(************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) (* [ admit_as_an_axiom ] END let replace_in_clause_maybe_by (sigma,c1) c2 cl tac = Proofview.V82.tclEVARS sigma <*> (replace_in_clause_maybe_by c1 c2 cl) (Option.map Tacinterp.eval_tactic tac) let replace_term dir_opt (sigma,c) cl = Proofview.V82.tclEVARS sigma <*> (replace_term dir_opt c) cl TACTIC EXTEND replace ["replace" open_constr(c1) "with" constr(c2) clause(cl) by_arg_tac(tac) ] -> [ replace_in_clause_maybe_by c1 c2 cl tac ] END TACTIC EXTEND replace_term_left [ "replace" "->" open_constr(c) clause(cl) ] -> [ replace_term (Some true) c cl ] END TACTIC EXTEND replace_term_right [ "replace" "<-" open_constr(c) clause(cl) ] -> [ replace_term (Some false) c cl ] END TACTIC EXTEND replace_term [ "replace" open_constr(c) clause(cl) ] -> [ replace_term None c cl ] END let induction_arg_of_quantified_hyp = function | AnonHyp n -> None,ElimOnAnonHyp n | NamedHyp id -> None,ElimOnIdent (Loc.ghost,id) (* Versions *_main must come first!! so that "1" is interpreted as a ElimOnAnonHyp and not as a "constr", and "id" is interpreted as a ElimOnIdent and not as "constr" *) let elimOnConstrWithHoles tac with_evars c = Tacticals.New.tclWITHHOLES with_evars (tac with_evars) c.sigma (Some (None,ElimOnConstr c.it)) TACTIC EXTEND simplify_eq_main | [ "simplify_eq" constr_with_bindings(c) ] -> [ elimOnConstrWithHoles dEq false c ] END TACTIC EXTEND simplify_eq [ "simplify_eq" ] -> [ dEq false None ] | [ "simplify_eq" quantified_hypothesis(h) ] -> [ dEq false (Some (induction_arg_of_quantified_hyp h)) ] END TACTIC EXTEND esimplify_eq_main | [ "esimplify_eq" constr_with_bindings(c) ] -> [ elimOnConstrWithHoles dEq true c ] END TACTIC EXTEND esimplify_eq | [ "esimplify_eq" ] -> [ dEq true None ] | [ "esimplify_eq" quantified_hypothesis(h) ] -> [ dEq true (Some (induction_arg_of_quantified_hyp h)) ] END let discr_main c = elimOnConstrWithHoles discr_tac false c TACTIC EXTEND discriminate_main | [ "discriminate" constr_with_bindings(c) ] -> [ discr_main c ] END TACTIC EXTEND discriminate | [ "discriminate" ] -> [ discr_tac false None ] | [ "discriminate" quantified_hypothesis(h) ] -> [ discr_tac false (Some (induction_arg_of_quantified_hyp h)) ] END TACTIC EXTEND ediscriminate_main | [ "ediscriminate" constr_with_bindings(c) ] -> [ elimOnConstrWithHoles discr_tac true c ] END TACTIC EXTEND ediscriminate | [ "ediscriminate" ] -> [ discr_tac true None ] | [ "ediscriminate" quantified_hypothesis(h) ] -> [ discr_tac true (Some (induction_arg_of_quantified_hyp h)) ] END open Proofview.Notations let discrHyp id = Proofview.tclEVARMAP >>= fun sigma -> discr_main {it = Term.mkVar id,NoBindings; sigma = sigma;} let injection_main c = elimOnConstrWithHoles (injClause None) false c TACTIC EXTEND injection_main | [ "injection" constr_with_bindings(c) ] -> [ injection_main c ] END TACTIC EXTEND injection | [ "injection" ] -> [ injClause None false None ] | [ "injection" quantified_hypothesis(h) ] -> [ injClause None false (Some (induction_arg_of_quantified_hyp h)) ] END TACTIC EXTEND einjection_main | [ "einjection" constr_with_bindings(c) ] -> [ elimOnConstrWithHoles (injClause None) true c ] END TACTIC EXTEND einjection | [ "einjection" ] -> [ injClause None true None ] | [ "einjection" quantified_hypothesis(h) ] -> [ injClause None true (Some (induction_arg_of_quantified_hyp h)) ] END TACTIC EXTEND injection_as_main | [ "injection" constr_with_bindings(c) "as" simple_intropattern_list(ipat)] -> [ elimOnConstrWithHoles (injClause (Some ipat)) false c ] END TACTIC EXTEND injection_as | [ "injection" "as" simple_intropattern_list(ipat)] -> [ injClause (Some ipat) false None ] | [ "injection" quantified_hypothesis(h) "as" simple_intropattern_list(ipat) ] -> [ injClause (Some ipat) false (Some (induction_arg_of_quantified_hyp h)) ] END TACTIC EXTEND einjection_as_main | [ "einjection" constr_with_bindings(c) "as" simple_intropattern_list(ipat)] -> [ elimOnConstrWithHoles (injClause (Some ipat)) true c ] END TACTIC EXTEND einjection_as | [ "einjection" "as" simple_intropattern_list(ipat)] -> [ injClause (Some ipat) true None ] | [ "einjection" quantified_hypothesis(h) "as" simple_intropattern_list(ipat) ] -> [ injClause (Some ipat) true (Some (induction_arg_of_quantified_hyp h)) ] END let injHyp id = Proofview.tclEVARMAP >>= fun sigma -> injection_main { it = Term.mkVar id,NoBindings; sigma = sigma; } TACTIC EXTEND dependent_rewrite | [ "dependent" "rewrite" orient(b) constr(c) ] -> [ rewriteInConcl b c ] | [ "dependent" "rewrite" orient(b) constr(c) "in" hyp(id) ] -> [ rewriteInHyp b c id ] END (** To be deprecated?, "cutrewrite (t=u) as <-" is equivalent to "replace u with t" or "enough (t=u) as <-" and "cutrewrite (t=u) as ->" is equivalent to "enough (t=u) as ->". *) TACTIC EXTEND cut_rewrite | [ "cutrewrite" orient(b) constr(eqn) ] -> [ cutRewriteInConcl b eqn ] | [ "cutrewrite" orient(b) constr(eqn) "in" hyp(id) ] -> [ cutRewriteInHyp b eqn id ] END (**********************************************************************) (* Decompose *) TACTIC EXTEND decompose_sum | [ "decompose" "sum" constr(c) ] -> [ Elim.h_decompose_or c ] END TACTIC EXTEND decompose_record | [ "decompose" "record" constr(c) ] -> [ Elim.h_decompose_and c ] END (**********************************************************************) (* Contradiction *) open Contradiction TACTIC EXTEND absurd [ "absurd" constr(c) ] -> [ absurd c ] END let onSomeWithHoles tac = function | None -> tac None | Some c -> Proofview.V82.tclEVARS c.sigma <*> tac (Some c.it) TACTIC EXTEND contradiction [ "contradiction" constr_with_bindings_opt(c) ] -> [ onSomeWithHoles contradiction c ] END (**********************************************************************) (* AutoRewrite *) open Autorewrite let pr_orient _prc _prlc _prt = function | true -> Pp.mt () | false -> Pp.str " <-" let pr_orient_string _prc _prlc _prt (orient, s) = pr_orient _prc _prlc _prt orient ++ Pp.spc () ++ Pp.str s ARGUMENT EXTEND orient_string TYPED AS (bool * string) PRINTED BY pr_orient_string | [ orient(r) preident(i) ] -> [ r, i ] END TACTIC EXTEND autorewrite | [ "autorewrite" "with" ne_preident_list(l) clause(cl) ] -> [ auto_multi_rewrite l ( cl) ] | [ "autorewrite" "with" ne_preident_list(l) clause(cl) "using" tactic(t) ] -> [ auto_multi_rewrite_with (Tacinterp.eval_tactic t) l cl ] END TACTIC EXTEND autorewrite_star | [ "autorewrite" "*" "with" ne_preident_list(l) clause(cl) ] -> [ auto_multi_rewrite ~conds:AllMatches l cl ] | [ "autorewrite" "*" "with" ne_preident_list(l) clause(cl) "using" tactic(t) ] -> [ auto_multi_rewrite_with ~conds:AllMatches (Tacinterp.eval_tactic t) l cl ] END (**********************************************************************) (* Rewrite star *) let rewrite_star clause orient occs (sigma,c) (tac : glob_tactic_expr option) = let tac' = Option.map (fun t -> Tacinterp.eval_tactic t, FirstSolved) tac in Proofview.V82.tclEVARS sigma <*> general_rewrite_ebindings_clause clause orient occs ?tac:tac' true true (c,NoBindings) true TACTIC EXTEND rewrite_star | [ "rewrite" "*" orient(o) open_constr(c) "in" hyp(id) "at" occurrences(occ) by_arg_tac(tac) ] -> [ rewrite_star (Some id) o (occurrences_of occ) c tac ] | [ "rewrite" "*" orient(o) open_constr(c) "at" occurrences(occ) "in" hyp(id) by_arg_tac(tac) ] -> [ rewrite_star (Some id) o (occurrences_of occ) c tac ] | [ "rewrite" "*" orient(o) open_constr(c) "in" hyp(id) by_arg_tac(tac) ] -> [ rewrite_star (Some id) o Locus.AllOccurrences c tac ] | [ "rewrite" "*" orient(o) open_constr(c) "at" occurrences(occ) by_arg_tac(tac) ] -> [ rewrite_star None o (occurrences_of occ) c tac ] | [ "rewrite" "*" orient(o) open_constr(c) by_arg_tac(tac) ] -> [ rewrite_star None o Locus.AllOccurrences c tac ] END (**********************************************************************) (* Hint Rewrite *) let add_rewrite_hint bases ort t lcsr = let env = Global.env() and sigma = Evd.empty in let poly = Flags.is_universe_polymorphism () in let f ce = let c, ctx = Constrintern.interp_constr sigma env ce in let ctx = if poly then Evd.evar_universe_context_set ctx else let cstrs = Evd.evar_universe_context_constraints ctx in (Global.add_constraints cstrs; Univ.ContextSet.empty) in Constrexpr_ops.constr_loc ce, (c, ctx), ort, t in let eqs = List.map f lcsr in let add_hints base = add_rew_rules base eqs in List.iter add_hints bases let classify_hint _ = Vernacexpr.VtSideff [], Vernacexpr.VtLater VERNAC COMMAND EXTEND HintRewrite CLASSIFIED BY classify_hint [ "Hint" "Rewrite" orient(o) ne_constr_list(l) ":" preident_list(bl) ] -> [ add_rewrite_hint bl o None l ] | [ "Hint" "Rewrite" orient(o) ne_constr_list(l) "using" tactic(t) ":" preident_list(bl) ] -> [ add_rewrite_hint bl o (Some t) l ] | [ "Hint" "Rewrite" orient(o) ne_constr_list(l) ] -> [ add_rewrite_hint ["core"] o None l ] | [ "Hint" "Rewrite" orient(o) ne_constr_list(l) "using" tactic(t) ] -> [ add_rewrite_hint ["core"] o (Some t) l ] END (**********************************************************************) (* Hint Resolve *) open Term open Vars open Coqlib let project_hint pri l2r r = let gr = Smartlocate.global_with_alias r in let env = Global.env() in let sigma = Evd.from_env env in let sigma, c = Evd.fresh_global env sigma gr in let t = Retyping.get_type_of env sigma c in let t = Tacred.reduce_to_quantified_ref env sigma (Lazy.force coq_iff_ref) t in let sign,ccl = decompose_prod_assum t in let (a,b) = match snd (decompose_app ccl) with | [a;b] -> (a,b) | _ -> assert false in let p = if l2r then build_coq_iff_left_proj () else build_coq_iff_right_proj () in let c = Reductionops.whd_beta Evd.empty (mkApp (c,Termops.extended_rel_vect 0 sign)) in let c = it_mkLambda_or_LetIn (mkApp (p,[|mkArrow a (lift 1 b);mkArrow b (lift 1 a);c|])) sign in let id = Nameops.add_suffix (Nametab.basename_of_global gr) ("_proj_" ^ (if l2r then "l2r" else "r2l")) in let ctx = Evd.universe_context_set sigma in let c = Declare.declare_definition ~internal:Declare.KernelSilent id (c,ctx) in (pri,false,true,Auto.PathAny, Auto.IsGlobRef (Globnames.ConstRef c)) let add_hints_iff l2r lc n bl = Auto.add_hints true bl (Auto.HintsResolveEntry (List.map (project_hint n l2r) lc)) VERNAC COMMAND EXTEND HintResolveIffLR CLASSIFIED AS SIDEFF [ "Hint" "Resolve" "->" ne_global_list(lc) natural_opt(n) ":" preident_list(bl) ] -> [ add_hints_iff true lc n bl ] | [ "Hint" "Resolve" "->" ne_global_list(lc) natural_opt(n) ] -> [ add_hints_iff true lc n ["core"] ] END VERNAC COMMAND EXTEND HintResolveIffRL CLASSIFIED AS SIDEFF [ "Hint" "Resolve" "<-" ne_global_list(lc) natural_opt(n) ":" preident_list(bl) ] -> [ add_hints_iff false lc n bl ] | [ "Hint" "Resolve" "<-" ne_global_list(lc) natural_opt(n) ] -> [ add_hints_iff false lc n ["core"] ] END (**********************************************************************) (* Refine *) let refine_red_flags = Genredexpr.Lazy { Genredexpr.rBeta=true; rIota=true; rZeta=false; rDelta=false; rConst=[]; } let refine_locs = { Locus.onhyps=None; concl_occs=Locus.AllOccurrences } let refine_tac {Glob_term.closure=closure;term=term} = Proofview.Goal.enter begin fun gl -> let concl = Proofview.Goal.concl gl in let env = Proofview.Goal.env gl in let flags = Pretyping.all_no_fail_flags in let tycon = Pretyping.OfType concl in let lvar = { Pretyping.empty_lvar with Pretyping.ltac_constrs = closure.Glob_term.typed; Pretyping.ltac_uconstrs = closure.Glob_term.untyped; } in let update evd = Pretyping.understand_ltac flags evd env lvar tycon term in Proofview.Refine.refine_casted (fun h -> Proofview.Refine.update h update) <*> Proofview.V82.tactic (reduce refine_red_flags refine_locs) end TACTIC EXTEND refine [ "refine" uconstr(c) ] -> [ refine_tac c ] END (**********************************************************************) (* Inversion lemmas (Leminv) *) open Inv open Leminv let seff id = Vernacexpr.VtSideff [id], Vernacexpr.VtLater VERNAC COMMAND EXTEND DeriveInversionClear | [ "Derive" "Inversion_clear" ident(na) "with" constr(c) "Sort" sort(s) ] => [ seff na ] -> [ add_inversion_lemma_exn na c s false inv_clear_tac ] | [ "Derive" "Inversion_clear" ident(na) "with" constr(c) ] => [ seff na ] -> [ add_inversion_lemma_exn na c GProp false inv_clear_tac ] END open Term VERNAC COMMAND EXTEND DeriveInversion | [ "Derive" "Inversion" ident(na) "with" constr(c) "Sort" sort(s) ] => [ seff na ] -> [ add_inversion_lemma_exn na c s false inv_tac ] | [ "Derive" "Inversion" ident(na) "with" constr(c) ] => [ seff na ] -> [ add_inversion_lemma_exn na c GProp false inv_tac ] END VERNAC COMMAND EXTEND DeriveDependentInversion | [ "Derive" "Dependent" "Inversion" ident(na) "with" constr(c) "Sort" sort(s) ] => [ seff na ] -> [ add_inversion_lemma_exn na c s true dinv_tac ] END VERNAC COMMAND EXTEND DeriveDependentInversionClear | [ "Derive" "Dependent" "Inversion_clear" ident(na) "with" constr(c) "Sort" sort(s) ] => [ seff na ] -> [ add_inversion_lemma_exn na c s true dinv_clear_tac ] END (**********************************************************************) (* Subst *) TACTIC EXTEND subst | [ "subst" ne_var_list(l) ] -> [ subst l ] | [ "subst" ] -> [ subst_all () ] END let simple_subst_tactic_flags = { only_leibniz = true; rewrite_dependent_proof = false } TACTIC EXTEND simple_subst | [ "simple" "subst" ] -> [ subst_all ~flags:simple_subst_tactic_flags () ] END open Evar_tactics (**********************************************************************) (* Evar creation *) TACTIC EXTEND evar [ "evar" "(" ident(id) ":" lconstr(typ) ")" ] -> [ let_evar (Name id) typ ] | [ "evar" constr(typ) ] -> [ let_evar Anonymous typ ] END open Tacticals TACTIC EXTEND instantiate [ "instantiate" "(" integer(i) ":=" lglob(c) ")" hloc(hl) ] -> [ Tacticals.New.tclTHEN (instantiate_tac i c hl) Proofview.V82.nf_evar_goals ] | [ "instantiate" ] -> [ Proofview.V82.nf_evar_goals ] END (**********************************************************************) (** Nijmegen "step" tactic for setoid rewriting *) open Tactics open Glob_term open Libobject open Lib (* Registered lemmas are expected to be of the form x R y -> y == z -> x R z (in the right table) x R y -> x == z -> z R y (in the left table) *) let transitivity_right_table = Summary.ref [] ~name:"transitivity-steps-r" let transitivity_left_table = Summary.ref [] ~name:"transitivity-steps-l" (* [step] tries to apply a rewriting lemma; then apply [tac] intended to complete to proof of the last hypothesis (assumed to state an equality) *) let step left x tac = let l = List.map (fun lem -> Tacticals.New.tclTHENLAST (apply_with_bindings (lem, ImplicitBindings [x])) tac) !