(************************************************************************) (* * The Coq Proof Assistant / The Coq Development Team *) (* v * INRIA, CNRS and contributors - Copyright 1999-2018 *) (* * on May-June 2006 for implementation of abstraction of pretty-printing of objects. *) open Pp open CErrors open Util open CAst open Names open Nameops open Termops open Declarations open Environ open Impargs open Libobject open Libnames open Globnames open Recordops open Printer open Printmod open Context.Rel.Declaration (* module RelDecl = Context.Rel.Declaration *) module NamedDecl = Context.Named.Declaration type object_pr = { print_inductive : MutInd.t -> UnivNames.univ_name_list option -> Pp.t; print_constant_with_infos : Constant.t -> UnivNames.univ_name_list option -> Pp.t; print_section_variable : env -> Evd.evar_map -> variable -> Pp.t; print_syntactic_def : env -> KerName.t -> Pp.t; print_module : bool -> ModPath.t -> Pp.t; print_modtype : ModPath.t -> Pp.t; print_named_decl : env -> Evd.evar_map -> Constr.named_declaration -> Pp.t; print_library_entry : env -> Evd.evar_map -> bool -> (object_name * Lib.node) -> Pp.t option; print_context : env -> Evd.evar_map -> bool -> int option -> Lib.library_segment -> Pp.t; print_typed_value_in_env : Environ.env -> Evd.evar_map -> EConstr.constr * EConstr.types -> Pp.t; print_eval : Reductionops.reduction_function -> env -> Evd.evar_map -> Constrexpr.constr_expr -> EConstr.unsafe_judgment -> Pp.t; } let gallina_print_module = print_module let gallina_print_modtype = print_modtype (**************) (** Utilities *) let print_closed_sections = ref false let pr_infos_list l = v 0 (prlist_with_sep cut (fun x -> x) l) let with_line_skip l = if List.is_empty l then mt() else fnl() ++ fnl () ++ pr_infos_list l let blankline = mt() (* add a blank sentence in the list of infos *) let add_colon prefix = if ismt prefix then mt () else prefix ++ str ": " let int_or_no n = if Int.equal n 0 then str "no" else int n (*******************) (** Basic printing *) let print_basename sp = pr_global (ConstRef sp) let print_ref reduce ref udecl = let typ, ctx = Global.type_of_global_in_context (Global.env ()) ref in let typ = Vars.subst_instance_constr (Univ.AUContext.instance ctx) typ in let typ = EConstr.of_constr typ in let typ = if reduce then let env = Global.env () in let sigma = Evd.from_env env in let ctx,ccl = Reductionops.splay_prod_assum env sigma typ in EConstr.it_mkProd_or_LetIn ccl ctx else typ in let univs = Global.universes_of_global ref in let variance = match ref with | VarRef _ | ConstRef _ -> None | IndRef (ind,_) | ConstructRef ((ind,_),_) -> let mind = Environ.lookup_mind ind (Global.env ()) in begin match mind.Declarations.mind_universes with | Declarations.Monomorphic_ind _ | Declarations.Polymorphic_ind _ -> None | Declarations.Cumulative_ind cumi -> Some (Univ.ACumulativityInfo.variance cumi) end in let inst = Univ.AUContext.instance univs in let univs = Univ.UContext.make (inst, Univ.AUContext.instantiate inst univs) in let env = Global.env () in let bl = UnivNames.universe_binders_with_opt_names ref (Array.to_list (Univ.Instance.to_array inst)) udecl in let sigma = Evd.from_ctx (UState.of_binders bl) in let inst = if Global.is_polymorphic ref then Printer.pr_universe_instance sigma univs else mt () in hov 0 (pr_global ref ++ inst ++ str " :" ++ spc () ++ pr_letype_env env sigma typ ++ Printer.pr_universe_ctx sigma ?variance univs) (********************************) (** Printing implicit arguments *) let pr_impl_name imp = Id.print (name_of_implicit imp) let print_impargs_by_name max = function | [] -> [] | impls -> let n = List.length impls in [hov 0 (str (String.plural n "Argument") ++ spc() ++ prlist_with_sep pr_comma pr_impl_name impls ++ spc() ++ str (String.conjugate_verb_to_be n) ++ str" implicit" ++ (if max then strbrk " and maximally inserted" else mt()))] let print_one_impargs_list l = let imps = List.filter is_status_implicit l in let maximps = List.filter Impargs.maximal_insertion_of imps in let nonmaximps = List.subtract Pervasives.