(************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) (* 'a option type testing_function = constr -> bool let mkmeta n = Nameops.make_ident "X" (Some n) let meta1 = mkmeta 1 let meta2 = mkmeta 2 let meta3 = mkmeta 3 let meta4 = mkmeta 4 let op2bool = function Some _ -> true | None -> false let match_with_non_recursive_type t = match kind_of_term t with | App _ -> let (hdapp,args) = decompose_app t in (match kind_of_term hdapp with | Ind (ind,u) -> if (Global.lookup_mind (fst ind)).mind_finite == Decl_kinds.CoFinite then Some (hdapp,args) else None | _ -> None) | _ -> None let is_non_recursive_type t = op2bool (match_with_non_recursive_type t) (* Test dependencies *) (* NB: we consider also the let-in case in the following function, since they may appear in types of inductive constructors (see #2629) *) let rec has_nodep_prod_after n c = match kind_of_term c with | Prod (_,_,b) | LetIn (_,_,_,b) -> ( n>0 || not (dependent (mkRel 1) b)) && (has_nodep_prod_after (n-1) b) | _ -> true let has_nodep_prod = has_nodep_prod_after 0 (* A general conjunctive type is a non-recursive with-no-indices inductive type with only one constructor and no dependencies between argument; it is strict if it has the form "Inductive I A1 ... An := C (_:A1) ... (_:An)" *) (* style: None = record; Some false = conjunction; Some true = strict conj *) let is_strict_conjunction = function | Some true -> true | _ -> false let is_lax_conjunction = function | Some false -> true | _ -> false let match_with_one_constructor style onlybinary allow_rec t = let (hdapp,args) = decompose_app t in let res = match kind_of_term hdapp with | Ind ind -> let (mib,mip) = Global.lookup_inductive (fst ind) in if Int.equal (Array.length mip.mind_consnames) 1 && (allow_rec || not (mis_is_recursive (fst ind,mib,mip))) && (Int.equal mip.mind_nrealargs 0) then if is_strict_conjunction style (* strict conjunction *) then let ctx = (prod_assum (snd (decompose_prod_n_assum mib.mind_nparams mip.mind_nf_lc.(0)))) in if List.for_all (fun decl -> let c = get_type decl in is_local_assum decl && isRel c && Int.equal (destRel c) mib.mind_nparams) ctx then Some (hdapp,args) else None else let ctyp = prod_applist mip.mind_nf_lc.(0) args in let cargs = List.map get_type (prod_assum ctyp) in if not (is_lax_conjunction style) || has_nodep_prod ctyp then (* Record or non strict conjunction *) Some (hdapp,List.rev cargs) else None else None | _ -> None in match res with | Some (hdapp, args) when not onlybinary -> res | Some (hdapp, [_; _]) -> res | _ -> None let match_with_conjunction ?(strict=false) ?(onlybinary=false) t = match_with_one_constructor (Some strict) onlybinary false t let match_with_record t = match_with_one_constructor None false false t let is_conjunction ?(strict=false) ?(onlybinary=false) t = op2bool (match_with_conjunction ~strict ~onlybinary t) let is_record t = op2bool (match_with_record t) let match_with_tuple t = let t = match_with_one_constructor None false true t in Option.map (fun (hd,l) -> let ind = destInd hd in let (mib,mip) = Global.lookup_pinductive ind in let isrec = mis_is_recursive (fst ind,mib,mip) in (hd,l,isrec)) t let is_tuple t = op2bool (match_with_tuple t) (* A general disjunction type is a non-recursive with-no-indices inductive type with of which all constructors have a single argument; it is strict if it has the form "Inductive I A1 ... An := C1 (_:A1) | ... | Cn : (_:An)" *) let test_strict_disjunction n lc = Array.for_all_i (fun i c -> match (prod_assum (snd (decompose_prod_n_assum n c))) with | [LocalAssum (_,c)] -> isRel c && Int.equal (destRel c) (n - i) | _ -> false) 0 lc let match_with_disjunction ?(strict=false) ?