(if left then transitivity_left_table else transitivity_right_table) in Tacticals.New.tclFIRST l (* Main function to push lemmas in persistent environment *) let cache_transitivity_lemma (_,(left,lem)) = if left then transitivity_left_table := lem :: !transitivity_left_table else transitivity_right_table := lem :: !transitivity_right_table let subst_transitivity_lemma (subst,(b,ref)) = (b,subst_mps subst ref) let inTransitivity : bool * constr -> obj = declare_object {(default_object "TRANSITIVITY-STEPS") with cache_function = cache_transitivity_lemma; open_function = (fun i o -> if Int.equal i 1 then cache_transitivity_lemma o); subst_function = subst_transitivity_lemma; classify_function = (fun o -> Substitute o) } (* Main entry points *) let add_transitivity_lemma left lem = let lem',ctx (*FIXME*) = Constrintern.interp_constr Evd.empty (Global.env ()) lem in add_anonymous_leaf (inTransitivity (left,lem')) (* Vernacular syntax *) TACTIC EXTEND stepl | ["stepl" constr(c) "by" tactic(tac) ] -> [ step true c (Tacinterp.eval_tactic tac) ] | ["stepl" constr(c) ] -> [ step true c (Proofview.tclUNIT ()) ] END TACTIC EXTEND stepr | ["stepr" constr(c) "by" tactic(tac) ] -> [ step false c (Tacinterp.eval_tactic tac) ] | ["stepr" constr(c) ] -> [ step false c (Proofview.tclUNIT ()) ] END VERNAC COMMAND EXTEND AddStepl CLASSIFIED AS SIDEFF | [ "Declare" "Left" "Step" constr(t) ] -> [ add_transitivity_lemma true t ] END VERNAC COMMAND EXTEND AddStepr CLASSIFIED AS SIDEFF | [ "Declare" "Right" "Step" constr(t) ] -> [ add_transitivity_lemma false t ] END VERNAC COMMAND EXTEND ImplicitTactic CLASSIFIED AS SIDEFF | [ "Declare" "Implicit" "Tactic" tactic(tac) ] -> [ Pfedit.declare_implicit_tactic (Tacinterp.interp tac) ] | [ "Clear" "Implicit" "Tactic" ] -> [ Pfedit.clear_implicit_tactic () ] END (**********************************************************************) (*spiwack : Vernac commands for retroknowledge *) VERNAC COMMAND EXTEND RetroknowledgeRegister CLASSIFIED AS SIDEFF | [ "Register" constr(c) "as" retroknowledge_field(f) "by" constr(b)] -> [ let tc,ctx = Constrintern.interp_constr Evd.empty (Global.env ()) c in let tb,ctx(*FIXME*) = Constrintern.interp_constr Evd.empty (Global.env ()) b in Global.register f tc tb ] END (**********************************************************************) (* sozeau: abs/gen for induction on instantiated dependent inductives, using "Ford" induction as defined by Conor McBride *) TACTIC EXTEND generalize_eqs | ["generalize_eqs" hyp(id) ] -> [ abstract_generalize ~generalize_vars:false id ] END TACTIC EXTEND dep_generalize_eqs | ["dependent" "generalize_eqs" hyp(id) ] -> [ abstract_generalize ~generalize_vars:false ~force_dep:true id ] END TACTIC EXTEND generalize_eqs_vars | ["generalize_eqs_vars" hyp(id) ] -> [ abstract_generalize ~generalize_vars:true id ] END TACTIC EXTEND dep_generalize_eqs_vars | ["dependent" "generalize_eqs_vars" hyp(id) ] -> [ abstract_generalize ~force_dep:true ~generalize_vars:true id ] END (** Tactic to automatically simplify hypotheses of the form [Π Δ, x_i = t_i -> T] where [t_i] is closed w.r.t. Δ. Such hypotheses are automatically generated during dependent induction. For internal use. *) TACTIC EXTEND specialize_eqs [ "specialize_eqs" hyp(id) ] -> [ Proofview.V82.tactic (specialize_eqs id) ] END (**********************************************************************) (* A tactic that considers a given occurrence of [c] in [t] and *) (* abstract the minimal set of all the occurrences of [c] so that the *) (* abstraction [fun x -> t[x/c]] is well-typed *) (* *) (* Contributed by Chung-Kil Hur (Winter 2009) *) (**********************************************************************) let subst_var_with_hole occ tid t = let occref = if occ > 0 then ref occ else Find_subterm.error_invalid_occurrence [occ] in let locref = ref 0 in let rec substrec = function | GVar (_,id) as x -> if Id.equal id tid then (decr occref; if Int.equal !occref 0 then x else (incr locref; GHole (Loc.make_loc (!locref,0), Evar_kinds.QuestionMark(Evar_kinds.Define