(************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) (* clenv, Univ.empty_level_subst | App (f, args) when isVar f -> clenv, Univ.empty_level_subst | _ -> let evd', subst = Evd.refresh_undefined_universes clenv.evd in let map_freelisted f = { f with rebus = subst_univs_level_constr subst f.rebus } in { clenv with evd = evd'; templval = map_freelisted clenv.templval; templtyp = map_freelisted clenv.templtyp }, subst let clenv_hnf_constr ce t = hnf_constr (cl_env ce) (cl_sigma ce) t let clenv_get_type_of ce c = Retyping.get_type_of (cl_env ce) (cl_sigma ce) c exception NotExtensibleClause let clenv_push_prod cl = let typ = whd_all (cl_env cl) (cl_sigma cl) (clenv_type cl) in let rec clrec typ = match kind_of_term typ with | Cast (t,_,_) -> clrec t | Prod (na,t,u) -> let mv = new_meta () in let dep = dependent (mkRel 1) u in let na' = if dep then na else Anonymous in let e' = meta_declare mv t ~name:na' cl.evd in let concl = if dep then subst1 (mkMeta mv) u else u in let def = applist (cl.templval.rebus,[mkMeta mv]) in { templval = mk_freelisted def; templtyp = mk_freelisted concl; evd = e'; env = cl.env } | _ -> raise NotExtensibleClause in clrec typ (* Instantiate the first [bound] products of [t] with metas (all products if [bound] is [None]; unfold local defs *) (** [clenv_environments sigma n t] returns [sigma',lmeta,ccl] where [lmetas] is a list of metas to be applied to a proof of [t] so that it produces the unification pattern [ccl]; [sigma'] is [sigma] extended with [lmetas]; if [n] is defined, it limits the size of the list even if [ccl] is still a product; otherwise, it stops when [ccl] is not a product; example: if [t] is [forall x y, x=y -> y=x] and [n] is [None], then [lmetas] is [Meta n1;Meta n2;Meta n3] and [ccl] is [Meta n1=Meta n2]; if [n] is [Some 1], [lmetas] is [Meta n1] and [ccl] is [forall y, Meta n1=y -> y=Meta n1] *) let clenv_environments evd bound t = let rec clrec (e,metas) n t = match n, kind_of_term t with | (Some 0, _) -> (e, List.rev metas, t) | (n, Cast (t,_,_)) -> clrec (e,metas) n t | (n, Prod (na,t1,t2)) -> let mv = new_meta () in let dep = not (noccurn 1 t2) in let na' = if dep then na else Anonymous in let e' = meta_declare mv t1 ~name:na' e in clrec (e', (mkMeta mv)::metas) (Option.map ((+) (-1)) n) (if dep then (subst1 (mkMeta mv) t2) else t2) | (n, LetIn (na,b,_,t)) -> clrec (e,metas) n (subst1 b t) | (n, _) -> (e, List.rev metas, t) in clrec (evd,[]) bound t let mk_clenv_from_env env sigma n (c,cty) = let evd = clear_metas sigma in let (evd,args,concl) = clenv_environments evd n cty in { templval = mk_freelisted (applist (c,args)); templtyp = mk_freelisted concl; evd = evd; env = env } let mk_clenv_from_n gls n (c,cty) = mk_clenv_from_env (pf_env gls) gls.sigma n (c, cty) let mk_clenv_from gls = mk_clenv_from_n gls None let mk_clenv_type_of gls t = mk_clenv_from gls (t,pf_type_of gls t) (******************************************************************) (* [mentions clenv mv0 mv1] is true if mv1 is defined and mentions * mv0, or if one of the free vars on mv1's freelist mentions * mv0 *) let mentions clenv mv0 = let rec menrec mv1 = Int.equal mv0 mv1 || let mlist = try match meta_opt_fvalue clenv.evd mv1 with | Some (b,_) -> b.freemetas | None -> Metaset.empty with Not_found -> Metaset.empty in Metaset.exists menrec mlist in menrec let error_incompatible_inst clenv mv = let na = meta_name clenv.evd mv in match na with Name id -> user_err ~hdr:"clenv_assign" (str "An incompatible instantiation has already been found for " ++ pr_id id) | _ -> anomaly ~label:"clenv_assign" (Pp.str "non dependent metavar already assigned") (* TODO: replace