(onlybinary=false) t = let (hdapp,args) = decompose_app t in let res = match kind_of_term hdapp with | Ind (ind,u) -> let car = constructors_nrealargs ind in let (mib,mip) = Global.lookup_inductive ind in if Array.for_all (fun ar -> Int.equal ar 1) car && not (mis_is_recursive (ind,mib,mip)) && (Int.equal mip.mind_nrealargs 0) then if strict then if test_strict_disjunction mib.mind_nparams mip.mind_nf_lc then Some (hdapp,args) else None else let cargs = Array.map (fun ar -> pi2 (destProd (prod_applist ar args))) mip.mind_nf_lc in Some (hdapp,Array.to_list cargs) else None | _ -> None in match res with | Some (hdapp,args) when not onlybinary -> res | Some (hdapp,[_; _]) -> res | _ -> None let is_disjunction ?(strict=false) ?(onlybinary=false) t = op2bool (match_with_disjunction ~strict ~onlybinary t) (* An empty type is an inductive type, possible with indices, that has no constructors *) let match_with_empty_type t = let (hdapp,args) = decompose_app t in match (kind_of_term hdapp) with | Ind ind -> let (mib,mip) = Global.lookup_pinductive ind in let nconstr = Array.length mip.mind_consnames in if Int.equal nconstr 0 then Some hdapp else None | _ -> None let is_empty_type t = op2bool (match_with_empty_type t) (* This filters inductive types with one constructor with no arguments; Parameters and indices are allowed *) let match_with_unit_or_eq_type t = let (hdapp,args) = decompose_app t in match (kind_of_term hdapp) with | Ind ind -> let (mib,mip) = Global.lookup_pinductive ind in let constr_types = mip.mind_nf_lc in let nconstr = Array.length mip.mind_consnames in let zero_args c = Int.equal (nb_prod c) mib.mind_nparams in if Int.equal nconstr 1 && zero_args constr_types.(0) then Some hdapp else None | _ -> None let is_unit_or_eq_type t = op2bool (match_with_unit_or_eq_type t) (* A unit type is an inductive type with no indices but possibly (useless) parameters, and that has no arguments in its unique constructor *) let is_unit_type t = match match_with_conjunction t with | Some (_,[]) -> true | _ -> false (* Checks if a given term is an application of an inductive binary relation R, so that R has only one constructor establishing its reflexivity. *) type equation_kind = | MonomorphicLeibnizEq of constr * constr | PolymorphicLeibnizEq of constr * constr * constr | HeterogenousEq of constr * constr * constr * constr exception NoEquationFound let coq_refl_leibniz1_pattern = PATTERN [ forall x:_, _ x x ] let coq_refl_leibniz2_pattern = PATTERN [ forall A:_, forall x:A, _ A x x ] let coq_refl_jm_pattern = PATTERN [ forall A:_, forall x:A, _ A x A x ] open Globnames let is_matching x y = is_matching (Global.env ()) Evd.empty x y let matches x y = matches (Global.env ()) Evd.empty x y let match_with_equation t = if not (isApp t) then raise NoEquationFound; let (hdapp,args) = destApp t in match kind_of_term hdapp with | Ind (ind,u) -> if eq_gr (IndRef ind) glob_eq then Some (build_coq_eq_data()),hdapp, PolymorphicLeibnizEq(args.(0),args.(1),args.(2)) else if eq_gr (IndRef ind) glob_identity then Some (build_coq_identity_data()),hdapp, PolymorphicLeibnizEq(args.(0),args.(1),args.(2)) else if eq_gr (IndRef ind) glob_jmeq then Some (build_coq_jmeq_data()),hdapp, HeterogenousEq(args.(0),args.(1),args.(2),args.(3)) else let (mib,mip) = Global.lookup_inductive ind in let constr_types = mip.mind_nf_lc in let nconstr = Array.length mip.mind_consnames in if Int.equal nconstr 1 then if is_matching coq_refl_leibniz1_pattern constr_types.(0) then None, hdapp, MonomorphicLeibnizEq(args.(0),args.(1)) else if is_matching coq_refl_leibniz2_pattern constr_types.(0) then None, hdapp, PolymorphicLeibnizEq(args.(0),args.(1),args.(2)) else if is_matching coq_refl_jm_pattern constr_types.(0) then None, hdapp, HeterogenousEq(args.(0),args.(1),args.(2),args.