(************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) (* List.equal eq_gr gr1 gr2 | PathAny, PathAny -> true | (PathHints _ | PathAny), _ -> false let eq_auto_tactic t1 t2 = match t1, t2 with | Res_pf (c1, _), Res_pf (c2, _) -> Constr.equal c1 c2 | ERes_pf (c1, _), ERes_pf (c2, _) -> Constr.equal c1 c2 | Give_exact c1, Give_exact c2 -> Constr.equal c1 c2 | Res_pf_THEN_trivial_fail (c1, _), Res_pf_THEN_trivial_fail (c2, _) -> Constr.equal c1 c2 | Unfold_nth gr1, Unfold_nth gr2 -> eq_egr gr1 gr2 | Extern tac1, Extern tac2 -> tac1 == tac2 (** May cause redundancy in addkv *) | (Res_pf _ | ERes_pf _ | Give_exact _ | Res_pf_THEN_trivial_fail _ | Unfold_nth _ | Extern _), _ -> false let eq_gen_auto_tactic t1 t2 = Int.equal t1.pri t2.pri && Option.equal constr_pattern_eq t1.pat t2.pat && eq_hints_path_atom t1.name t2.name && eq_auto_tactic t1.code t2.code let pri_order_int (id1, {pri=pri1}) (id2, {pri=pri2}) = let d = pri1 - pri2 in if Int.equal d 0 then id2 - id1 else d let pri_order t1 t2 = pri_order_int t1 t2 <= 0 let insert v l = let rec insrec = function | [] -> [v] | h::tl -> if pri_order v h then v::h::tl else h::(insrec tl) in insrec l (* Nov 98 -- Papageno *) (* Les Hints sont ré-organisés en plusieurs databases. La table impérative "searchtable", de type "hint_db_table", associe une database (hint_db) à chaque nom. Une hint_db est une table d'association fonctionelle constr -> search_entry Le constr correspond à la constante de tête de la conclusion. Une search_entry est un triplet comprenant : - la liste des tactiques qui n'ont pas de pattern associé - la liste des tactiques qui ont un pattern - un discrimination net borné (Btermdn.t) constitué de tous les patterns de la seconde liste de tactiques *) type stored_data = int * pri_auto_tactic (* First component is the index of insertion in the table, to keep most recent first semantics. *) module Bounded_net = Btermdn.Make(struct type t = stored_data let compare = pri_order_int end) type search_entry = stored_data list * stored_data list * Bounded_net.t let empty_se = ([],[],Bounded_net.create ()) let eq_pri_auto_tactic (_, x) (_, y) = if Int.equal x.pri y.pri && Option.equal constr_pattern_eq x.pat y.pat then match x.code,y.code with | Res_pf(cstr,_),Res_pf(cstr1,_) -> eq_constr cstr cstr1 | ERes_pf(cstr,_),ERes_pf(cstr1,_) -> eq_constr cstr cstr1 | Give_exact cstr,Give_exact cstr1 -> eq_constr cstr cstr1 | Res_pf_THEN_trivial_fail(cstr,_) ,Res_pf_THEN_trivial_fail(cstr1,_) -> eq_constr cstr cstr1 | _,_ -> false else false let add_tac pat t st (l,l',dn) = match pat with | None -> if not (List.exists (eq_pri_auto_tactic t) l) then (insert t l, l', dn) else (l, l', dn) | Some pat -> if not (List.exists (eq_pri_auto_tactic t) l') then (l, insert t l', Bounded_net.add st dn (pat,t)) else (l, l', dn) let rebuild_dn st ((l,l',dn) : search_entry) = (l, l', List.fold_left (fun dn (id, t) -> Bounded_net.add (Some st) dn (Option.get t.pat, (id, t))) (Bounded_net.create ()) l') let lookup_tacs (hdc,c) st (l,l',dn) = let l' = Bounded_net.lookup st dn c in let sl' = List.stable_sort pri_order_int l' in List.merge pri_order_int l sl' module Constr_map = Map.Make(RefOrdered) let is_transparent_gr (ids, csts) = function | VarRef id -> Id.Pred.mem id ids | ConstRef cst -> Cpred.mem cst csts | IndRef _ | ConstructRef _ -> false let dummy_goal = Goal.V82.dummy_goal let translate_hint (go,p) = let mk_clenv (c,t) = let cl = mk_clenv_from dummy_goal (c,t) in {cl with env = empty_env } in let code = match p.code with | Res_pf (c,t) -> Res_pf (c, mk_clenv (c,t)) | ERes_pf (c,t) -> ERes_pf (c, mk_clenv (c,t)) | Res_pf_THEN_trivial_fail (c,t) -> Res_pf_THEN_trivial_fail (c, mk_clenv (c,t)) | Give_exact c -> Give_exact c | Unfold_nth e -> Unfold_nth e | Extern t -> Extern t in (go,{ p with code = code }) let hints_path_atom_eq h1 h2 = match h1, h2 with | PathHints l1, PathHints l2 -> List.equal eq_gr l1 l2 | PathAny, PathAny -> true | _ -> false let rec hints_path_eq h1 h2 = match h1, h2 with | PathAtom h1, PathAtom h2 -> hints_path_atom_eq h1 h2 | PathStar h1, PathStar h2 -> hints_path_eq h1 h2 | PathSeq (l1, r1), PathSeq (l2, r2) -> hints_path_eq l1 l2 && hints_path_eq r1 r2 | PathOr (l1, r1), PathOr (l2, r2) -> hints_path_eq l1 l2 && hints_path_eq r1 r2 | PathEmpty, PathEmpty -> true | PathEpsilon, PathEpsilon -> true | _ -> false let path_matches hp hints = let rec aux hp hints k = match hp, hints with | PathAtom _, [] -> false | PathAtom PathAny, (_ :: hints') -> k hints' | PathAtom p, (h :: hints') -> if hints_path_atom_eq p h then k hints' else false | PathStar hp', hints -> k hints || aux hp' hints (fun hints' -> aux hp hints' k) | PathSeq (hp, hp'), hints -> aux hp hints (fun hints' -> aux hp' hints' k) | PathOr (hp, hp'), hints -> aux hp hints k || aux hp' hints k | PathEmpty, _ -> false | PathEpsilon, hints -> k hints in aux hp hints (fun hints' -> true) let rec matches_epsilon = function | PathAtom _ -> false | PathStar _ -> true | PathSeq (p, p') -> matches_epsilon p && matches_epsilon p' | PathOr (p, p') -> matches_epsilon p || matches_epsilon p' | PathEmpty -> false | PathEpsilon -> true let rec is_empty = function | PathAtom _ -> false | PathStar _ -> false | PathSeq (p, p') -> is_empty p || is_empty p' | PathOr (p, p') -> matches_epsilon p && matches_epsilon p' | PathEmpty -> true | PathEpsilon -> false let rec path_derivate hp hint = let rec derivate_atoms hints hints' = match hints, hints' with | gr :: grs, gr' :: grs' when eq_gr gr gr' -> derivate_atoms grs grs' | [], [] -> PathEpsilon | [], hints -> PathEmpty | grs, [] -> PathAtom (PathHints grs) | _, _ -> PathEmpty in match hp with | PathAtom PathAny -> PathEpsilon | PathAtom (PathHints grs) -> (match grs, hint with | h :: hints, PathAny -> PathEmpty | hints, PathHints hints' -> derivate_atoms hints hints' | _, _ -> assert false) | PathStar p -> if path_matches p [hint] then hp else PathEpsilon | PathSeq (hp, hp') -> let hpder = path_derivate hp hint in if matches_epsilon hp then PathOr (PathSeq (hpder, hp'), path_derivate hp' hint) else if is_empty hpder then PathEmpty else PathSeq (hpder, hp') | PathOr (hp, hp') -> PathOr (path_derivate hp hint, path_derivate hp' hint) | PathEmpty -> PathEmpty | PathEpsilon -> PathEmpty let rec normalize_path h = match h with | PathStar PathEpsilon -> PathEpsilon | PathSeq (PathEmpty, _) | PathSeq (_, PathEmpty) -> PathEmpty | PathSeq (PathEpsilon, p) | PathSeq (p, PathEpsilon) -> normalize_path p | PathOr (PathEmpty, p) | PathOr (p, PathEmpty) -> normalize_path p | PathOr (p, q) -> let p', q' = normalize_path p, normalize_path q in if hints_path_eq p p' && hints_path_eq q q' then h else normalize_path (PathOr (p', q')) | PathSeq (p, q) -> let p', q' = normalize_path p, normalize_path q in if hints_path_eq p p' && hints_path_eq q q' then h else normalize_path (PathSeq (p', q')) | _ -> h let path_derivate hp hint = normalize_path (path_derivate hp hint) let rec pp_hints_path = function | PathAtom (PathAny) -> str"." | PathAtom (PathHints grs) -> pr_sequence pr_global grs | PathStar p -> str "(" ++ pp_hints_path p ++ str")*" | PathSeq (p, p') -> pp_hints_path p ++ str" ; " ++ pp_hints_path p' | PathOr (p, p') -> str "(" ++ pp_hints_path p ++ spc () ++ str"|" ++ spc () ++ pp_hints_path p' ++ str ")" | PathEmpty -> str"Ø" | PathEpsilon -> str"ε" let subst_path_atom subst p = match p with | PathAny -> p | PathHints grs -> let gr' gr = fst (subst_global subst gr) in let grs' = List.smartmap gr' grs in if grs' == grs then p else PathHints grs' let rec subst_hints_path subst hp = match hp with | PathAtom p -> let p' = subst_path_atom subst p in if p' == p then hp else PathAtom p' | PathStar p -> let p' = subst_hints_path subst p in if p' == p then hp else PathStar p' | PathSeq (p, q) -> let p' = subst_hints_path subst p in let q' = subst_hints_path subst q in if p' == p && q' == q then hp else PathSeq (p', q') | PathOr (p, q) -> let p' = subst_hints_path subst p in let q' = subst_hints_path subst q in if p' == p && q' == q then hp else PathOr (p', q') | _ -> hp module Hint_db = struct type t = { hintdb_state : Names.transparent_state; hintdb_cut : hints_path; hintdb_unfolds : Id.Set.t * Cset.t; mutable hintdb_max_id : int; use_dn : bool; hintdb_map : search_entry Constr_map.t; (* A list of unindexed entries starting with an unfoldable constant or with no associated pattern. *) hintdb_nopat : (global_reference option * stored_data) list } let next_hint_id t = let h = t.hintdb_max_id in t.hintdb_max_id <- succ t.hintdb_max_id; h let empty st use_dn = { hintdb_state = st; hintdb_cut = PathEmpty; hintdb_unfolds = (Id.Set.empty, Cset.empty); hintdb_max_id = 0; use_dn = use_dn; hintdb_map = Constr_map.empty; hintdb_nopat = [] } let find key db = try Constr_map.find key db.hintdb_map with Not_found -> empty_se let map_none db = List.map snd (List.merge pri_order_int (List.map snd db.hintdb_nopat) []) let map_all k db = let (l,l',_) = find k db in List.map snd (List.merge pri_order_int (List.map snd db.hintdb_nopat @ l) l') let map_auto (k,c) db = let st = if db.use_dn then Some db.hintdb_state else None in let l' = lookup_tacs (k,c) st (find k db) in List.map snd (List.merge pri_order_int (List.map snd db.hintdb_nopat) l') let is_exact = function | Give_exact _ -> true | _ -> false let is_unfold = function | Unfold_nth _ -> true | _ -> false let addkv gr id v db = let idv = id, v in let k = match gr with | Some gr -> if db.use_dn && is_transparent_gr db.hintdb_state gr && is_unfold v.code then None else Some gr | None -> None in let dnst = if db.use_dn then Some db.hintdb_state else None in let pat = if not db.use_dn && is_exact v.code then None else v.pat in match k with | None -> (** ppedrot: this equality here is dubious. Maybe we can remove it? *) let is_present (_, (_, v')) = eq_gen_auto_tactic v v' in if not (List.exists is_present db.hintdb_nopat) then { db with hintdb_nopat = (gr,idv) :: db.hintdb_nopat } else db | Some gr -> let oval = find gr db in { db with hintdb_map = Constr_map.add gr (add_tac pat idv dnst oval) db.hintdb_map } let rebuild_db st' db = let db' = { db with hintdb_map = Constr_map.map (rebuild_dn st') db.hintdb_map; hintdb_state = st'; hintdb_nopat = [] } in List.fold_left (fun db (gr,(id,v)) -> addkv gr id v db) db' db.hintdb_nopat let add_one kv db = let (k,v) = translate_hint kv in let st',db,rebuild = match v.code with | Unfold_nth egr -> let addunf (ids,csts) (ids',csts') = match egr with | EvalVarRef id -> (Id.Pred.add id ids, csts), (Id.Set.add id ids', csts') | EvalConstRef cst -> (ids, Cpred.add cst csts), (ids', Cset.add cst csts') in let state, unfs = addunf db.hintdb_state db.hintdb_unfolds in state, { db with hintdb_unfolds = unfs }, true | _ -> db.hintdb_state, db, false in let db = if db.use_dn && rebuild then rebuild_db st' db else db in addkv k (next_hint_id db) v db let add_list l db = List.fold_left (fun db k -> add_one k db) db l let remove_sdl p sdl = List.smartfilter p sdl let remove_he st p (sl1, sl2, dn as he) = let sl1' = remove_sdl p sl1 and sl2' = remove_sdl p sl2 in if sl1' == sl1 && sl2' == sl2 then he else rebuild_dn st (sl1', sl2', dn) let remove_list grs db = let filter (_, h) = match h.name with PathHints [gr] -> not (List.mem_f eq_gr gr grs) | _ -> true in let hintmap = Constr_map.map (remove_he db.hintdb_state filter) db.hintdb_map in let hintnopat = List.smartfilter (fun (ge, sd) -> filter sd) db.hintdb_nopat in { db with hintdb_map = hintmap; hintdb_nopat = hintnopat } let remove_one gr db = remove_list [gr] db let iter f db = f None (List.map (fun x -> snd (snd x)) db.hintdb_nopat); Constr_map.iter (fun k (l,l',_) -> f (Some k) (List.map snd (l@l'))) db.hintdb_map let fold f db accu = let accu = f None (List.map (fun x -> snd (snd x)) db.hintdb_nopat) accu in Constr_map.fold (fun k (l,l',_) -> f (Some k) (List.map snd (l@l'))) db.hintdb_map accu let transparent_state db = db.hintdb_state let set_transparent_state db st = if db.use_dn then rebuild_db st db else { db with hintdb_state = st } let add_cut path db = { db with hintdb_cut = normalize_path (PathOr (db.hintdb_cut, path)) } let cut db = db.hintdb_cut let unfolds db = db.hintdb_unfolds let use_dn db = db.use_dn end module Hintdbmap = String.Map type hint_db = Hint_db.t type hint_db_table = hint_db Hintdbmap.t ref type hint_db_name = string (** Initially created hint databases, for typeclasses and rewrite *) let typeclasses_db = "typeclass_instances" let rewrite_db = "rewrite" let auto_init_db = Hintdbmap.add typeclasses_db (Hint_db.empty full_transparent_state true) (Hintdbmap.add rewrite_db (Hint_db.empty cst_full_transparent_state true) Hintdbmap.empty) let searchtable : hint_db_table = ref auto_init_db let searchtable_map name = Hintdbmap.find name !searchtable let searchtable_add (name,db) = searchtable := Hintdbmap.add name db !searchtable let current_db_names () = Hintdbmap.domain !searchtable let current_db () = Hintdbmap.bindings !searchtable (**************************************************************************) (* Definition of the summary *) (**************************************************************************) let auto_init : (unit -> unit) ref = ref (fun () -> ()) let add_auto_init f = let init = !auto_init in auto_init := (fun () -> init (); f ()) let init () = searchtable := auto_init_db; !auto_init () let freeze _ = !searchtable let unfreeze fs = searchtable := fs let _ = Summary.declare_summary "search" { Summary.freeze_function = freeze; Summary.unfreeze_function = unfreeze; Summary.init_function = init } (**************************************************************************) (* Auxiliary functions to prepare AUTOHINT objects *) (**************************************************************************) let rec nb_hyp c = match kind_of_term c with | Prod(_,_,c2) -> if noccurn 1 c2 then 1+(nb_hyp c2) else nb_hyp c2 | _ -> 0 (* adding and removing tactics in the search table *) let try_head_pattern c = try head_pattern_bound c with BoundPattern -> error "Bound head variable." let make_exact_entry sigma pri ?(name=PathAny) (c,cty) = let cty = strip_outer_cast cty in match kind_of_term cty with | Prod _ -> failwith "make_exact_entry" | _ -> let pat = snd (Patternops.pattern_of_constr sigma cty) in let hd = try head_pattern_bound pat with BoundPattern -> failwith "make_exact_entry" in (Some hd, { pri = (match pri with None -> 0 | Some p -> p); pat = Some pat; name = name; code = Give_exact c }) let make_apply_entry env sigma (eapply,hnf,verbose) pri ?(name=PathAny) (c,cty) = let cty = if hnf then hnf_constr env sigma cty else cty in match kind_of_term cty with | Prod _ -> let ce = mk_clenv_from dummy_goal (c,cty) in let c' = clenv_type (* ~reduce:false *) ce in let pat = snd (Patternops.pattern_of_constr sigma c') in let hd = try head_pattern_bound pat with BoundPattern -> failwith "make_apply_entry" in let nmiss = List.length (clenv_missing ce) in if Int.equal nmiss 0 then (Some hd, { pri = (match pri with None -> nb_hyp cty | Some p -> p); pat = Some pat; name = name; code = Res_pf(c,cty) }) else begin if not eapply then failwith "make_apply_entry"; if verbose then msg_warning (str "the hint: eapply " ++ pr_lconstr c ++ str " will only be used by eauto"); (Some hd, { pri = (match pri with None -> nb_hyp cty + nmiss | Some p -> p); pat = Some pat; name = name; code = ERes_pf(c,cty) }) end | _ -> failwith "make_apply_entry" (* flags is (e,h,v) with e=true if eapply and h=true if hnf and v=true if verbose c is a constr cty is the type of constr *) let make_resolves env sigma flags pri ?name c = let cty = Retyping.get_type_of env sigma c in let try_apply f = try Some (f (c, cty)) with Failure _ -> None in let ents = List.map_filter try_apply [make_exact_entry sigma pri ?name; make_apply_entry env sigma flags pri ?name] in if List.is_empty ents then errorlabstrm "Hint" (pr_lconstr c ++ spc() ++ (if pi1 flags then str"cannot be used as a hint." else str "can be used as a hint only for eauto.")); ents (* used to add an hypothesis to the local hint database *) let make_resolve_hyp env sigma (hname,_,htyp) = try [make_apply_entry env sigma (true, true, false) None ~name:(PathHints [VarRef hname]) (mkVar hname, htyp)] with | Failure _ -> [] | e when Logic.catchable_exception e -> anomaly (Pp.str "make_resolve_hyp") (* REM : in most cases hintname = id *) let make_unfold eref = let g = global_of_evaluable_reference eref in (Some g, { pri = 4; pat = None; name = PathHints [g]; code = Unfold_nth eref }) let make_extern pri pat tacast = let hdconstr = Option.map try_head_pattern pat in (hdconstr, { pri = pri; pat = pat; name = PathAny; code = Extern tacast }) let make_trivial env sigma ?