by clenv_unify (mkMeta mv) rhs ? *) let clenv_assign mv rhs clenv = let rhs_fls = mk_freelisted rhs in if Metaset.exists (mentions clenv mv) rhs_fls.freemetas then error "clenv_assign: circularity in unification"; try if meta_defined clenv.evd mv then if not (Term.eq_constr (fst (meta_fvalue clenv.evd mv)).rebus rhs) then error_incompatible_inst clenv mv else clenv else let st = (Conv,TypeNotProcessed) in {clenv with evd = meta_assign mv (rhs_fls.rebus,st) clenv.evd} with Not_found -> error "clenv_assign: undefined meta" (* [clenv_dependent hyps_only clenv] * returns a list of the metavars which appear in the template of clenv, * and which are dependent, This is computed by taking the metavars of the * template in right-to-left order, and collecting the metavars which appear * in their types, and adding in all the metavars appearing in the * type of clenv. * If [hyps_only] then metavariables occurring in the concl are _excluded_ * If [iter] is also set then all metavariables *recursively* occurring * in the concl are _excluded_ Details of the strategies used for computing the set of unresolved dependent metavariables We typically have a clause of the form lem(?T:Type,?T,?U:Type,?V:Type,?x:?T,?y:?U,?z:?V,?H:hyp(?x,?z)) :concl(?y,?z) Then, we compute: A = the set of all unresolved metas C = the set of metas occurring in concl (here ?y, ?z) C* = the recursive closure of C wrt types (here ?y, ?z, ?U, ?V) D = the set of metas occurring in a type of meta (here ?x, ?T, ?z, ?U, ?V) NL = the set of duplicated metas even if non dependent (here ?T) (we make the assumption that duplicated metas have internal dependencies) Then, for the "apply"-style tactic (hyps_only), missing metas are A inter ((D minus C) union NL) for the optimized "apply"-style tactic (taking in care, f_equal style lemma, from 2/8/10, Coq > 8.3), missing metas are A inter (( D minus C* ) union NL) for the "elim"-style tactic, missing metas are A inter (D union C union NL) In any case, we respect the order given in A. *) let clenv_metas_in_type_of_meta evd mv = (mk_freelisted (meta_instance evd (meta_ftype evd mv))).freemetas let dependent_in_type_of_metas clenv mvs = List.fold_right (fun mv -> Metaset.union (clenv_metas_in_type_of_meta clenv.evd mv)) mvs Metaset.empty let dependent_closure clenv mvs = let rec aux mvs acc = Metaset.fold (fun mv deps -> let metas_of_meta_type = clenv_metas_in_type_of_meta clenv.evd mv in aux metas_of_meta_type (Metaset.union deps metas_of_meta_type)) mvs acc in aux mvs mvs let clenv_dependent_gen hyps_only ?(iter=true) clenv = let all_undefined = undefined_metas clenv.evd in let deps_in_concl = (mk_freelisted (clenv_type clenv)).freemetas in let deps_in_hyps = dependent_in_type_of_metas clenv all_undefined in let deps_in_concl = if hyps_only && iter then dependent_closure clenv deps_in_concl else deps_in_concl in List.filter (fun mv -> if hyps_only then Metaset.mem mv deps_in_hyps && not (Metaset.mem mv deps_in_concl) else Metaset.mem mv deps_in_hyps || Metaset.mem mv deps_in_concl) all_undefined let clenv_missing ce = clenv_dependent_gen true ce let clenv_dependent ce = clenv_dependent_gen false ce (******************************************************************) let clenv_unify ?(flags=default_unify_flags ()) cv_pb t1 t2 clenv = { clenv with evd = w_unify ~flags clenv.env clenv.evd cv_pb t1 t2 } let clenv_unify_meta_types ?(flags=default_unify_flags ()) clenv = { clenv with evd = w_unify_meta_types ~flags:flags clenv.env clenv.evd } let clenv_unique_resolver ?