(************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) (* [ replace_in_clause_maybe_by c1 c2 (glob_in_arg_hyp_to_clause in_hyp) (Option.map Tacinterp.eval_tactic tac) ] END TACTIC EXTEND replace_term_left [ "replace" "->" constr(c) in_arg_hyp(in_hyp) ] -> [ replace_multi_term (Some true) c (glob_in_arg_hyp_to_clause in_hyp)] END TACTIC EXTEND replace_term_right [ "replace" "<-" constr(c) in_arg_hyp(in_hyp) ] -> [replace_multi_term (Some false) c (glob_in_arg_hyp_to_clause in_hyp)] END TACTIC EXTEND replace_term [ "replace" constr(c) in_arg_hyp(in_hyp) ] -> [ replace_multi_term None c (glob_in_arg_hyp_to_clause in_hyp) ] END let induction_arg_of_quantified_hyp = function | AnonHyp n -> ElimOnAnonHyp n | NamedHyp id -> ElimOnIdent (Util.dummy_loc,id) (* Versions *_main must come first!! so that "1" is interpreted as a ElimOnAnonHyp and not as a "constr", and "id" is interpreted as a ElimOnIdent and not as "constr" *) TACTIC EXTEND simplify_eq_main | [ "simplify_eq" constr_with_bindings(c) ] -> [ dEq false (Some (ElimOnConstr c)) ] END TACTIC EXTEND simplify_eq [ "simplify_eq" ] -> [ dEq false None ] | [ "simplify_eq" quantified_hypothesis(h) ] -> [ dEq false (Some (induction_arg_of_quantified_hyp h)) ] END TACTIC EXTEND esimplify_eq_main | [ "esimplify_eq" constr_with_bindings(c) ] -> [ dEq true (Some (ElimOnConstr c)) ] END TACTIC EXTEND esimplify_eq | [ "esimplify_eq" ] -> [ dEq true None ] | [ "esimplify_eq" quantified_hypothesis(h) ] -> [ dEq true (Some (induction_arg_of_quantified_hyp h)) ] END TACTIC EXTEND discriminate_main | [ "discriminate" constr_with_bindings(c) ] -> [ discr_tac false (Some (ElimOnConstr c)) ] END TACTIC EXTEND discriminate | [ "discriminate" ] -> [ discr_tac false None ] | [ "discriminate" quantified_hypothesis(h) ] -> [ discr_tac false (Some (induction_arg_of_quantified_hyp h)) ] END TACTIC EXTEND ediscriminate_main | [ "ediscriminate" constr_with_bindings(c) ] -> [ discr_tac true (Some (ElimOnConstr c)) ] END TACTIC EXTEND ediscriminate | [ "ediscriminate" ] -> [ discr_tac true None ] | [ "ediscriminate" quantified_hypothesis(h) ] -> [ discr_tac true (Some (induction_arg_of_quantified_hyp h)) ] END let h_discrHyp id = h_discriminate_main (Term.mkVar id,NoBindings) TACTIC EXTEND injection_main | [ "injection" constr_with_bindings(c) ] -> [ injClause [] false (Some (ElimOnConstr c)) ] END TACTIC EXTEND injection | [ "injection" ] -> [ injClause [] false None ] | [ "injection" quantified_hypothesis(h) ] -> [ injClause [] false (Some (induction_arg_of_quantified_hyp h)) ] END TACTIC EXTEND einjection_main | [ "einjection" constr_with_bindings(c) ] -> [ injClause [] true (Some (ElimOnConstr c)) ] END TACTIC EXTEND einjection | [ "einjection" ] -> [ injClause [] true None ] | [ "einjection" quantified_hypothesis(h) ] -> [ injClause [] true (Some (induction_arg_of_quantified_hyp h)) ] END TACTIC EXTEND injection_as_main | [ "injection" constr_with_bindings(c) "as" simple_intropattern_list(ipat)] -> [ injClause ipat false (Some (ElimOnConstr c)) ] END TACTIC EXTEND injection_as | [ "injection" "as" simple_intropattern_list(ipat)] -> [ injClause ipat false None ] | [ "injection" quantified_hypothesis(h) "as" simple_intropattern_list(ipat) ] -> [ injClause ipat false (Some (induction_arg_of_quantified_hyp h)) ] END TACTIC EXTEND einjection_as_main | [ "einjection" constr_with_bindings(c) "as" simple_intropattern_list(ipat)] -> [ injClause ipat true (Some (ElimOnConstr c)) ] END TACTIC EXTEND einjection_as | [ "einjection" "as" simple_intropattern_list(ipat)] -> [ injClause ipat true None ] | [ "einjection" quantified_hypothesis(h) "as" simple_intropattern_list(ipat) ] -> [ injClause ipat true (Some (induction_arg_of_quantified_hyp h)) ] END let h_injHyp id = h_injection_main (Term.mkVar id,NoBindings) TACTIC EXTEND dependent_rewrite | [ "dependent" "rewrite" orient(b) constr(c) ] -> [ rewriteInConcl b c ] | [ "dependent" "rewrite" orient(b) constr(c) "in" hyp(id) ] -> [ rewriteInHyp b c id ] END TACTIC EXTEND cut_rewrite | [ "cutrewrite" orient(b) constr(eqn) ] -> [ cutRewriteInConcl b eqn ] | [ "cutrewrite" orient(b) constr(eqn) "in" hyp(id) ] -> [ cutRewriteInHyp b eqn id ] END (* Contradiction *) open Contradiction TACTIC EXTEND absurd [ "absurd" constr(c) ] -> [ absurd c ] END TACTIC EXTEND contradiction [ "contradiction" constr_with_bindings_opt(c) ] -> [ contradiction c ] END (* AutoRewrite *) open Autorewrite (* J.F : old version TACTIC EXTEND autorewrite [ "autorewrite" "with" ne_preident_list(l) ] -> [ autorewrite Refiner.tclIDTAC l ] | [ "autorewrite" "with" ne_preident_list(l) "using" tactic(t) ] -> [ autorewrite (snd t) l ] | [ "autorewrite" "with" ne_preident_list(l) "in" hyp(id) ] -> [ autorewrite_in id Refiner.tclIDTAC l ] | [ "autorewrite" "with" ne_preident_list(l) "in" hyp(id) "using" tactic(t) ] -> [ autorewrite_in id (snd t) l ] END *) TACTIC EXTEND autorewrite | [ "autorewrite" "with" ne_preident_list(l) in_arg_hyp(cl) ] -> [ auto_multi_rewrite l (glob_in_arg_hyp_to_clause cl) ] | [ "autorewrite" "with" ne_preident_list(l) in_arg_hyp(cl) "using" tactic(t) ] -> [ let cl = glob_in_arg_hyp_to_clause cl in auto_multi_rewrite_with (snd t) l cl ] END TACTIC EXTEND autorewrite_star | [ "autorewrite" "*" "with" ne_preident_list(l) in_arg_hyp(cl) ] -> [ auto_multi_rewrite ~conds:AllMatches l (glob_in_arg_hyp_to_clause cl) ] | [ "autorewrite" "*" "with" ne_preident_list(l) in_arg_hyp(cl) "using" tactic(t) ] -> [ let cl = glob_in_arg_hyp_to_clause cl in auto_multi_rewrite_with ~conds:AllMatches (snd t) l cl ] END open Extraargs let rewrite_star clause orient occs c (tac : glob_tactic_expr option) = let tac' = Option.map (fun t -> Tacinterp.eval_tactic t, FirstSolved) tac in general_rewrite_ebindings_clause clause orient occs ?tac:tac' (c,NoBindings) true let occurrences_of = function | n::_ as nl when n < 0 -> (false,List.map abs nl) | nl -> if List.exists (fun n -> n < 0) nl then error "Illegal negative occurrence number."; (true,nl) TACTIC EXTEND rewrite_star | [ "rewrite" "*" orient(o) open_constr(c) "in" hyp(id) "at" occurrences(occ) by_arg_tac(tac) ] -> [ rewrite_star (Some id) o (occurrences_of occ) c tac ] | [ "rewrite" "*" orient(o) open_constr(c) "at" occurrences(occ) "in" hyp(id) by_arg_tac(tac) ] -> [ rewrite_star (Some id) o (occurrences_of occ) c tac ] | [ "rewrite" "*" orient(o) open_constr(c) "in" hyp(id) by_arg_tac(tac) ] -> [ rewrite_star (Some id) o all_occurrences c tac ] | [ "rewrite" "*" orient(o) open_constr(c) "at" occurrences(occ) by_arg_tac(tac) ] -> [ rewrite_star None o (occurrences_of occ) c tac ] | [ "rewrite" "*" orient(o) open_constr(c) by_arg_tac(tac) ] -> [ rewrite_star None o all_occurrences c tac ] END let add_rewrite_hint name ort t lcsr = let env = Global.env() and sigma = Evd.empty in let f c = Topconstr.constr_loc c, Constrintern.interp_constr sigma env c, ort, t in add_rew_rules name (List.map f lcsr) VERNAC COMMAND EXTEND HintRewrite [ "Hint" "Rewrite" orient(o) ne_constr_list(l) ":" preident(b) ] -> [ add_rewrite_hint b o (Tacexpr.TacId []) l ] | [ "Hint" "Rewrite" orient(o) ne_constr_list(l) "using" tactic(t) ":" preident(b) ] -> [ add_rewrite_hint b o t l ] | [ "Hint" "Rewrite" orient(o) ne_constr_list(l) ] -> [ add_rewrite_hint "core" o (Tacexpr.TacId []) l ] | [ "Hint" "Rewrite" orient(o) ne_constr_list(l) "using" tactic(t) ] -> [ add_rewrite_hint "core" o t l ] END open Term open Coqlib let project_hint pri l2r c = let env = Global.env() in let c = Constrintern.interp_constr Evd.empty env c in let t = Retyping.get_type_of env Evd.empty c in let t = Tacred.reduce_to_quantified_ref env Evd.empty (Lazy.force coq_iff_ref) t in let sign,ccl = decompose_prod_assum t in let (a,b) = match snd (decompose_app ccl) with | [a;b] -> (a,b) | _ -> assert false in let p = if l2r then build_coq_iff_left_proj () else build_coq_iff_right_proj () in let c = Reductionops.whd_beta Evd.empty (mkApp (c,Termops.extended_rel_vect 0 sign)) in let c = it_mkLambda_or_LetIn (mkApp (p,[|mkArrow a (lift 1 b);mkArrow b (lift 1 a);c|])) sign in (pri,true,c) let add_hints_iff l2r lc n bl = Auto.add_hints true bl (Auto.HintsResolveEntry (List.map (project_hint n l2r) lc)) VERNAC COMMAND EXTEND HintResolveIffLR [ "Hint" "Resolve" "->" ne_constr_list(lc) natural_opt(n) ":" preident_list(bl) ] -> [ add_hints_iff true lc n bl ] | [ "Hint" "Resolve" "->" ne_constr_list(lc) natural_opt(n) ] -> [ add_hints_iff true lc n ["core"] ] END VERNAC COMMAND EXTEND HintResolveIffRL [ "Hint" "Resolve" "<-" ne_constr_list(lc) natural_opt(n) ":" preident_list(bl) ] -> [ add_hints_iff false lc n bl ] | [ "Hint" "Resolve" "<-" ne_constr_list(lc) natural_opt(n) ] -> [ add_hints_iff false lc n ["core"] ] END (* Refine *) open Refine TACTIC EXTEND refine [ "refine" casted_open_constr(c) ] -> [ refine c ] END let refine_tac = h_refine (* Inversion lemmas (Leminv) *) open Inv open Leminv VERNAC COMMAND EXTEND DeriveInversionClear [ "Derive" "Inversion_clear" ident(na) hyp(id) ] -> [ inversion_lemma_from_goal 1 na id Term.prop_sort false inv_clear_tac ] | [ "Derive" "Inversion_clear" natural(n) ident(na) hyp(id) ] -> [ inversion_lemma_from_goal n na id Term.prop_sort false inv_clear_tac ] | [ "Derive" "Inversion_clear" ident(na) "with" constr(c) "Sort" sort(s) ] -> [ add_inversion_lemma_exn na c s false inv_clear_tac ] | [ "Derive" "Inversion_clear" ident(na) "with" constr(c) ] -> [ add_inversion_lemma_exn na c (Rawterm.RProp Term.Null) false inv_clear_tac ] END open Term open Rawterm VERNAC COMMAND EXTEND DeriveInversion | [ "Derive" "Inversion" ident(na) "with" constr(c) "Sort" sort(s) ] -> [ add_inversion_lemma_exn na c s false inv_tac ] | [ "Derive" "Inversion" ident(na) "with" constr(c) ] -> [ add_inversion_lemma_exn na c (RProp Null) false inv_tac ] | [ "Derive" "Inversion" ident(na) hyp(id) ] -> [ inversion_lemma_from_goal 1 na id Term.prop_sort false inv_tac ] | [ "Derive" "Inversion" natural(n) ident(na) hyp(id) ] -> [ inversion_lemma_from_goal n na id Term.prop_sort false inv_tac ] END VERNAC COMMAND EXTEND DeriveDependentInversion | [ "Derive" "Dependent" "Inversion" ident(na) "with" constr(c) "Sort" sort(s) ] -> [ add_inversion_lemma_exn na c s true dinv_tac ] END VERNAC COMMAND EXTEND DeriveDependentInversionClear | [ "Derive" "Dependent" "Inversion_clear" ident(na) "with" constr(c) "Sort" sort(s) ] -> [ add_inversion_lemma_exn na c s true dinv_clear_tac ] END (* Subst *) TACTIC EXTEND subst | [ "subst" ne_var_list(l) ] -> [ subst l ] | [ "subst" ] -> [ subst_all ~strict:true] (* W/o JMeq *) END TACTIC EXTEND subst' | [ "subst'" ] -> [ subst_all ~strict:false ] (* With JMeq *) END open Evar_tactics (* evar creation *) TACTIC EXTEND evar [ "evar" "(" ident(id) ":" lconstr(typ) ")" ] -> [ let_evar (Name id) typ ] | [ "evar" constr(typ) ] -> [ let_evar Anonymous typ ] END open Tacexpr open