(3)) else raise NoEquationFound else raise NoEquationFound | _ -> raise NoEquationFound (* Note: An "equality type" is any type with a single argument-free constructor: it captures eq, eq_dep, JMeq, eq_true, etc. but also True/unit which is the degenerate equality type (isomorphic to ()=()); in particular, True/unit are provable by "reflexivity" *) let is_inductive_equality ind = let (mib,mip) = Global.lookup_inductive ind in let nconstr = Array.length mip.mind_consnames in Int.equal nconstr 1 && Int.equal (constructor_nrealargs (ind,1)) 0 let match_with_equality_type t = let (hdapp,args) = decompose_app t in match (kind_of_term hdapp) with | Ind (ind,_) when is_inductive_equality ind -> Some (hdapp,args) | _ -> None let is_equality_type t = op2bool (match_with_equality_type t) (* Arrows/Implication/Negation *) let coq_arrow_pattern = PATTERN [ ?X1 -> ?X2 ] let match_arrow_pattern t = let result = matches coq_arrow_pattern t in match Id.Map.bindings result with | [(m1,arg);(m2,mind)] -> assert (Id.equal m1 meta1 && Id.equal m2 meta2); (arg, mind) | _ -> anomaly (Pp.str "Incorrect pattern matching") let match_with_imp_term c= match kind_of_term c with | Prod (_,a,b) when not (dependent (mkRel 1) b) ->Some (a,b) | _ -> None let is_imp_term c = op2bool (match_with_imp_term c) let match_with_nottype t = try let (arg,mind) = match_arrow_pattern t in if is_empty_type mind then Some (mind,arg) else None with PatternMatchingFailure -> None let is_nottype t = op2bool (match_with_nottype t) (* Forall *) let match_with_forall_term c= match kind_of_term c with | Prod (nam,a,b) -> Some (nam,a,b) | _ -> None let is_forall_term c = op2bool (match_with_forall_term c) let match_with_nodep_ind t = let (hdapp,args) = decompose_app t in match (kind_of_term hdapp) with | Ind ind -> let (mib,mip) = Global.lookup_pinductive ind in if Array.length (mib.mind_packets)>1 then None else let nodep_constr = has_nodep_prod_after mib.mind_nparams in if Array.for_all nodep_constr mip.mind_nf_lc then let params= if Int.equal mip.mind_nrealargs 0 then args else fst (List.chop mib.mind_nparams args) in Some (hdapp,params,mip.mind_nrealargs) else None | _ -> None let is_nodep_ind t=op2bool (match_with_nodep_ind t) let match_with_sigma_type t= let (hdapp,args) = decompose_app t in match (kind_of_term hdapp) with | Ind ind -> let (mib,mip) = Global.lookup_pinductive ind in if Int.equal (Array.length (mib.mind_packets)) 1 && (Int.equal mip.mind_nrealargs 0) && (Int.equal (Array.length mip.mind_consnames)1) && has_nodep_prod_after (mib.mind_nparams+1) mip.mind_nf_lc.(0) then (*allowing only 1 existential*) Some (hdapp,args) else None | _ -> None let is_sigma_type t=op2bool (match_with_sigma_type t) (***** Destructing patterns bound to some theory *) let rec first_match matcher = function | [] -> raise PatternMatchingFailure | (pat,check,build_set)::l when check () -> (try (build_set (),matcher pat) with PatternMatchingFailure -> first_match matcher l) | _::l -> first_match matcher l (*** Equality *) (* Patterns "(eq ?1 ?2 ?3)" and "(identity ?1 ?2 ?3)" *) let coq_eq_pattern_gen eq = lazy PATTERN [ %eq ?X1 ?X2 ?X3 ] let coq_eq_pattern = coq_eq_pattern_gen coq_eq_ref let coq_identity_pattern = coq_eq_pattern_gen coq_identity_ref let coq_jmeq_pattern = lazy PATTERN [ %coq_jmeq_ref ?X1 ?X2 ?X3 ?X4 ] let match_eq eqn eq_pat = let pat = try Lazy.force eq_pat with e when Errors.noncritical e -> raise PatternMatchingFailure in match Id.Map.bindings (matches pat eqn) with | [(m1,t);(m2,x);(m3,y)] -> assert (Id.equal m1 meta1 && Id.equal m2 meta2 && Id.equal m3 meta3); PolymorphicLeibnizEq (t,x,y) | [(m1,t);(m2,x);(m3,t');(m4,x')] -> assert (Id.equal m1 meta1 && Id.equal m2 meta2 && Id.equal m3 meta3 && Id.equal m4 meta4); HeterogenousEq (t,x,t',x') | _ -> anomaly ~label:"match_eq" (Pp.str "an eq pattern should match 3 or 4 terms") let no_check () = true let check_jmeq_loaded () = Library.library_is_loaded Coqlib.jmeq_module let equalities = [coq_eq_pattern, no_check, build_coq_eq_data; coq_jmeq_pattern, check_jmeq_loaded, build_coq_jmeq_data; coq_identity_pattern, no_check, build_coq_identity_data] let