(flags=default_unify_flags ()) clenv gl = let concl = Goal.V82.concl clenv.evd (sig_it gl) in if isMeta (fst (decompose_appvect (whd_nored clenv.evd clenv.templtyp.rebus))) then clenv_unify CUMUL ~flags (clenv_type clenv) concl (clenv_unify_meta_types ~flags clenv) else clenv_unify CUMUL ~flags (meta_reducible_instance clenv.evd clenv.templtyp) concl clenv let adjust_meta_source evd mv = function | loc,Evar_kinds.VarInstance id -> let rec match_name c l = match kind_of_term c, l with | Lambda (Name id,_,c), a::l when Constr.equal a (mkMeta mv) -> Some id | Lambda (_,_,c), a::l -> match_name c l | _ -> None in (* This is very ad hoc code so that an evar inherits the name of the binder in situations like "ex_intro (fun x => P) ?ev p" *) let f = function (mv',(Cltyp (_,t) | Clval (_,_,t))) -> if Metaset.mem mv t.freemetas then let f,l = decompose_app t.rebus in match kind_of_term f with | Meta mv'' -> (match meta_opt_fvalue evd mv'' with | Some (c,_) -> match_name c.rebus l | None -> None) | Evar ev -> (match existential_opt_value evd ev with | Some c -> match_name c l | None -> None) | _ -> None else None in let id = try List.find_map f (Evd.meta_list evd) with Not_found -> id in loc,Evar_kinds.VarInstance id | src -> src (* [clenv_pose_metas_as_evars clenv dep_mvs] * For each dependent evar in the clause-env which does not have a value, * pose a value for it by constructing a fresh evar. We do this in * left-to-right order, so that every evar's type is always closed w.r.t. * metas. * Node added 14/4/08 [HH]: before this date, evars were collected in clenv_dependent by collect_metas in the fold_constr order which is (almost) the left-to-right order of dependencies in term. However, due to K-redexes, collect_metas was sometimes missing some metas. The call to collect_metas has been replaced by a call to undefined_metas, but then the order was the one of definition of the metas (numbers in increasing order) which is _not_ the dependency order when a clenv_fchain occurs (because clenv_fchain plugs a term with a list of consecutive metas in place of a - a priori - arbitrary metavariable belonging to another sequence of consecutive metas: e.g., clenv_fchain may plug (H ?1 ?2) at the position ?6 of (nat_ind ?3 ?4 ?5 ?6), leading to a dependency order 3<4<5<1<2). To ensure the dependency order, we check that the type of each meta to pose is already meta-free, otherwise we postpone the transformation, hoping that no cycle may happen. Another approach could have been to use decimal numbers for metas so that in the example above, (H ?1 ?2) would have been renumbered (H ?6.1 ?6.2) then making the numeric order match the dependency order. *) let clenv_pose_metas_as_evars clenv dep_mvs = let rec fold clenv = function | [] -> clenv | mv::mvs -> let ty = clenv_meta_type clenv mv in (* Postpone the evar-ization if dependent on another meta *) (* This assumes no cycle in the dependencies - is it correct ? *) if occur_meta ty then fold clenv (mvs@[mv]) else let src = evar_source_of_meta mv clenv.evd in let src = adjust_meta_source clenv.evd mv src in let evd = Sigma.Unsafe.of_evar_map clenv.evd in let Sigma (evar, evd, _) = new_evar (cl_env clenv) evd ~src ty in let evd = Sigma.to_evar_map evd in let clenv = clenv_assign mv evar {clenv with evd=evd} in fold clenv mvs in fold clenv dep_mvs (******************************************************************) (* [clenv_fchain mv clenv clenv'] * * Resolves the value of "mv" (which must be undefined) in clenv to be * the template of clenv' be the value "c", applied to "n" fresh * metavars, whose types are chosen by destructing "clf", which should * be a clausale forme generated from the type of "c". The process of * resolution can cause unification of already-existing metavars, and * of the