true), None))) else x | c -> map_glob_constr_left_to_right substrec c in let t' = substrec t in if !occref > 0 then Find_subterm.error_invalid_occurrence [occ] else t' let subst_hole_with_term occ tc t = let locref = ref 0 in let occref = ref occ in let rec substrec = function | GHole (_,Evar_kinds.QuestionMark(Evar_kinds.Define true),s) -> decr occref; if Int.equal !occref 0 then tc else (incr locref; GHole (Loc.make_loc (!locref,0), Evar_kinds.QuestionMark(Evar_kinds.Define true),s)) | c -> map_glob_constr_left_to_right substrec c in substrec t open Tacmach let out_arg = function | ArgVar _ -> anomaly (Pp.str "Unevaluated or_var variable") | ArgArg x -> x let hResolve id c occ t gl = let sigma = project gl in let env = Termops.clear_named_body id (pf_env gl) in let env_ids = Termops.ids_of_context env in let env_names = Termops.names_of_rel_context env in let c_raw = Detyping.detype true env_ids env_names c in let t_raw = Detyping.detype true env_ids env_names t in let rec resolve_hole t_hole = try Pretyping.understand sigma env t_hole with | Pretype_errors.PretypeError (_,_,Pretype_errors.UnsolvableImplicit _) as e -> let loc = match Loc.get_loc e with None -> Loc.ghost | Some loc -> loc in resolve_hole (subst_hole_with_term (fst (Loc.unloc loc)) c_raw t_hole) in let t_constr,ctx = resolve_hole (subst_var_with_hole occ id t_raw) in let sigma = Evd.merge_universe_context sigma ctx in let t_constr_type = Retyping.get_type_of env sigma t_constr in tclTHEN (Refiner.tclEVARS sigma) (change_concl (mkLetIn (Anonymous,t_constr,t_constr_type,pf_concl gl))) gl let hResolve_auto id c t gl = let rec resolve_auto n = try hResolve id c n t gl with | UserError _ as e -> raise e | e when Errors.noncritical e -> resolve_auto (n+1) in resolve_auto 1 TACTIC EXTEND hresolve_core | [ "hresolve_core" "(" ident(id) ":=" constr(c) ")" "at" int_or_var(occ) "in" constr(t) ] -> [ Proofview.V82.tactic (hResolve id c (out_arg occ) t) ] | [ "hresolve_core" "(" ident(id) ":=" constr(c) ")" "in" constr(t) ] -> [ Proofview.V82.tactic (hResolve_auto id c t) ] END (** hget_evar *) let hget_evar n gl = let sigma = project gl in let evl = evar_list sigma (pf_concl gl) in if List.length evl < n then error "Not enough uninstantiated existential variables."; if n <= 0 then error "Incorrect existential variable index."; let ev = List.nth evl (n-1) in let ev_type = existential_type sigma ev in change_concl (mkLetIn (Anonymous,mkEvar ev,ev_type,pf_concl gl)) gl TACTIC EXTEND hget_evar | [ "hget_evar" int_or_var(n) ] -> [ Proofview.V82.tactic (hget_evar (out_arg n)) ] END (**********************************************************************) (**********************************************************************) (* A tactic that reduces one match t with ... by doing destruct t. *) (* if t is not a variable, the tactic does *) (* case_eq t;intros ... heq;rewrite heq in *|-. (but heq itself is *) (* preserved). *) (* Contributed by Julien Forest and Pierre Courtieu (july 2010) *) (**********************************************************************) exception Found of unit Proofview.tactic let rewrite_except h = Proofview.Goal.enter begin fun gl -> let hyps = Tacmach.New.pf_ids_of_hyps gl in Tacticals.New.tclMAP (fun id -> if Id.equal id h then Proofview.tclUNIT () else Tacticals.New.tclTRY (Equality.general_rewrite_in true Locus.AllOccurrences true true id (mkVar h) false)) hyps end let refl_equal = let coq_base_constant s = Coqlib.gen_constant_in_modules "RecursiveDefinition" (Coqlib.init_modules @ [["Coq";"Arith";"Le"];["Coq";"Arith";"Lt"]]) s in function () -> (coq_base_constant "eq_refl") (* This is simply an implementation of the case_eq tactic. this code should be