find_eq_data eqn = (* fails with PatternMatchingFailure *) let d,k = first_match (match_eq eqn) equalities in let hd,u = destInd (fst (destApp eqn)) in d,u,k let extract_eq_args gl = function | MonomorphicLeibnizEq (e1,e2) -> let t = pf_unsafe_type_of gl e1 in (t,e1,e2) | PolymorphicLeibnizEq (t,e1,e2) -> (t,e1,e2) | HeterogenousEq (t1,e1,t2,e2) -> if pf_conv_x gl t1 t2 then (t1,e1,e2) else raise PatternMatchingFailure let find_eq_data_decompose gl eqn = let (lbeq,u,eq_args) = find_eq_data eqn in (lbeq,u,extract_eq_args gl eq_args) let find_this_eq_data_decompose gl eqn = let (lbeq,u,eq_args) = try (*first_match (match_eq eqn) inversible_equalities*) find_eq_data eqn with PatternMatchingFailure -> errorlabstrm "" (str "No primitive equality found.") in let eq_args = try extract_eq_args gl eq_args with PatternMatchingFailure -> error "Don't know what to do with JMeq on arguments not of same type." in (lbeq,u,eq_args) let match_eq_nf gls eqn eq_pat = match Id.Map.bindings (pf_matches gls (Lazy.force eq_pat) eqn) with | [(m1,t);(m2,x);(m3,y)] -> assert (Id.equal m1 meta1 && Id.equal m2 meta2 && Id.equal m3 meta3); (t,pf_whd_betadeltaiota gls x,pf_whd_betadeltaiota gls y) | _ -> anomaly ~label:"match_eq" (Pp.str "an eq pattern should match 3 terms") let dest_nf_eq gls eqn = try snd (first_match (match_eq_nf gls eqn) equalities) with PatternMatchingFailure -> error "Not an equality." (*** Sigma-types *) let match_sigma ex = match kind_of_term ex with | App (f, [| a; p; car; cdr |]) when is_global (Lazy.force coq_exist_ref) f -> build_sigma (), (snd (destConstruct f), a, p, car, cdr) | App (f, [| a; p; car; cdr |]) when is_global (Lazy.force coq_existT_ref) f -> build_sigma_type (), (snd (destConstruct f), a, p, car, cdr) | _ -> raise PatternMatchingFailure let find_sigma_data_decompose ex = (* fails with PatternMatchingFailure *) match_sigma ex (* Pattern "(sig ?1 ?2)" *) let coq_sig_pattern = lazy PATTERN [ %coq_sig_ref ?X1 ?X2 ] let match_sigma t = match Id.Map.bindings (matches (Lazy.force coq_sig_pattern) t) with | [(_,a); (_,p)] -> (a,p) | _ -> anomaly (Pp.str "Unexpected pattern") let is_matching_sigma t = is_matching (Lazy.force coq_sig_pattern) t (*** Decidable equalities *) (* The expected form of the goal for the tactic Decide Equality *) (* Pattern "{x=y}+{~(x=y)}" *) (* i.e. "(sumbool (eq ?1 x y) ~(eq ?1 x y))" *) let coq_eqdec_inf_pattern = lazy PATTERN [ { ?X2 = ?X3 :> ?X1 } + { ~ ?X2 = ?X3 :> ?X1 } ] let coq_eqdec_inf_rev_pattern = lazy PATTERN [ { ~ ?X2 = ?X3 :> ?X1 } + { ?X2 = ?X3 :> ?X1 } ] let coq_eqdec_pattern = lazy PATTERN [ %coq_or_ref (?X2 = ?X3 :> ?X1) (~ ?X2 = ?X3 :> ?X1) ] let coq_eqdec_rev_pattern = lazy PATTERN [ %coq_or_ref (~ ?X2 = ?X3 :> ?X1) (?X2 = ?X3 :> ?X1) ] let op_or = coq_or_ref let op_sum = coq_sumbool_ref let match_eqdec t = let eqonleft,op,subst = try true,op_sum,matches (Lazy.force coq_eqdec_inf_pattern) t with PatternMatchingFailure -> try false,op_sum,matches (Lazy.force coq_eqdec_inf_rev_pattern) t with PatternMatchingFailure -> try true,op_or,matches (Lazy.force coq_eqdec_pattern) t with PatternMatchingFailure -> false,op_or,matches (Lazy.force coq_eqdec_rev_pattern) t in match Id.Map.bindings subst with | [(_,typ);(_,c1);(_,c2)] -> eqonleft, Universes.constr_of_global (Lazy.force op), c1, c2, typ | _ -> anomaly (Pp.str "Unexpected pattern") (* Patterns "~ ?" and "? -> False" *) let coq_not_pattern = lazy PATTERN [ ~ _ ] let coq_imp_False_pattern = lazy PATTERN [ _ -> %coq_False_ref ] let is_matching_not t = is_matching (Lazy.force coq_not_pattern) t let is_matching_imp_False t = is_matching (Lazy.force coq_imp_False_pattern) t (* Remark: patterns that have references to the standard library must be evaluated lazily (i.e. at the time they are used, not a the time coqtop starts) *)