_value (pf_env gl) v with Not_found -> try let t = tactic_of_value v in start_proof id IsLocal (pf_hyps gl) typ (fun _ _ -> ()); by t; let (_,({const_entry_body = pft},_,_)) = cook_proof () in delete_proof (dummy_loc,id); pft with | NotTactic -> delete_proof (dummy_loc,id); errorlabstrm "Tacinterp.letin_interp" (str "Term or fully applied tactic expected in Let") in let cutt = h_cut typ and exat = h_exact csr in tclTHENSV cutt [|tclTHEN (introduction id) (letcut_interp ist tl);exat|] gl (* let lic = mkLetIn (Name id,csr,typ,ccl) in let ntac = refine (mkCast (mkMeta (Logic.new_meta ()),lic)) in tclTHEN ntac (tclTHEN (introduction id) (letcut_interp ist tl))*) (* Interprets the Match Context expressions *) and match_context_interp ist goal lr lmr = let rec apply_goal_sub ist nocc (id,c) csr mt mhyps hyps = try let (lgoal,ctxt) = sub_match nocc c csr in let lctxt = give_context ctxt id in if mhyps = [] then eval_with_fail (val_interp {ist with lfun=lctxt@ist.lfun; lmatch=lgoal@ist.lmatch}) mt goal else apply_hyps_context ist goal mt lgoal mhyps hyps with | (FailError _) as e -> raise e | NextOccurrence _ -> raise No_match | No_match | _ -> apply_goal_sub ist (nocc + 1) (id,c) csr mt mhyps hyps in let rec apply_match_context ist = function | (All t)::tl -> (try eval_with_fail (val_interp ist) t goal with No_match | FailError _ -> apply_match_context ist tl | e when Logic.catchable_exception e -> apply_match_context ist tl) | (Pat (mhyps,mgoal,mt))::tl -> let hyps = make_hyps (pf_hyps goal) in let hyps = if lr then List.rev hyps else hyps in let mhyps = List.rev mhyps (* Sens naturel *) in let concl = pf_concl goal in (match mgoal with | Term mg -> (try (let lgoal = apply_matching mg concl in begin db_matched_concl ist.debug (pf_env goal) concl; if mhyps = [] then eval_with_fail (val_interp {ist with lmatch=lgoal@ist.lmatch}) mt goal else apply_hyps_context ist goal mt lgoal mhyps hyps end) with e when is_match_catchable e -> apply_match_context ist tl) | Subterm (id,mg) -> (try apply_goal_sub ist 0 (id,mg) concl mt mhyps hyps with e when is_match_catchable e -> apply_match_context ist tl)) | _ -> errorlabstrm "Tacinterp.apply_match_context" (str "No matching clauses for Match Context") in let env = pf_env goal in apply_match_context ist (read_match_rule (project goal) env (constr_list ist env) lmr) (* Tries to match the hypotheses in a Match Context *) and apply_hyps_context ist goal mt lgmatch mhyps hyps = let rec apply_hyps_context_rec mt lfun lmatch mhyps lhyps_mhyp lhyps_rest noccopt = match mhyps with | hd::tl -> let (lid,lc,lm,newlhyps,hyp_match,noccopt) = apply_one_mhyp_context goal lmatch hd lhyps_mhyp noccopt in begin db_matched_hyp ist.debug (pf_env goal) hyp_match; (try if tl = [] then eval_with_fail (val_interp {ist with lfun=lfun@lid@lc@ist.lfun; lmatch=lmatch@lm@ist.lmatch}) mt goal else let nextlhyps = List.fold_left (fun l e -> if e = hyp_match then l else l@[e]) [] lhyps_rest in apply_hyps_context_rec mt (lfun@lid@lc) (lmatch@lm) tl nextlhyps nextlhyps None with | (FailError _) as e -> raise e | e when is_match_catchable e -> (match noccopt with | None -> apply_hyps_context_rec mt lfun lmatch mhyps newlhyps lhyps_rest None | Some nocc -> apply_hyps_context_rec mt ist.lfun ist.lmatch mhyps (hyp_match::newlhyps) lhyps_rest (Some (nocc + 1)))) end | [] -> anomalylabstrm "apply_hyps_context_rec" (str "Empty list should not occur") in apply_hyps_context_rec mt [] lgmatch mhyps hyps hyps None (* Interprets extended tactic generic arguments *) and