replaced by a call to the tactic but I don't know how to call it before it is defined. *) let mkCaseEq a : unit Proofview.tactic = Proofview.Goal.enter begin fun gl -> let type_of_a = Tacmach.New.of_old (fun g -> Tacmach.pf_type_of g a) gl in Tacticals.New.tclTHENLIST [Proofview.V82.tactic (Tactics.Simple.generalize [mkApp(delayed_force refl_equal, [| type_of_a; a|])]); Proofview.Goal.enter begin fun gl -> let concl = Proofview.Goal.concl gl in let env = Proofview.Goal.env gl in Proofview.V82.tactic begin change_concl (Tacred.pattern_occs [Locus.OnlyOccurrences [1], a] env Evd.empty concl) end end; simplest_case a] end let case_eq_intros_rewrite x = Proofview.Goal.enter begin fun gl -> let n = nb_prod (Proofview.Goal.concl gl) in (* Pp.msgnl (Printer.pr_lconstr x); *) Tacticals.New.tclTHENLIST [ mkCaseEq x; Proofview.Goal.enter begin fun gl -> let concl = Proofview.Goal.concl gl in let hyps = Tacmach.New.pf_ids_of_hyps gl in let n' = nb_prod concl in let h = Tacmach.New.of_old (fun g -> fresh_id hyps (Id.of_string "heq") g) gl in Tacticals.New.tclTHENLIST [ Tacticals.New.tclDO (n'-n-1) intro; Proofview.V82.tactic (Tacmach.introduction h); rewrite_except h] end ] end let rec find_a_destructable_match t = match kind_of_term t with | Case (_,_,x,_) when closed0 x -> if isVar x then (* TODO check there is no rel n. *) raise (Found (Tacinterp.eval_tactic(<:tactic>))) else (* let _ = Pp.msgnl (Printer.pr_lconstr x) in *) raise (Found (case_eq_intros_rewrite x)) | _ -> iter_constr find_a_destructable_match t let destauto t = try find_a_destructable_match t; Proofview.tclZERO (UserError ("", str"No destructable match found")) with Found tac -> tac let destauto_in id = Proofview.Goal.enter begin fun gl -> let ctype = Tacmach.New.of_old (fun g -> Tacmach.pf_type_of g (mkVar id)) gl in (* Pp.msgnl (Printer.pr_lconstr (mkVar id)); *) (* Pp.msgnl (Printer.pr_lconstr (ctype)); *) destauto ctype end TACTIC EXTEND destauto | [ "destauto" ] -> [ Proofview.Goal.enter (fun gl -> destauto (Proofview.Goal.concl gl)) ] | [ "destauto" "in" hyp(id) ] -> [ destauto_in id ] END (* ********************************************************************* *) TACTIC EXTEND constr_eq | [ "constr_eq" constr(x) constr(y) ] -> [ if eq_constr x y then Proofview.tclUNIT () else Tacticals.New.tclFAIL 0 (str "Not equal") ] END TACTIC EXTEND constr_eq_nounivs | [ "constr_eq_nounivs" constr(x) constr(y) ] -> [ if eq_constr_nounivs x y then Proofview.tclUNIT () else Tacticals.New.tclFAIL 0 (str "Not equal") ] END TACTIC EXTEND is_evar | [ "is_evar" constr(x) ] -> [ match kind_of_term x with | Evar _ -> Proofview.tclUNIT () | _ -> Tacticals.New.tclFAIL 0 (str "Not an evar") ] END let rec has_evar x = match kind_of_term x with | Evar _ -> true | Rel _ | Var _ | Meta _ | Sort _ | Const _ | Ind _ | Construct _ -> false | Cast (t1, _, t2) | Prod (_, t1, t2) | Lambda (_, t1, t2) -> has_evar t1 || has_evar t2 | LetIn (_, t1, t2, t3) -> has_evar t1 || has_evar t2 || has_evar t3 | App (t1, ts) -> has_evar t1 || has_evar_array ts | Case (_, t1, t2, ts) -> has_evar t1 || has_evar t2 || has_evar_array ts | Fix ((_, tr)) | CoFix ((_, tr)) -> has_evar_prec tr | Proj (p, c) -> has_evar c and has_evar_array x = Array.exists has_evar x and has_evar_prec (_, ts1, ts2) = Array.exists has_evar ts1 || Array.exists has_evar ts2 TACTIC EXTEND has_evar | [ "has_evar" constr(x) ] -> [ if has_evar x then Proofview.tclUNIT () else Tacticals.New.tclFAIL 0 (str "No evars") ] END TACTIC EXTEND is_hyp | [ "is_var" constr(x) ] -> [ match kind_of_term x with | Var _ -> Proofview.tclUNIT () | _ -> Tacticals.New.tclFAIL 0 (str "Not a variable or hypothesis") ] END TACTIC EXTEND is_fix | [ "is_fix" constr(x) ] -> [ match kind_of_term x with | Fix _ -> Proofview.tclUNIT () | _ -> Tacticals.New.tclFAIL 0 (Pp.str "not a fix definition") ] END;; TACTIC EXTEND is_cofix | [ "is_cofix" constr(x) ] -> [ match kind_of_term x with | CoFix _ -> Proofview.tclUNIT () | _ -> Tacticals.New.tclFAIL 0 (Pp.str "not a cofix definition") ] END;; (* Command to grab the evars left unresolved at the end of a proof. *) (* spiwack: I put it in extratactics because it is somewhat tied with the semantics of the LCF-style tactics, hence with the classic tactic mode. *) VERNAC COMMAND EXTEND GrabEvars [ "Grab" "Existential" "Variables" ] => [ Vernacexpr.VtProofStep false, Vernacexpr.VtLater ] -> [ Proof_global.simple_with_current_proof (fun _ p -> Proof.V82.grab_evars p) ] END (* Shelves all the goals under focus. *) TACTIC EXTEND shelve | [ "shelve" ] -> [ Proofview.shelve ] END (* Shelves the unifiable goals under focus, i.e. the goals which appear in other goals under focus (the unfocused goals are not considered). *) TACTIC EXTEND shelve_unifiable | [ "shelve_unifiable" ] -> [ Proofview.shelve_unifiable ] END (* Command to add every unshelved variables to the focus *) VERNAC COMMAND EXTEND Unshelve [ "Unshelve" ] => [ Vernacexpr.VtProofStep false, Vernacexpr.VtLater ] -> [ Proof_global.simple_with_current_proof (fun _ p -> Proof.unshelve p) ] END (* Gives up on the goals under focus: the goals are considered solved, but the proof cannot be closed until the user goes back and solve these goals. *) TACTIC EXTEND give_up | [ "give_up" ] -> [ Proofview.give_up ] END (* cycles [n] goals *) TACTIC EXTEND cycle | [ "cycle" int_or_var(n) ] -> [ Proofview.cycle (out_arg n) ] END (* swaps goals number [i] and [j] *) TACTIC EXTEND swap | [ "swap" int_or_var(i) int_or_var(j) ] -> [ Proofview.swap (out_arg i) (out_arg j) ] END type cmp = | Eq | Lt | Le | Gt | Ge type 'i test = | Test of cmp * 'i * 'i let wit_cmp : (cmp,cmp,cmp) Genarg.genarg_type = Genarg.make0 None "cmp" let wit_test : (int or_var test,int or_var test,int test) Genarg.genarg_type = Genarg.make0 None "tactest" let pr_cmp = function | Eq -> Pp.str"=" | Lt -> Pp.str"<" | Le -> Pp.str"<=" | Gt -> Pp.str">" | Ge -> Pp.str">=" let pr_cmp' _prc _prlc _prt = pr_cmp let pr_test_gen f (Test(c,x,y)) = Pp.(f x ++ pr_cmp c ++ f y) let pr_test = pr_test_gen (Pptactic.pr_or_var Pp.int) let pr_test' _prc _prlc _prt = pr_test let pr_itest = pr_test_gen Pp.int let pr_itest' _prc _prlc _prt = pr_itest ARGUMENT EXTEND comparison TYPED AS cmp PRINTED BY pr_cmp' | [ "=" ] -> [ Eq ] | [ "<" ] -> [ Lt ] | [ "<=" ] -> [ Le ] | [ ">" ] -> [ Gt ] | [ ">=" ] -> [ Ge ] END let interp_test ist gls = function | Test (c,x,y) -> project gls , Test(c,Tacinterp.interp_int_or_var ist x,Tacinterp.interp_int_or_var ist y) ARGUMENT EXTEND test PRINTED BY pr_itest' INTERPRETED BY interp_test RAW_TYPED AS test RAW_PRINTED BY pr_test' GLOB_TYPED AS test GLOB_PRINTED BY pr_test' | [ int_or_var(x) comparison(c) int_or_var(y) ] -> [ Test(c,x,y) ] END let interp_cmp = function | Eq -> Int.equal | Lt -> ((<):int->int->bool) | Le -> ((<=):int->int->bool) | Gt -> ((>):int->int->bool) | Ge -> ((>=):int->int->bool) let run_test = function | Test(c,x,y) -> interp_cmp c x y let guard tst = if run_test tst then Proofview.tclUNIT () else let msg = Pp.(str"Condition not satisfied:"++ws 1++(pr_itest tst)) in Proofview.tclZERO (Errors.UserError("guard",msg)) TACTIC EXTEND guard | [ "guard" test(tst) ] -> [ guard tst ] END let decompose l c = Proofview.Goal.raw_enter begin fun gl -> let to_ind c = if isInd c then Univ.out_punivs (destInd c) else error "not an inductive type" in let l = List.map to_ind l in Elim.h_decompose l c end TACTIC EXTEND decompose | [ "decompose" "[" ne_constr_list(l) "]" constr(c) ] -> [ decompose l c ] END