(name=PathAny) r = let c = constr_of_global_or_constr r in let t = hnf_constr env sigma (type_of env sigma c) in let hd = head_of_constr_reference (fst (head_constr t)) in let ce = mk_clenv_from dummy_goal (c,t) in (Some hd, { pri=1; pat = Some (snd (Patternops.pattern_of_constr sigma (clenv_type ce))); name = name; code=Res_pf_THEN_trivial_fail(c,t) }) open Vernacexpr (**************************************************************************) (* declaration of the AUTOHINT library object *) (**************************************************************************) (* If the database does not exist, it is created *) (* TODO: should a warning be printed in this case ?? *) let get_db dbname = try searchtable_map dbname with Not_found -> Hint_db.empty empty_transparent_state false let add_hint dbname hintlist = let db = get_db dbname in let db' = Hint_db.add_list hintlist db in searchtable_add (dbname,db') let add_transparency dbname grs b = let db = get_db dbname in let st = Hint_db.transparent_state db in let st' = List.fold_left (fun (ids, csts) gr -> match gr with | EvalConstRef c -> (ids, (if b then Cpred.add else Cpred.remove) c csts) | EvalVarRef v -> (if b then Id.Pred.add else Id.Pred.remove) v ids, csts) st grs in searchtable_add (dbname, Hint_db.set_transparent_state db st') let remove_hint dbname grs = let db = get_db dbname in let db' = Hint_db.remove_list grs db in searchtable_add (dbname, db') type hint_action = | CreateDB of bool * transparent_state | AddTransparency of evaluable_global_reference list * bool | AddHints of hint_entry list | RemoveHints of global_reference list | AddCut of hints_path let add_cut dbname path = let db = get_db dbname in let db' = Hint_db.add_cut path db in searchtable_add (dbname, db') type hint_obj = bool * string * hint_action (* locality, name, action *) let cache_autohint (_,(local,name,hints)) = match hints with | CreateDB (b, st) -> searchtable_add (name, Hint_db.empty st b) | AddTransparency (grs, b) -> add_transparency name grs b | AddHints hints -> add_hint name hints | RemoveHints grs -> remove_hint name grs | AddCut path -> add_cut name path let (forward_subst_tactic, extern_subst_tactic) = Hook.make () let subst_autohint (subst,(local,name,hintlist as obj)) = let subst_key gr = let (lab'', elab') = subst_global subst gr in let gr' = (try head_of_constr_reference (fst (head_constr_bound elab')) with Tactics.Bound -> lab'') in if gr' == gr then gr else gr' in let subst_hint (k,data as hint) = let k' = Option.smartmap subst_key k in let pat' = Option.smartmap (subst_pattern subst) data.pat in let code' = match data.code with | Res_pf (c,t) -> let c' = subst_mps subst c in let t' = subst_mps subst t in if c==c' && t'==t then data.code else Res_pf (c', t') | ERes_pf (c,t) -> let c' = subst_mps subst c in let t' = subst_mps subst t in if c==c' && t'==t then data.code else ERes_pf (c',t') | Give_exact c -> let c' = subst_mps subst c in if c==c' then data.code else Give_exact c' | Res_pf_THEN_trivial_fail (c,t) -> let c' = subst_mps subst c in let t' = subst_mps subst t in if c==c' && t==t' then data.code else Res_pf_THEN_trivial_fail (c',t') | Unfold_nth ref -> let ref' = subst_evaluable_reference subst ref in if ref==ref' then data.code else Unfold_nth ref' | Extern tac -> let tac' = Hook.get forward_subst_tactic subst tac in if tac==tac' then data.code else Extern tac' in let name' = subst_path_atom subst data.name in let data' = if data.pat==pat' && data.name == name' && data.code==code' then data else { data with pat = pat'; name = name'; code = code' } in if k' == k && data' == data then hint else (k',data') in match hintlist with | CreateDB _ -> obj | AddTransparency (grs, b) -> let grs' = List.smartmap (subst_evaluable_reference subst) grs in if grs==grs' then obj else (local, name, AddTransparency (grs', b)) | AddHints hintlist -> let hintlist' = List.smartmap subst_hint hintlist in if hintlist' == hintlist then obj else (local,name,AddHints hintlist') | RemoveHints grs -> let grs' = List.smartmap (fun x -> fst (subst_global subst x)) grs in if grs==grs' then obj else (local, name, RemoveHints grs') | AddCut path -> let path' = subst_hints_path subst path in if path' == path then obj else (local, name, AddCut path') let classify_autohint ((local,name,hintlist) as obj) = match hintlist with | AddHints [] -> Dispose | _ -> if local then Dispose else Substitute obj let inAutoHint : hint_obj -> obj = declare_object {(default_object "AUTOHINT") with cache_function = cache_autohint; load_function = (fun _ -> cache_autohint); subst_function = subst_autohint; classify_function = classify_autohint; } let create_hint_db l n st b = Lib.add_anonymous_leaf (inAutoHint (l,n,CreateDB (b, st))) let remove_hints local dbnames grs = let dbnames = if List.is_empty dbnames then ["core"] else dbnames in List.iter (fun dbname -> Lib.add_anonymous_leaf (inAutoHint(local, dbname, RemoveHints grs))) dbnames open Misctypes (**************************************************************************) (* The "Hint" vernacular command *) (**************************************************************************) let add_resolves env sigma clist local dbnames = List.iter (fun dbname -> Lib.add_anonymous_leaf (inAutoHint (local,dbname, AddHints (List.flatten (List.map (fun (x, hnf, path, gr) -> let c = match gr with | IsConstr c -> c | IsGlobal gr -> constr_of_global gr in make_resolves env sigma (true,hnf,Flags.is_verbose()) x ~name:path c) clist))))) dbnames let add_unfolds l local dbnames = List.iter (fun dbname -> Lib.add_anonymous_leaf (inAutoHint (local,dbname, AddHints (List.map make_unfold l)))) dbnames let add_cuts l local dbnames = List.iter (fun dbname -> Lib.add_anonymous_leaf (inAutoHint (local,dbname, AddCut l))) dbnames let add_transparency l b local dbnames = List.iter (fun dbname -> Lib.add_anonymous_leaf (inAutoHint (local,dbname, AddTransparency (l, b)))) dbnames let add_extern pri pat tacast local dbname = let pat = match pat with | None -> None | Some (_, pat) -> Some pat in let hint = local, dbname, AddHints [make_extern pri pat tacast] in Lib.add_anonymous_leaf (inAutoHint hint) let add_externs pri pat tacast local dbnames = List.iter (add_extern pri pat tacast local) dbnames let add_trivials env sigma l local dbnames = List.iter (fun dbname -> Lib.add_anonymous_leaf ( inAutoHint(local,dbname, AddHints (List.map (fun (name, c) -> make_trivial env sigma ~name c) l)))) dbnames let (forward_intern_tac, extern_intern_tac) = Hook.make () type hints_entry = | HintsResolveEntry of (int option * bool * hints_path_atom * global_reference_or_constr) list | HintsImmediateEntry of (hints_path_atom * global_reference_or_constr) list | HintsCutEntry of hints_path | HintsUnfoldEntry of evaluable_global_reference list | HintsTransparencyEntry of evaluable_global_reference list * bool | HintsExternEntry of int * (patvar list * constr_pattern) option * glob_tactic_expr let h = Id.of_string "H" exception Found of constr * types let prepare_hint env (sigma,c) = let sigma = Typeclasses.resolve_typeclasses ~fail:false env sigma in (* We re-abstract over uninstantiated evars. It is actually a bit stupid to generalize over evars since the first thing make_resolves will do is to re-instantiate the products *) let c = drop_extra_implicit_args (Evarutil.nf_evar sigma c) in let vars = ref (collect_vars c) in let subst = ref [] in let rec find_next_evar c = match kind_of_term c with | Evar (evk,args as ev) -> (* We skip the test whether args is the identity or not *) let t = Evarutil.nf_evar sigma (existential_type sigma ev) in let t = List.fold_right (fun (e,id) c -> replace_term e id c) !subst t in if not (Int.Set.is_empty (free_rels t)) then error "Hints with holes dependent on a bound variable not supported."; if occur_existential t then (* Not clever enough to construct dependency graph of evars *) error "Not clever enough to deal with evars dependent in other evars."; raise (Found (c,t)) | _ -> iter_constr find_next_evar c in let rec iter c = try find_next_evar c; c with Found (evar,t) -> let id = next_ident_away_from h (fun id -> Id.Set.mem id !vars) in vars := Id.Set.add id !vars; subst := (evar,mkVar id)::!subst; mkNamedLambda id t (iter (replace_term evar (mkVar id) c)) in iter c let interp_hints = fun h -> let f c = let evd,c = Constrintern.interp_open_constr Evd.empty (Global.env()) c in let c = prepare_hint (Global.env()) (evd,c) in Evarutil.check_evars (Global.env()) Evd.empty evd c; c in let fr r = let gr = global_with_alias r in let r' = evaluable_of_global_reference (Global.env()) gr in Dumpglob.add_glob (loc_of_reference r) gr; r' in let fi c = match c with | HintsReference c -> let gr = global_with_alias c in (PathHints [gr], IsGlobal gr) | HintsConstr c -> (PathAny, IsConstr (f c)) in let fres (o, b, c) = let path, gr = fi c in (o, b, path, gr) in let fp = Constrintern.intern_constr_pattern (Global.env()) in match h with | HintsResolve lhints -> HintsResolveEntry (List.map fres lhints) | HintsImmediate lhints -> HintsImmediateEntry (List.map fi lhints) | HintsUnfold lhints -> HintsUnfoldEntry (List.map fr lhints) | HintsTransparency (lhints, b) -> HintsTransparencyEntry (List.map fr lhints, b) | HintsConstructors lqid -> let constr_hints_of_ind qid = let ind = global_inductive_with_alias qid in Dumpglob.dump_reference (fst (qualid_of_reference qid)) "<>" (string_of_reference qid) "ind"; List.init (nconstructors ind) (fun i -> let c = (ind,i+1) in let gr = ConstructRef c in None, true, PathHints [gr], IsGlobal gr) in HintsResolveEntry (List.flatten (List.map constr_hints_of_ind lqid)) | HintsExtern (pri, patcom, tacexp) -> let pat = Option.map fp patcom in let l = match pat with None -> [] | Some (l, _) -> l in let tacexp = Hook.get forward_intern_tac l tacexp in HintsExternEntry (pri, pat, tacexp) let add_hints local dbnames0 h = if String.List.mem "nocore" dbnames0 then error "The hint database \"nocore\" is meant to stay empty."; let dbnames = if List.is_empty dbnames0 then ["core"] else dbnames0 in let env = Global.env() and sigma = Evd.empty in match h with | HintsResolveEntry lhints -> add_resolves env sigma lhints local dbnames | HintsImmediateEntry lhints -> add_trivials env sigma lhints local dbnames | HintsCutEntry lhints -> add_cuts lhints local dbnames | HintsUnfoldEntry lhints -> add_unfolds lhints local dbnames | HintsTransparencyEntry (lhints, b) -> add_transparency lhints b local dbnames | HintsExternEntry (pri, pat, tacexp) -> add_externs pri pat tacexp local dbnames (**************************************************************************) (* Functions for printing the hints *) (**************************************************************************) let pr_autotactic = function | Res_pf (c,clenv) -> (str"apply " ++ pr_constr c) | ERes_pf (c,clenv) -> (str"eapply " ++ pr_constr c) | Give_exact c -> (str"exact " ++ pr_constr c) | Res_pf_THEN_trivial_fail (c,clenv) -> (str"apply " ++ pr_constr c ++ str" ; trivial") | Unfold_nth c -> (str"unfold " ++ pr_evaluable_reference c) | Extern tac -> let env = try let (_, env) = Pfedit.get_current_goal_context () in env with e when Errors.noncritical e -> Global.env () in (str "(*external*) " ++ Pptactic.pr_glob_tactic env tac) let pr_hint (id, v) = (pr_autotactic v.code ++ str"(level " ++ int v.pri ++ str", id " ++ int id ++ str ")" ++ spc ()) let pr_hint_list hintlist = (str " " ++ hov 0 (prlist pr_hint hintlist) ++ fnl ()) let pr_hints_db (name,db,hintlist) = (str "In the database " ++ str name ++ str ":" ++ if List.is_empty hintlist then (str " nothing" ++ fnl ()) else (fnl () ++ pr_hint_list hintlist)) (* Print all hints associated to head c in any database *) let pr_hint_list_for_head c = let dbs = current_db () in let validate (name, db) = let hints = List.map (fun v -> 0, v) (Hint_db.map_all c db) in (name, db, hints) in let valid_dbs = List.map validate dbs in if List.is_empty valid_dbs then (str "No hint declared for :" ++ pr_global c) else hov 0 (str"For " ++ pr_global c ++ str" -> " ++ fnl () ++ hov 0 (prlist pr_hints_db valid_dbs)) let pr_hint_ref ref = pr_hint_list_for_head ref (* Print all hints associated to head id in any database *) let pr_hint_term cl = try let dbs = current_db () in let valid_dbs = let fn = try let (hdc,args) = head_constr_bound cl in let hd = head_of_constr_reference hdc in if occur_existential cl then Hint_db.map_all hd else Hint_db.map_auto (hd, applist (hdc,args)) with Bound -> Hint_db.map_none in let fn db = List.map (fun x -> 0, x) (fn db) in List.map (fun (name, db) -> (name, db, fn db)) dbs in if List.is_empty valid_dbs then (str "No hint applicable for current goal") else (str "Applicable Hints :" ++ fnl () ++ hov 0 (prlist pr_hints_db valid_dbs)) with Match_failure _ | Failure _ -> (str "No hint applicable for current goal") let error_no_such_hint_database x = error ("No such Hint database: "^x^".") (* print all hints that apply to the concl of the current goal *) let pr_applicable_hint () = let pts = get_pftreestate () in let glss = Proof.V82.subgoals pts in match glss.Evd.it with | [] -> Errors.error "No focused goal." | g::_ -> let gl = { Evd.it = g; sigma = glss.Evd.sigma; } in pr_hint_term (pf_concl gl) (* displays the whole hint database db *) let pr_hint_db db = let content = let fold head hintlist accu = let goal_descr = match head with | None -> str "For any goal" | Some head -> str "For " ++ pr_global head in let hints = pr_hint_list (List.map (fun x -> (0, x)) hintlist) in let hint_descr = hov 0 (goal_descr ++ str " -> " ++ hints) in accu ++ hint_descr in Hint_db.fold fold db (mt ()) in let (ids, csts) = Hint_db.transparent_state db in hov 0 ((if Hint_db.use_dn db then str"Discriminated database" else str"Non-discriminated database")) ++ fnl () ++ hov 2 (str"Unfoldable variable definitions: " ++ pr_idpred ids) ++ fnl () ++ hov 2 (str"Unfoldable constant definitions: " ++ pr_cpred csts) ++ fnl () ++ hov 2 (str"Cut: " ++ pp_hints_path (Hint_db.cut db)) ++ fnl () ++ content let pr_hint_db_by_name dbname = try let db = searchtable_map dbname in pr_hint_db db with Not_found -> error_no_such_hint_database dbname (* displays all the hints of all databases *) let pr_searchtable () = let fold name db accu = accu ++ str "In the database " ++ str name ++ str ":" ++ fnl () ++ pr_hint_db db ++ fnl () in Hintdbmap.fold fold !searchtable (mt ()) (**************************************************************************) (* Automatic tactics *) (**************************************************************************) (**************************************************************************) (* tactics with a trace mechanism for automatic search *) (**************************************************************************) let priority l = List.filter (fun (_, hint) -> Int.equal hint.pri 0) l (* tell auto not to reuse already instantiated metas in unification (for compatibility, since otherwise, apply succeeds oftener) *) open Unification let auto_unif_flags = { modulo_conv_on_closed_terms = Some full_transparent_state; use_metas_eagerly_in_conv_on_closed_terms = false; modulo_delta = empty_transparent_state; modulo_delta_types = full_transparent_state; modulo_delta_in_merge = None; check_applied_meta_types = false; resolve_evars = true; use_pattern_unification = false; use_meta_bound_pattern_unification = true; frozen_evars = Evar.Set.empty; restrict_conv_on_strict_subterms = false; (* Compat *) modulo_betaiota = false; modulo_eta = true; allow_K_in_toplevel_higher_order_unification = false } (* Try unification with the precompiled clause, then use registered Apply *) let unify_resolve_nodelta (c,clenv) gl = let clenv' = connect_clenv gl clenv in let clenv'' = clenv_unique_resolver ~flags:auto_unif_flags clenv' gl in Clenvtac.clenv_refine false clenv'' gl let unify_resolve flags (c,clenv) gl = let clenv' = connect_clenv gl clenv in let clenv'' = clenv_unique_resolver ~flags clenv' gl in Clenvtac.clenv_refine false clenv'' gl let unify_resolve_gen = function | None -> unify_resolve_nodelta | Some flags -> unify_resolve flags (* Util *) let expand_constructor_hints env lems = List.map_append (fun (sigma,lem) -> match kind_of_term lem with | Ind ind -> List.init (nconstructors ind) (fun i -> mkConstruct (ind,i+1)) | _ -> [prepare_hint env (sigma,lem)]) lems (* builds a hint database from a constr signature *) (* typically used with (lid, ltyp) = pf_hyps_types *) let add_hint_lemmas eapply lems hint_db gl = let lems = expand_constructor_hints (pf_env gl) lems in let hintlist' = List.map_append (pf_apply make_resolves gl (eapply,true,false) None) lems in Hint_db.add_list hintlist' hint_db let make_local_hint_db ?ts eapply lems gl = let sign = pf_hyps gl in let ts = match ts with | None -> Hint_db.transparent_state (searchtable_map "core") | Some ts -> ts in let hintlist = List.map_append (pf_apply make_resolve_hyp gl) sign in add_hint_lemmas eapply lems (Hint_db.add_list hintlist (Hint_db.empty ts false)) gl (* Serait-ce possible de compiler d'abord la tactique puis de faire la substitution sans passer par bdize dont l'objectif est de préparer un terme pour l'affichage ? (HH) *) (* Si on enlève le dernier argument (gl) conclPattern est calculé une fois pour toutes : en particulier si Pattern.somatch produit une UserError Ce qui fait que si la conclusion ne matche pas le pattern, Auto échoue, même si après Intros la conclusion matche le pattern. *) (* conclPattern doit échouer avec error car il est rattraper par tclFIRST *) let (forward_interp_tactic, extern_interp) = Hook.make () let conclPattern concl pat tac = let constr_bindings = match pat with | None -> Proofview.tclUNIT Id.Map.empty | Some pat -> try Proofview.tclUNIT (ConstrMatching.matches pat concl) with ConstrMatching.PatternMatchingFailure -> Proofview.tclZERO (UserError ("conclPattern",str"conclPattern")) in constr_bindings >>= fun constr_bindings -> Hook.get forward_interp_tactic constr_bindings tac (***********************************************************) (** A debugging / verbosity framework for trivial and auto *) (***********************************************************) (** The following options allow to trigger debugging/verbosity without having to adapt the scripts. Note: if Debug and Info are both activated, Debug take precedence. *) let global_debug_trivial = ref false let global_debug_auto = ref false let global_info_trivial = ref false let global_info_auto = ref false let add_option ls refe = let _ = Goptions.declare_bool_option { Goptions.optsync = true; Goptions.optdepr = false; Goptions.optname = String.concat " " ls; Goptions.optkey = ls; Goptions.optread = (fun () -> !refe); Goptions.optwrite = (:=) refe } in () let _ = add_option ["Debug";"Trivial"] global_debug_trivial; add_option ["Debug";"Auto"] global_debug_auto; add_option ["Info";"Trivial"] global_info_trivial; add_option ["Info";"Auto"] global_info_auto let no_dbg () = (Off,0,ref []) let mk_trivial_dbg debug = let d = if debug == Debug || !global_debug_trivial then Debug else if debug == Info || !global_info_trivial then Info else Off in (d,0,ref []) (** Note : we start the debug depth of auto at 1 to distinguish it for trivial (whose depth is 0). *) let mk_auto_dbg debug = let d = if debug == Debug || !global_debug_auto then Debug else if debug == Info || !global_info_auto then Info else Off in (d,1,ref []) let incr_dbg = function (dbg,depth,trace) -> (dbg,depth+1,trace) (** A tracing tactic for debug/info trivial/auto *) let tclLOG (dbg,depth,trace) pp tac = match dbg with | Off -> tac | Debug -> (* For "debug (trivial/auto)", we directly output messages *) let s = String.make depth '*' in begin fun gl -> try let out = tac gl in msg_debug (str s ++ spc () ++ pp () ++ str ". (*success*)"); out with reraise -> msg_debug (str s ++ spc () ++ pp () ++ str ". (*fail*)"); raise reraise end | Info -> (* For "info (trivial/auto)", we store a log trace *) begin fun gl -> try let out = tac gl in trace := (depth, Some pp) :: !trace; out with reraise -> trace := (depth, None) :: !trace; raise reraise end let new_tclLOG dbg pp tac = Proofview.V82.tactic (tclLOG dbg pp (Proofview.V82.of_tactic tac)) (** For info, from the linear trace information, we reconstitute the part of the proof tree we're interested in. The last executed tactic comes first in the trace (and it should be a successful one). [depth] is the root depth of the tree fragment we're visiting. [keep] means we're in a successful tree fragment (the very last tactic has been successful). *) let rec cleanup_info_trace depth acc = function | [] -> acc | (d,Some pp) :: l -> cleanup_info_trace d ((d,pp)::acc) l | l -> cleanup_info_trace depth acc (erase_subtree depth l) and erase_subtree depth = function | [] -> [] | (d,_) :: l -> if Int.equal d depth then l else erase_subtree depth l let pr_info_atom (d,pp) = str (String.make d ' ') ++ pp () ++ str "." let pr_info_trace = function | (Info,_,{contents=(d,Some pp)::l}) -> prlist_with_sep fnl pr_info_atom (cleanup_info_trace d [(d,pp)] l) | _ -> mt () let pr_info_nop = function | (Info,_,_) -> str "idtac." | _ -> mt () let pr_dbg_header = function | (Off,_,_) -> mt () | (Debug,0,_) -> str "(* debug trivial : *)" | (Debug,_,_) -> str "(* debug auto : *)" | (Info,0,_) -> str "(* info trivial : *)" | (Info,_,_) -> str "(* info auto : *)" let tclTRY_dbg d tac = let (level, _, _) = d in tclORELSE0 (fun gl -> let out = tac gl in if level != Off then msg_debug (pr_dbg_header d ++ fnl () ++ pr_info_trace d); out) (fun gl -> if level == Info then msg_debug (pr_info_nop d); tclIDTAC gl) let new_tclTRY_dbg d tac = Proofview.V82.tactic (tclTRY_dbg d (Proofview.V82.of_tactic tac)) (**************************************************************************) (* The Trivial tactic *) (**************************************************************************) (* local_db is a Hint database containing the hypotheses of current goal *) (* Papageno : cette fonction a été pas mal simplifiée depuis que la base de Hint impérative a été remplacée par plusieurs bases fonctionnelles *) let flags_of_state st = {auto_unif_flags with modulo_conv_on_closed_terms = Some st; modulo_delta = st} let hintmap_of hdc concl = match hdc with | None -> Hint_db.map_none | Some hdc -> if occur_existential concl then Hint_db.map_all hdc else Hint_db.map_auto (hdc,concl) let exists_evaluable_reference env = function | EvalConstRef _ -> true | EvalVarRef v -> try ignore(lookup_named v env); true with Not_found -> false let dbg_intro dbg = new_tclLOG dbg (fun () -> str "intro") intro let dbg_assumption dbg = new_tclLOG dbg (fun () -> str "assumption") assumption let rec trivial_fail_db dbg mod_delta db_list local_db = let intro_tac = Tacticals.New.tclTHEN (dbg_intro dbg) ( Proofview.Goal.enter begin fun gl -> let sigma = Proofview.Goal.sigma gl in let env = Proofview.Goal.env gl in let hyp = Tacmach.New.pf_last_hyp gl in let hintl = make_resolve_hyp env sigma hyp in trivial_fail_db dbg mod_delta db_list (Hint_db.add_list hintl local_db) end) in Proofview.Goal.enter begin fun gl -> let concl = Proofview.Goal.concl gl in Tacticals.New.tclFIRST ((dbg_assumption dbg)::intro_tac:: (List.map Tacticals.New.tclCOMPLETE (trivial_resolve dbg mod_delta db_list local_db concl))) end and my_find_search_nodelta db_list local_db hdc concl = List.map (fun hint -> (None,hint)) (List.map_append (hintmap_of hdc concl) (local_db::db_list)) and my_find_search mod_delta = if mod_delta then my_find_search_delta else my_find_search_nodelta and my_find_search_delta db_list local_db hdc concl = let flags = {auto_unif_flags with use_metas_eagerly_in_conv_on_closed_terms = true} in let f = hintmap_of hdc concl in if occur_existential concl then List.map_append (fun db -> if Hint_db.use_dn db then let flags = flags_of_state (Hint_db.transparent_state db) in List.map (fun x -> (Some flags,x)) (f db) else let flags = {flags with modulo_delta = Hint_db.transparent_state db} in List.map (fun x -> (Some flags,x)) (f db)) (local_db::db_list) else List.map_append (fun db -> if Hint_db.use_dn db then let flags = flags_of_state (Hint_db.transparent_state db) in List.map (fun x -> (Some flags, x)) (f