genarg_interp ist goal x = match genarg_tag x with | BoolArgType -> in_gen wit_bool (out_gen rawwit_bool x) | IntArgType -> in_gen wit_int (out_gen rawwit_int x) | IntOrVarArgType -> let f = function | ArgVar locid -> eval_integer ist.lfun locid | ArgArg n as x -> x in in_gen wit_int_or_var (f (out_gen rawwit_int_or_var x)) | StringArgType -> in_gen wit_string (out_gen rawwit_string x) | PreIdentArgType -> in_gen wit_pre_ident (out_gen rawwit_pre_ident x) | IdentArgType -> in_gen wit_ident (out_gen rawwit_ident x) | RefArgType -> in_gen wit_ref (pf_reference_interp ist goal (out_gen rawwit_ref x)) | SortArgType -> in_gen wit_sort (destSort (pf_constr_interp ist goal (CSort (dummy_loc,out_gen rawwit_sort x)))) | ConstrArgType -> in_gen wit_constr (pf_constr_interp ist goal (out_gen rawwit_constr x)) | ConstrMayEvalArgType -> in_gen wit_constr_may_eval (constr_interp_may_eval ist goal (out_gen rawwit_constr_may_eval x)) | QuantHypArgType -> in_gen wit_quant_hyp (interp_quantified_hypothesis ist goal (out_gen rawwit_quant_hyp x)) | RedExprArgType -> in_gen wit_red_expr (pf_redexp_interp ist goal (out_gen rawwit_red_expr x)) | TacticArgType -> in_gen wit_tactic (out_gen rawwit_tactic x) | CastedOpenConstrArgType -> in_gen wit_casted_open_constr (cast_openconstr_interp ist goal (out_gen rawwit_casted_open_constr x)) | ConstrWithBindingsArgType -> in_gen wit_constr_with_bindings (interp_constr_with_bindings ist goal (out_gen rawwit_constr_with_bindings x)) | List0ArgType _ -> app_list0 (genarg_interp ist goal) x | List1ArgType _ -> app_list1 (genarg_interp ist goal) x | OptArgType _ -> app_opt (genarg_interp ist goal) x | PairArgType _ -> app_pair (genarg_interp ist goal) (genarg_interp ist goal) x | ExtraArgType s -> lookup_genarg_interp s ist goal x (* Interprets the Match expressions *) and match_interp ist g constr lmr = let rec apply_sub_match ist nocc (id,c) csr mt = try let (lm,ctxt) = sub_match nocc c csr in let lctxt = give_context ctxt id in eval_with_fail (val_interp { ist with lfun=lctxt@ist.lfun; lmatch=lm@ist.lmatch}) mt g with | NextOccurrence n -> raise No_match | (FailError _) as e -> raise e | e when is_match_catchable e -> apply_sub_match ist (nocc + 1) (id,c) csr mt in let rec apply_match ist csr = function | (All t)::_ -> (try eval_with_fail (val_interp ist) t g with | (FailError _) as e -> raise e | e when is_match_catchable e -> apply_match ist csr []) | (Pat ([],Term c,mt))::tl -> (try eval_with_fail (val_interp { ist with lmatch=(apply_matching c csr)@ist.lmatch }) mt g with | (FailError _) as e -> raise e | e when is_match_catchable e -> apply_match ist csr tl) | (Pat ([],Subterm (id,c),mt))::tl -> (try apply_sub_match ist 0 (id,c) csr mt with | No_match -> apply_match ist csr tl) | _ -> errorlabstrm "Tacinterp.apply_match" (str "No matching clauses for Match") in let csr = constr_interp_may_eval ist g constr in let env = pf_env g in let ilr = read_match_rule (project g) env (constr_list ist env) lmr in apply_match ist csr ilr (* Interprets tactic expressions : returns a "tactic" *) and tactic_interp ist tac g = try tactic_of_value (val_interp ist g tac) g with | NotTactic -> errorlabstrm "Tacinterp.tac_interp" (str "Must be a command or must give a tactic value") (* Interprets a primitive tactic *) and interp_atomic ist gl = function (* Basic tactics *) | TacIntroPattern l -> Elim.h_intro_patterns (List.map (interp_intro_pattern ist) l) | TacIntrosUntil hyp -> h_intros_until (interp_quantified_hypothesis ist gl hyp) | TacIntroMove (ido,ido') -> h_intro_move (option_app (eval_ident ist) ido) (option_app (fun x -> eval_variable ist gl x) ido') | TacAssumption -> h_assumption | TacExact c -> h_exact (cast_constr_interp ist gl c) | TacApply cb -> h_apply (interp_constr_with_bindings ist gl cb) | TacElim (cb,cbo) -> h_elim (interp_constr_with_bindings ist gl cb) (option_app (interp_constr_with_bindings ist gl) cbo) | TacElimType c -> h_elim_type (pf_constr_interp ist gl c) | TacCase cb -> h_case (interp_constr_with_bindings ist gl cb) | TacCaseType c -> h_case_type (pf_constr_interp ist gl c) | TacFix (idopt,n) -> h_fix (eval_opt_ident ist idopt) n | TacMutualFix (id,n,l) -> let f (id,n,c) = (eval_ident ist id,n,pf_constr_interp ist gl c) in h_mutual_fix (eval_ident ist id) n (List.map f l) | TacCofix idopt -> h_cofix (eval_opt_ident ist idopt) | TacMutualCofix (id,l) -> let f (id,c) = (eval_ident ist id,pf_constr_interp ist gl c) in h_mutual_cofix (eval_ident ist id) (List.map f l) | TacCut c -> h_cut (pf_constr_interp ist gl c) | TacTrueCut (ido,c) -> h_true_cut (eval_opt_ident ist ido) (pf_constr_interp ist gl c) | TacForward (b,na,c) -> h_forward b (eval_name ist na) (pf_constr_interp ist gl c) | TacGeneralize cl -> h_generalize (List.map (pf_constr_interp ist gl) cl) | TacGeneralizeDep c -> h_generalize_dep (pf_constr_interp ist gl c) | TacLetTac (id,c,clp) -> let clp = check_clause_pattern ist gl clp in h_let_tac (eval_ident ist id) (pf_constr_interp ist gl c) clp | TacInstantiate (n,c) -> h_instantiate n (pf_constr_interp ist gl c) (* Automation tactics *) | TacTrivial l -> Auto.h_trivial l | TacAuto (n, l) -> Auto.h_auto n l | TacAutoTDB n -> Dhyp.h_auto_tdb n | TacDestructHyp (b,id) -> Dhyp.h_destructHyp b (hyp_interp ist gl id) | TacDestructConcl -> Dhyp.h_destructConcl | TacSuperAuto (n,l,b1,b2) -> Auto.h_superauto n l b1 b2 | TacDAuto (n,p) -> Auto.h_dauto (n,p) (* Derived basic tactics *) | TacOldInduction h -> h_old_induction (interp_quantified_hypothesis ist gl h) | TacNewInduction (c,cbo,ids) -> h_new_induction (interp_induction_arg ist gl c) (option_app (interp_constr_with_bindings ist gl) cbo) (List.map (List.map (eval_ident ist)) ids) | TacOldDestruct h -> h_old_destruct (interp_quantified_hypothesis ist gl h) | TacNewDestruct (c,cbo,ids) -> h_new_destruct (interp_induction_arg ist gl c) (option_app (interp_constr_with_bindings ist gl) cbo) (List.map (List.map (eval_ident ist)) ids) | TacDoubleInduction (h1,h2) -> let h1 = interp_quantified_hypothesis ist gl h1 in let h2 = interp_quantified_hypothesis ist gl h2 in Elim.h_double_induction h1 h2 | TacDecomposeAnd c -> Elim.h_decompose_and (pf_constr_interp ist gl c) | TacDecomposeOr c -> Elim.h_decompose_or (pf_constr_interp ist gl c) | TacDecompose (l,c) -> let l = List.map (interp_inductive_or_metanum ist gl) l in Elim.h_decompose l (pf_constr_interp ist gl c) | TacSpecialize (n,l) -> h_specialize n (interp_constr_with_bindings ist gl l) | TacLApply c -> h_lapply (pf_constr_interp ist gl c) (* Context management *) | TacClear l -> h_clear (List.map (hyp_or_metanum_interp ist gl) l) | TacClearBody l -> h_clear_body (List.map (hyp_or_metanum_interp ist gl) l) | TacMove (dep,id1,id2) -> h_move dep (hyp_interp ist gl id1) (hyp_interp ist gl id2) | TacRename (id1,id2) -> h_rename (hyp_interp ist gl id1) (eval_ident ist (snd id2)) (* Constructors *) | TacLeft bl -> h_left (bindings_interp ist gl bl) | TacRight bl -> h_right (bindings_interp ist gl bl) | TacSplit bl -> h_split (bindings_interp ist gl bl) | TacAnyConstructor t -> abstract_tactic (TacAnyConstructor t) (Tactics.any_constructor (option_app (tactic_interp ist) t)) | TacConstructor (n,bl) -> h_constructor (skip_metaid n) (bindings_interp ist gl bl) (* Conversion *) | TacReduce (r,cl) -> h_reduce (pf_redexp_interp ist gl r) (List.map (interp_hyp_location ist gl) cl) | TacChange (occl,c,cl) -> h_change (option_app (pf_pattern_interp ist gl) occl) (pf_constr_interp ist gl c) (List.map (interp_hyp_location ist gl) cl) (* Equivalence relations *) | TacReflexivity -> h_reflexivity | TacSymmetry -> h_symmetry | TacTransitivity c -> h_transitivity (pf_constr_interp ist gl c) (* For extensions *) | TacExtend (loc,opn,l) -> fun gl -> vernac_tactic (opn,List.map (genarg_interp ist gl) l) gl | TacAlias (_,l,body) -> fun gl -> let f x = match genarg_tag x with | IdentArgType -> let id = out_gen rawwit_ident x in (try VConstr (mkVar (eval_variable ist gl (dummy_loc,id))) with Not_found -> VIdentifier id) | RefArgType -> VConstr (constr_of_reference (pf_reference_interp ist gl (out_gen rawwit_ref x))) | ConstrArgType -> VConstr (pf_constr_interp ist gl (out_gen rawwit_constr x)) | ConstrMayEvalArgType -> VConstr (constr_interp_may_eval ist gl (out_gen rawwit_constr_may_eval x)) | _ -> failwith "This generic type is not supported in alias" in let lfun = (List.map (fun (x,c) -> (x,f c)) l)@ist.lfun in tactic_of_value (val_interp { ist with lfun=lfun } gl body) gl (* Interprets tactic arguments *) let interp_tacarg sign ast = (*unvarg*) (val_interp sign ast) (* Initial call for interpretation *) let tac_interp lfun lmatch debug t = tactic_interp { lfun=lfun; lmatch=lmatch; debug=debug } t let interp = tac_interp [] [] (get_debug()) (* Hides interpretation for pretty-print *) let hide_interp t ot gl = let te = glob_tactic ([],[],project gl,pf_env gl) t in match ot with | None -> abstract_tactic_expr (TacArg (Tacexp t)) (interp t) gl | Some t' -> abstract_tactic_expr (TacArg (Tacexp t)) (tclTHEN (interp t) t') gl (* For bad tactic calls *) let bad_tactic_args s = anomalylabstrm s (str "Tactic " ++ str s ++ str " called with bad arguments") (* Declaration of the TAC-DEFINITION object *) let add (sp,td) = mactab := Gmap.add sp td !mactab let register_tacdef (sp,td) = sp,td let cache_md (_,defs) = (* Needs a rollback if something goes wrong *) List.iter (fun (sp,_) -> Nametab.push_tactic (Until 1) sp) defs; List.iter add (List.map register_tacdef defs) let (inMD,outMD) = declare_object {(default_object "TAC-DEFINITION") with cache_function = cache_md; open_function = (fun i o -> if i=1 then cache_md o); export_function = (fun x -> Some x)} (* Adds a definition for tactics in the table *) let make_absolute_name (loc,id) = let sp = Lib.make_path id in if Gmap.mem sp !mactab then errorlabstrm "Tacinterp.add_tacdef" (str "There is already a Meta Definition or a Tactic Definition named " ++ pr_sp sp); sp let add_tacdef isrec tacl = let lfun = List.map (fun ((loc,id),_) -> id) tacl in let ist = ((if isrec then lfun else []), [], Evd.empty, Global.env()) in let tacl = List.map (fun (id,tac) -> (make_absolute_name id,tac)) tacl in let tacl = List.map (fun (id,def) -> (id,glob_tactic ist def)) tacl in let _ = Lib.add_leaf (List.hd lfun) (inMD tacl) in List.iter (fun id -> Options.if_verbose msgnl (pr_id id ++ str " is defined")) lfun let interp_redexp env evc r = let ist = { lfun=[]; lmatch=[]; debug=get_debug () } in redexp_interp ist evc env r let _ = Auto.set_extern_interp (fun l -> tac_interp [] l (get_debug())) let _ = Dhyp.set_extern_interp interp