(***********************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) (* if b then acc+2 else acc+1) 0 ba.branchsign in let introElimAssums = tclDO nassums intro in (tclTHEN introElimAssums (elim_on_ba tac ba)) let introCaseAssumsThen tac ba = let case_thin_sign = List.flatten (List.map (function b -> if b then [false;true] else [false]) ba.branchsign) in let introCaseAssums = intros_clearing case_thin_sign in (tclTHEN introCaseAssums (case_on_ba tac ba)) (* The following tactic Decompose repeatedly applies the elimination(s) rule(s) of the types satisfying the predicate ``recognizer'' onto a certain hypothesis. For example : Require Elim. Require Le. Goal (y:nat){x:nat | (le O x)/\(le x y)}->{x:nat | (le O x)}. Intros y H. Decompose [sig and] H;EAuto. Qed. Another example : Goal (A,B,C:Prop)(A/\B/\C \/ B/\C \/ C/\A) -> C. Intros A B C H; Decompose [and or] H; Assumption. Qed. *) let elimHypThen tac id gl = elimination_then tac ([],[]) (mkVar id) gl let rec general_decompose_on_hyp recognizer = ifOnHyp recognizer (general_decompose recognizer) (fun _ -> tclIDTAC) and general_decompose recognizer id = elimHypThen (introElimAssumsThen (fun bas -> tclTHEN (clear [id]) (tclMAP (general_decompose_on_hyp recognizer) (ids_of_named_context bas.assums)))) id (* Faudrait ajouter un COMPLETE pour que l'hypothèse créée ne reste pas si aucune élimination n'est possible *) (* Meilleures stratégies mais perte de compatibilité *) let tmphyp_name = id_of_string "_TmpHyp" let up_to_delta = ref false (* true *) let general_decompose recognizer c gl = let typc = pf_type_of gl c in (tclTHENS (cut typc) [tclTHEN (intro_using tmphyp_name) (onLastHyp (ifOnHyp recognizer (general_decompose recognizer) (fun id -> clear [id]))); exact_no_check c]) gl let head_in gls indl t = try let ity,_ = if !up_to_delta then find_mrectype (pf_env gls) (project gls) t else extract_mrectype t in List.mem ity indl with Not_found -> false let inductive_of_qualid gls qid = let c = try Declare.construct_qualified_reference qid with Not_found -> Nametab.error_global_not_found qid in match kind_of_term c with | Ind ity -> ity | _ -> errorlabstrm "Decompose" (Nametab.pr_qualid qid ++ str " is not an inductive type") let decompose_these c l gls = let indl = List.map (inductive_of_qualid gls) l in general_decompose (fun (_,t) -> head_in gls indl t) c gls let decompose_nonrec c gls = general_decompose (fun (_,t) -> is_non_recursive_type t) c gls let decompose_and c gls = general_decompose (fun (_,t) -> is_conjunction t) c gls let decompose_or c gls = general_decompose (fun (_,t) -> is_disjunction t) c gls let dyn_decompose args gl = let out_qualid = function | Qualid qid -> qid | l -> bad_tactic_args "DecomposeThese" [l] gl in match args with | Command c :: ids -> decompose_these (pf_interp_constr gl c) (List.map out_qualid ids) gl | Constr c :: ids -> decompose_these c (List.map out_qualid ids) gl | l -> bad_tactic_args "DecomposeThese" l gl let h_decompose = let v_decompose = hide_tactic "DecomposeThese" dyn_decompose in fun ids c -> v_decompose (Constr c :: List.map (fun x -> Qualid (Nametab.qualid_of_sp x)) ids) let vernac_decompose_and = hide_constr_tactic "DecomposeAnd" decompose_and let vernac_decompose_or = hide_constr_tactic "DecomposeOr" decompose_or (* The tactic Double performs a double induction *) let simple_elimination c gls = simple_elimination_then (fun _ -> tclIDTAC) c gls let induction_trailer abs_i abs_j bargs = tclTHEN (tclDO (abs_j - abs_i) intro) (onLastHyp (fun id gls -> let idty = pf_type_of gls (mkVar id) in let fvty = global_vars (pf_env gls) idty in let possible_bring_hyps = (List.tl (nLastHyps (abs_j - abs_i) gls)) @ bargs.assums in let (hyps,_) = List.fold_left (fun (bring_ids,leave_ids) (cid,_,cidty as d) -> if not (List.mem cid leave_ids) then (d::bring_ids,leave_ids) else (bring_ids,cid::leave_ids)) ([],fvty) possible_bring_hyps in let ids = List.rev (ids_of_named_context hyps) in (tclTHENSEQ [bring_hyps hyps; clear ids; simple_elimination (mkVar id)]) gls)) let double_ind abs_i abs_j gls = let cl = pf_concl gls in (tclTHEN (tclDO abs_i intro) (onLastHyp (fun id -> elimination_then (introElimAssumsThen (induction_trailer abs_i abs_j)) ([],[]) (mkVar id)))) gls let dyn_double_ind = function | [Integer i; Integer j] -> double_ind i j | _ -> assert false let _ = add_tactic "DoubleInd" dyn_double_ind (*****************************) (* Decomposing introductions *) (*****************************) let rec intro_pattern p = let clear_last = tclLAST_HYP (fun c -> (clear [destVar c])) and case_last = tclLAST_HYP h_simplest_case in match p with | WildPat -> tclTHEN intro clear_last | IdPat id -> intro_mustbe_force id | DisjPat l -> tclTHEN introf (tclTHENS (tclTHEN case_last clear_last) (List.map intro_pattern l)) | ConjPat l -> tclTHENSEQ [introf; case_last; clear_last; intros_pattern l] | ListPat l -> intros_pattern l and intros_pattern l = tclMAP intro_pattern l let dyn_intro_pattern = function | [] -> intros | [Intropattern p] -> intro_pattern p | l -> bad_tactic_args "Elim.dyn_intro_pattern" l let v_intro_pattern = hide_tactic "Intros" dyn_intro_pattern let h_intro_pattern p = v_intro_pattern [Intropattern p]