Tacticals TACTIC EXTEND instantiate [ "instantiate" "(" integer(i) ":=" raw(c) ")" hloc(hl) ] -> [instantiate i c hl ] | [ "instantiate" ] -> [ tclNORMEVAR ] END (** Nijmegen "step" tactic for setoid rewriting *) open Tactics open Tactics open Libnames open Rawterm open Summary open Libobject open Lib (* Registered lemmas are expected to be of the form x R y -> y == z -> x R z (in the right table) x R y -> x == z -> z R y (in the left table) *) let transitivity_right_table = ref [] let transitivity_left_table = ref [] (* [step] tries to apply a rewriting lemma; then apply [tac] intended to complete to proof of the last hypothesis (assumed to state an equality) *) let step left x tac = let l = List.map (fun lem -> tclTHENLAST (apply_with_bindings (lem, ImplicitBindings [x])) tac) !(if left then transitivity_left_table else transitivity_right_table) in tclFIRST l (* Main function to push lemmas in persistent environment *) let cache_transitivity_lemma (_,(left,lem)) = if left then transitivity_left_table := lem :: !transitivity_left_table else transitivity_right_table := lem :: !transitivity_right_table let subst_transitivity_lemma (_,subst,(b,ref)) = (b,subst_mps subst ref) let (inTransitivity,_) = declare_object {(default_object "TRANSITIVITY-STEPS") with cache_function = cache_transitivity_lemma; open_function = (fun i o -> if i=1 then cache_transitivity_lemma o); subst_function = subst_transitivity_lemma; classify_function = (fun o -> Substitute o) } (* Synchronisation with reset *) let freeze () = !transitivity_left_table, !transitivity_right_table let unfreeze (l,r) = transitivity_left_table := l; transitivity_right_table := r let init () = transitivity_left_table := []; transitivity_right_table := [] let _ = declare_summary "transitivity-steps" { freeze_function = freeze; unfreeze_function = unfreeze; init_function = init } (* Main entry points *) let add_transitivity_lemma left lem = let lem' = Constrintern.interp_constr Evd.empty (Global.env ()) lem in add_anonymous_leaf (inTransitivity (left,lem')) (* Vernacular syntax *) TACTIC EXTEND stepl | ["stepl" constr(c) "by" tactic(tac) ] -> [ step true c (snd tac) ] | ["stepl" constr(c) ] -> [ step true c tclIDTAC ] END TACTIC EXTEND stepr | ["stepr" constr(c) "by" tactic(tac) ] -> [ step false c (snd tac) ] | ["stepr" constr(c) ] -> [ step false c tclIDTAC ] END VERNAC COMMAND EXTEND AddStepl | [ "Declare" "Left" "Step" constr(t) ] -> [ add_transitivity_lemma true t ] END VERNAC COMMAND EXTEND AddStepr | [ "Declare" "Right" "Step" constr(t) ] -> [ add_transitivity_lemma false t ] END VERNAC COMMAND EXTEND ImplicitTactic | [ "Declare" "Implicit" "Tactic" tactic(tac) ] -> [ Tacinterp.declare_implicit_tactic (Tacinterp.interp tac) ] END (*spiwack : Vernac commands for retroknowledge *) VERNAC COMMAND EXTEND RetroknowledgeRegister | [ "Register" constr(c) "as" retroknowledge_field(f) "by" constr(b)] -> [ let tc = Constrintern.interp_constr Evd.empty (Global.env ()) c in let tb = Constrintern.interp_constr Evd.empty (Global.env ()) b in Global.register f tc tb ] END (* sozeau: abs/gen for induction on instantiated dependent inductives, using "Ford" induction as defined by Conor McBride *) TACTIC EXTEND generalize_eqs | ["generalize_eqs" hyp(id) ] -> [ abstract_generalize id ~generalize_vars:false ] END TACTIC EXTEND generalize_eqs_vars | ["generalize_eqs_vars" hyp(id) ] -> [ abstract_generalize id ~generalize_vars:true ] END TACTIC EXTEND dependent_pattern | ["dependent_pattern" constr(c) ] -> [ dependent_pattern c ] END TACTIC EXTEND resolve_classes | ["resolve_classes" ] -> [ resolve_classes ] END