db) else let (ids, csts as st) = Hint_db.transparent_state db in let flags, l = let l = match hdc with None -> Hint_db.map_none db | Some hdc -> if (Id.Pred.is_empty ids && Cpred.is_empty csts) then Hint_db.map_auto (hdc,concl) db else Hint_db.map_all hdc db in {flags with modulo_delta = st}, l in List.map (fun x -> (Some flags,x)) l) (local_db::db_list) and tac_of_hint dbg db_list local_db concl (flags, ({pat=p; code=t})) = let tactic = match t with | Res_pf (c,cl) -> Proofview.V82.tactic (unify_resolve_gen flags (c,cl)) | ERes_pf _ -> Proofview.V82.tactic (fun gl -> error "eres_pf") | Give_exact c -> Proofview.V82.tactic (exact_check c) | Res_pf_THEN_trivial_fail (c,cl) -> Tacticals.New.tclTHEN (Proofview.V82.tactic (unify_resolve_gen flags (c,cl))) (* With "(debug) trivial", we shouldn't end here, and with "debug auto" we don't display the details of inner trivial *) (trivial_fail_db (no_dbg ()) (not (Option.is_empty flags)) db_list local_db) | Unfold_nth c -> Proofview.V82.tactic (fun gl -> if exists_evaluable_reference (pf_env gl) c then tclPROGRESS (reduce (Unfold [AllOccurrences,c]) Locusops.onConcl) gl else tclFAIL 0 (str"Unbound reference") gl) | Extern tacast -> conclPattern concl p tacast in new_tclLOG dbg (fun () -> pr_autotactic t) tactic and trivial_resolve dbg mod_delta db_list local_db cl = try let head = try let hdconstr,_ = head_constr_bound cl in Some (head_of_constr_reference hdconstr) with Bound -> None in List.map (tac_of_hint dbg db_list local_db cl) (priority (my_find_search mod_delta db_list local_db head cl)) with Not_found -> [] (** The use of the "core" database can be de-activated by passing "nocore" amongst the databases. *) let make_db_list dbnames = let use_core = not (List.mem "nocore" dbnames) in let dbnames = List.remove String.equal "nocore" dbnames in let dbnames = if use_core then "core"::dbnames else dbnames in let lookup db = try searchtable_map db with Not_found -> error_no_such_hint_database db in List.map lookup dbnames let trivial ?(debug=Off) lems dbnames = Proofview.Goal.enter begin fun gl -> let db_list = make_db_list dbnames in let d = mk_trivial_dbg debug in let hints = Tacmach.New.of_old (make_local_hint_db false lems) gl in new_tclTRY_dbg d (trivial_fail_db d false db_list hints) end let full_trivial ?(debug=Off) lems = Proofview.Goal.enter begin fun gl -> let dbs = !searchtable in let dbs = String.Map.remove "v62" dbs in let db_list = List.map snd (String.Map.bindings dbs) in let d = mk_trivial_dbg debug in let hints = Tacmach.New.of_old (make_local_hint_db false lems) gl in new_tclTRY_dbg d (trivial_fail_db d false db_list hints) end let gen_trivial ?(debug=Off) lems = function | None -> full_trivial ~debug lems | Some l -> trivial ~debug lems l let h_trivial ?(debug=Off) lems l = gen_trivial ~debug lems l (**************************************************************************) (* The classical Auto tactic *) (**************************************************************************) let possible_resolve dbg mod_delta db_list local_db cl = try let head = try let hdconstr,_ = head_constr_bound cl in Some (head_of_constr_reference hdconstr) with Bound -> None in List.map (tac_of_hint dbg db_list local_db cl) (my_find_search mod_delta db_list local_db head cl) with Not_found -> [] let extend_local_db gl decl db = Hint_db.add_list (make_resolve_hyp (pf_env gl) (project gl) decl) db (* Introduce an hypothesis, then call the continuation tactic [kont] with the hint db extended with the so-obtained hypothesis *) let intro_register dbg kont db = Tacticals.New.tclTHEN (dbg_intro dbg) (Proofview.Goal.enter begin fun gl -> let extend_local_db = Tacmach.New.of_old extend_local_db gl in Tacticals.New.onLastDecl (fun decl -> kont (extend_local_db decl db)) end) (* n is the max depth of search *) (* local_db contains the local Hypotheses *) let search d n mod_delta db_list local_db = let rec search d n local_db = (* spiwack: the test of [n] to 0 must be done independently in each goal. Hence the [tclEXTEND] *) Proofview.tclEXTEND [] begin if Int.equal n 0 then Proofview.tclZERO (Errors.UserError ("",str"BOUND 2")) else Tacticals.New.tclORELSE0 (dbg_assumption d) (Tacticals.New.tclORELSE0 (intro_register d (search d n) local_db) ( Proofview.Goal.enter begin fun gl -> let concl = Proofview.Goal.concl gl in let d' = incr_dbg d in Tacticals.New.tclFIRST (List.map (fun ntac -> Tacticals.New.tclTHEN ntac (search d' (n-1) local_db)) (possible_resolve d mod_delta db_list local_db concl)) end)) end [] in search d n local_db let default_search_depth = ref 5 let delta_auto ?(debug=Off) mod_delta n lems dbnames = Proofview.Goal.enter begin fun gl -> let db_list = make_db_list dbnames in let d = mk_auto_dbg debug in let hints = Tacmach.New.of_old (make_local_hint_db false lems) gl in new_tclTRY_dbg d (search d n mod_delta db_list hints) end let auto ?(debug=Off) n = delta_auto ~debug false n let new_auto ?(debug=Off) n = delta_auto ~debug true n let default_auto = auto !default_search_depth [] [] let delta_full_auto ?(debug=Off) mod_delta n lems = Proofview.Goal.enter begin fun gl -> let dbs = !searchtable in let dbs = String.Map.remove "v62" dbs in let db_list = List.map snd (String.Map.bindings dbs) in let d = mk_auto_dbg debug in let hints = Tacmach.New.of_old (make_local_hint_db false lems) gl in new_tclTRY_dbg d (search d n mod_delta db_list hints) end let full_auto ?(debug=Off) n = delta_full_auto ~debug false n let new_full_auto ?(debug=Off) n = delta_full_auto ~debug true n let default_full_auto = full_auto !default_search_depth [] let gen_auto ?(debug=Off) n lems dbnames = let n = match n with None -> !default_search_depth | Some n -> n in match dbnames with | None -> full_auto ~debug n lems | Some l -> auto ~debug n lems l let h_auto ?(debug=Off) n lems l = gen_auto ~debug n lems l