fresh ones which get created. This operation is a composite * of operations which pose new metavars, perform unification on * terms, and make bindings. Otherwise said, from [clenv] = [env;sigma;metas |- c:T] [clenv'] = [env';sigma';metas' |- d:U] [mv] = [mi] of type [Ti] in [metas] then, if the unification of [Ti] and [U] produces map [rho], the chaining is [env';sigma';rho'(metas),rho(metas') |- c:rho'(T)] for [rho'] being [rho;mi:=d]. In particular, it assumes that [env'] and [sigma'] extend [env] and [sigma]. *) let fchain_flags () = { (default_unify_flags ()) with allow_K_in_toplevel_higher_order_unification = true } let clenv_fchain ?with_univs ?(flags=fchain_flags ()) mv clenv nextclenv = (* Add the metavars of [nextclenv] to [clenv], with their name-environment *) let clenv' = { templval = clenv.templval; templtyp = clenv.templtyp; evd = meta_merge ?with_univs nextclenv.evd clenv.evd; env = nextclenv.env } in (* unify the type of the template of [nextclenv] with the type of [mv] *) let clenv'' = clenv_unify ~flags CUMUL (clenv_term clenv' nextclenv.templtyp) (clenv_meta_type clenv' mv) clenv' in (* assign the metavar *) let clenv''' = clenv_assign mv (clenv_term clenv' nextclenv.templval) clenv'' in clenv''' (***************************************************************) (* Bindings *) type arg_bindings = constr explicit_bindings (* [clenv_independent clenv] * returns a list of metavariables which appear in the term cval, * and which are not dependent. That is, they do not appear in * the types of other metavars which are in cval, nor in the type * of cval, ctyp. *) let clenv_independent clenv = let mvs = collect_metas (clenv_value clenv) in let ctyp_mvs = (mk_freelisted (clenv_type clenv)).freemetas in let deps = Metaset.union (dependent_in_type_of_metas clenv mvs) ctyp_mvs in List.filter (fun mv -> not (Metaset.mem mv deps)) mvs let qhyp_eq h1 h2 = match h1, h2 with | NamedHyp n1, NamedHyp n2 -> Id.equal n1 n2 | AnonHyp i1, AnonHyp i2 -> Int.equal i1 i2 | _ -> false let check_bindings bl = match List.duplicates qhyp_eq (List.map pi2 bl) with | NamedHyp s :: _ -> user_err (str "The variable " ++ pr_id s ++ str " occurs more than once in binding list."); | AnonHyp n :: _ -> user_err (str "The position " ++ int n ++ str " occurs more than once in binding list.") | [] -> () let explain_no_such_bound_variable evd id = let fold l (n, clb) = let na = match clb with | Cltyp (na, _) -> na | Clval (na, _, _) -> na in if na != Anonymous then out_name na :: l else l in let mvl = List.fold_left fold [] (Evd.meta_list evd) in user_err ~hdr:"Evd.meta_with_name" (str"No such bound variable " ++ pr_id id ++ (if mvl == [] then str " (no bound variables at all in the expression)." else (str" (possible name" ++ str (if List.length mvl == 1 then " is: " else "s are: ") ++ pr_enum pr_id mvl ++ str")."))) let meta_with_name evd id = let na = Name id in let fold (l1, l2 as l) (n, clb) = let (na',def) = match clb with | Cltyp (na, _) -> (na, false) | Clval (na, _, _) -> (na, true) in if Name.equal na na' then if def then (n::l1,l2) else (n::l1,n::l2) else l in let (mvl, mvnodef) = List.fold_left fold ([], []) (Evd.meta_list evd) in match mvnodef, mvl with | _,[] -> explain_no_such_bound_variable evd id | ([n],_|_,[n]) -> n | _ -> user_err ~hdr:"Evd.meta_with_name" (str "Binder name \"" ++ pr_id id ++ strbrk "\" occurs more than once in clause.") let meta_of_binder clause loc mvs = function | NamedHyp s -> meta_with_name clause.evd s | AnonHyp n -> try List.nth mvs (n-1) with (Failure _|Invalid_argument _) -> user_err (str "No such binder.") let error_already_defined b = match b with | NamedHyp id -> user_err (str "Binder name \"" ++ pr_id id ++ str"\" already defined with incompatible value.") | AnonHyp n -> anomaly (str "Position " ++ int n ++ str" already defined.") let clenv_unify_binding_type clenv c t u = if isMeta (fst (decompose_appvect (whd_nored clenv.evd u))) then (* Not enough information to know if some subtyping is needed *) CoerceToType, clenv, c else (* Enough information so as to try a coercion now *) try let evd,c = w_coerce_to_type (cl_env clenv) clenv.evd c t u in TypeProcessed, { clenv with evd = evd }, c with | PretypeError (_,_,ActualTypeNotCoercible (_,_, (NotClean _ | ConversionFailed _))) as e -> raise e | e when precatchable_exception e -> TypeNotProcessed, clenv, c let clenv_assign_binding clenv k c = let k_typ = clenv_hnf_constr clenv (clenv_meta_type clenv k) in let c_typ = nf_betaiota clenv.evd (clenv_get_type_of clenv c) in let status,clenv',c = clenv_unify_binding_type clenv c c_typ k_typ in { clenv' with evd = meta_assign k (c,(Conv,status)) clenv'.evd } let clenv_match_args bl clenv = if List.is_empty bl then clenv else let mvs = clenv_independent clenv in check_bindings bl; List.fold_left (fun clenv (loc,b,c) -> let k = meta_of_binder clenv loc mvs b in if meta_defined clenv.evd k then if Term.eq_constr (fst (meta_fvalue clenv.evd k)).rebus c then clenv else error_already_defined b else clenv_assign_binding clenv k c) clenv bl exception NoSuchBinding let clenv_constrain_last_binding c clenv = let all_mvs = collect_metas clenv.templval.rebus in let k = try List.last all_mvs with Failure _ -> raise NoSuchBinding in clenv_assign_binding clenv k c let error_not_right_number_missing_arguments n = user_err (strbrk "Not the right number of missing arguments (expected " ++ int n ++ str ").") let clenv_constrain_dep_args hyps_only bl clenv = if List.is_empty bl then clenv else let occlist = clenv_dependent_gen hyps_only clenv in if Int.equal (List.length occlist) (List.length bl) then List.fold_left2 clenv_assign_binding clenv occlist bl else if hyps_only then (* Tolerance for compatibility <= 8.3 *) let occlist' = clenv_dependent_gen hyps_only ~iter:false clenv in if Int.equal (List.length occlist') (List.length bl) then List.fold_left2 clenv_assign_binding clenv occlist' bl else error_not_right_number_missing_arguments (List.length occlist) else error_not_right_number_missing_arguments (List.length occlist) (****************************************************************) (* Clausal environment for an application *) let make_clenv_binding_gen hyps_only n env sigma (c,t) = function | ImplicitBindings largs -> let clause = mk_clenv_from_env env sigma n (c,t) in clenv_constrain_dep_args hyps_only largs clause | ExplicitBindings lbind -> let clause = mk_clenv_from_env env sigma n (c,rename_bound_vars_as_displayed [] [] t) in clenv_match_args lbind clause | NoBindings -> mk_clenv_from_env env sigma n (c,t) let make_clenv_binding_env_apply env sigma n = make_clenv_binding_gen true n env sigma let make_clenv_binding_env env sigma = make_clenv_binding_gen false None env sigma let make_clenv_binding_apply env sigma n = make_clenv_binding_gen true n env sigma let make_clenv_binding env sigma = make_clenv_binding_gen false None env sigma (****************************************************************) (* Pretty-print *) let pr_clenv clenv = h 0 (str"TEMPL: " ++ print_constr clenv.templval.rebus ++ str" : " ++ print_constr clenv.templtyp.rebus ++ fnl () ++ pr_evar_map (Some 2) clenv.evd) (****************************************************************) (** Evar version of mk_clenv *) type hole = { hole_evar : constr; hole_type : types; hole_deps : bool; hole_name : Name.t; } type clause = { cl_holes : hole list; cl_concl : types; } let make_evar_clause env sigma ?len t = let bound = match len with | None -> -1 | Some n -> assert (0 <= n); n in (** FIXME: do the renaming online *) let t = rename_bound_vars_as_displayed [] [] t in let rec clrec (sigma, holes) n t = if n = 0 then (sigma, holes, t) else match kind_of_term t with | Cast (t, _, _) -> clrec (sigma, holes) n t | Prod (na, t1, t2) -> let store = Typeclasses.set_resolvable Evd.Store.empty false in let sigma = Sigma.Unsafe.of_evar_map sigma in let Sigma (ev, sigma, _) = new_evar ~store env sigma t1 in let sigma = Sigma.to_evar_map sigma in let dep = dependent (mkRel 1) t2 in let hole = { hole_evar = ev; hole_type = t1; hole_deps = dep; (* We fix it later *) hole_name = na; } in let t2 = if dep then subst1 ev t2 else t2 in clrec (sigma, hole :: holes) (pred n) t2 | LetIn (na, b, _, t) -> clrec (sigma, holes) n (subst1 b t) | _ -> (sigma, holes, t) in let (sigma, holes, t) = clrec (sigma, []) bound t in let holes = List.rev holes in let clause = { cl_concl = t; cl_holes = holes } in (sigma, clause) let explain_no_such_bound_variable holes id = let fold h accu = match h.hole_name with | Anonymous -> accu | Name id -> id :: accu in let mvl = List.fold_right fold holes [] in let expl = match mvl with | [] -> str " (no bound variables at all in the expression)." | [id] -> str "(possible name is: " ++ pr_id id ++ str ")." | _ -> str "(possible names are: " ++ pr_enum pr_id mvl ++ str ")." in user_err (str "No such bound variable " ++ pr_id id ++ expl) let evar_with_name holes id = let map h = match h.hole_name with | Anonymous -> None | Name id' -> if Id.equal id id' then Some h else None in let hole = List.map_filter map holes in match hole with | [] -> explain_no_such_bound_variable holes id | [h] -> h.hole_evar | _ -> user_err (str "Binder name \"" ++ pr_id id ++ str "\" occurs more than once in clause.") let evar_of_binder holes = function | NamedHyp s -> evar_with_name holes s | AnonHyp n -> try let h = List.nth holes (pred n) in h.hole_evar with e when CErrors.noncritical e -> user_err (str "No such binder.") let define_with_type sigma env ev c = let t = Retyping.get_type_of env sigma ev in let ty = Retyping.get_type_of env sigma c in let j = Environ.make_judge c ty in let (sigma, j) = Coercion.inh_conv_coerce_to true (Loc.ghost) env sigma j t in let (ev, _) = destEvar ev in let sigma = Evd.define ev j.Environ.uj_val sigma in sigma let solve_evar_clause env sigma hyp_only clause = function | NoBindings -> sigma | ImplicitBindings largs -> let fold holes h = if h.hole_deps then (** Some subsequent term uses the hole *) let (ev, _) = destEvar h.hole_evar in let is_dep hole = occur_evar ev hole.hole_type in let in_hyp = List.exists is_dep holes in let in_ccl = occur_evar ev clause.cl_concl in let dep = if hyp_only then in_hyp && not in_ccl else in_hyp || in_ccl in let h = { h with hole_deps = dep } in h :: holes else (** The hole does not occur anywhere *) h :: holes in let holes = List.fold_left fold [] (List.rev clause.cl_holes) in let map h = if h.hole_deps then Some h.hole_evar else None in let evs = List.map_filter map holes in let len = List.length evs in if Int.equal len (List.length largs) then let fold sigma ev arg = define_with_type sigma env ev arg in let sigma = List.fold_left2 fold sigma evs largs in sigma else error_not_right_number_missing_arguments len | ExplicitBindings lbind -> let () = check_bindings lbind in let fold sigma (_, binder, c) = let ev = evar_of_binder clause.cl_holes binder in define_with_type sigma env ev c in let sigma = List.fold_left fold sigma lbind in sigma