(=) imps maximps in (* FIXME *) print_impargs_by_name false nonmaximps @ print_impargs_by_name true maximps let print_impargs_list prefix l = let l = extract_impargs_data l in List.flatten (List.map (fun (cond,imps) -> match cond with | None -> List.map (fun pp -> add_colon prefix ++ pp) (print_one_impargs_list imps) | Some (n1,n2) -> [v 2 (prlist_with_sep cut (fun x -> x) [(if ismt prefix then str "When" else prefix ++ str ", when") ++ str " applied to " ++ (if Int.equal n1 n2 then int_or_no n2 else if Int.equal n1 0 then str "no more than " ++ int n2 else int n1 ++ str " to " ++ int_or_no n2) ++ str (String.plural n2 " argument") ++ str ":"; v 0 (prlist_with_sep cut (fun x -> x) (if List.exists is_status_implicit imps then print_one_impargs_list imps else [str "No implicit arguments"]))])]) l) let print_renames_list prefix l = if List.is_empty l then [] else [add_colon prefix ++ str "Arguments are renamed to " ++ hv 2 (prlist_with_sep pr_comma (fun x -> x) (List.map Name.print l))] let need_expansion impl ref = let typ, _ = Global.type_of_global_in_context (Global.env ()) ref in let ctx = Term.prod_assum typ in let nprods = List.count is_local_assum ctx in not (List.is_empty impl) && List.length impl >= nprods && let _,lastimpl = List.chop nprods impl in List.exists is_status_implicit lastimpl let print_impargs ref = let ref = Smartlocate.smart_global ref in let impl = implicits_of_global ref in let has_impl = not (List.is_empty impl) in (* Need to reduce since implicits are computed with products flattened *) pr_infos_list ([ print_ref (need_expansion (select_impargs_size 0 impl) ref) ref None; blankline ] @ (if has_impl then print_impargs_list (mt()) impl else [str "No implicit arguments"])) (*********************) (** Printing Scopes *) let print_argument_scopes prefix = function | [Some sc] -> [add_colon prefix ++ str"Argument scope is [" ++ str sc ++ str"]"] | l when not (List.for_all Option.is_empty l) -> [add_colon prefix ++ hov 2 (str"Argument scopes are" ++ spc() ++ str "[" ++ pr_sequence (function Some sc -> str sc | None -> str "_") l ++ str "]")] | _ -> [] (*********************) (** Printing Opacity *) type opacity = | FullyOpaque | TransparentMaybeOpacified of Conv_oracle.level let opacity env = function | VarRef v when NamedDecl.is_local_def (Environ.lookup_named v env) -> Some(TransparentMaybeOpacified (Conv_oracle.get_strategy (Environ.oracle env) (VarKey v))) | ConstRef cst -> let cb = Environ.lookup_constant cst env in (match cb.const_body with | Undef _ -> None | OpaqueDef _ -> Some FullyOpaque | Def _ -> Some (TransparentMaybeOpacified (Conv_oracle.get_strategy (Environ.oracle env) (ConstKey cst)))) | _ -> None let print_opacity ref = match opacity (Global.env()) ref with | None -> [] | Some s -> [pr_global ref ++ str " is " ++ match s with | FullyOpaque -> str "opaque" | TransparentMaybeOpacified Conv_oracle.Opaque -> str "basically transparent but considered opaque for reduction" | TransparentMaybeOpacified lev when Conv_oracle.is_transparent lev -> str "transparent" | TransparentMaybeOpacified (Conv_oracle.Level n) -> str "transparent (with expansion weight " ++ int n ++ str ")" | TransparentMaybeOpacified Conv_oracle.Expand -> str "transparent (with minimal expansion weight)"] (*******************) let print_if_is_coercion ref = if Classops.coercion_exists ref then [pr_global ref ++ str " is a coercion"] else [] (*******************) (* *) let print_polymorphism ref = let poly = Global.is_polymorphic ref in let template_poly = Global.is_template_polymorphic ref in if Flags.is_universe_polymorphism () || poly || template_poly then [ pr_global ref ++ str " is " ++ str (if poly then "universe polymorphic" else if template_poly then "template universe polymorphic" else "not universe polymorphic") ] else [] let print_type_in_type ref = let unsafe = Global.is_type_in_type ref in if unsafe then [ pr_global ref ++ str " relies on an unsafe universe hierarchy"] else [] let print_primitive_record recflag mipv = function | PrimRecord _ -> let eta = match recflag with | CoFinite | Finite -> str" without eta conversion" | BiFinite -> str " with eta conversion" in [Id.print mipv.(0).mind_typename ++ str" has primitive projections" ++ eta ++ str"."] | FakeRecord | NotRecord -> [] let print_primitive ref = match ref with | IndRef ind -> let mib,_ = Global.lookup_inductive ind in print_primitive_record mib.mind_finite mib.mind_packets mib.mind_record | _ -> [] let print_name_infos ref = let impls = implicits_of_global ref in let scopes = Notation.find_arguments_scope ref in let renames = try Arguments_renaming.arguments_names ref with Not_found -> [] in let type_info_for_implicit = if need_expansion (select_impargs_size 0 impls) ref then (* Need to reduce since implicits are computed with products flattened *) [str "Expanded type for implicit arguments"; print_ref true ref None; blankline] else [] in print_polymorphism ref @ print_type_in_type ref @ print_primitive ref @ type_info_for_implicit @ print_renames_list (mt()) renames @ print_impargs_list (mt()) impls @ print_argument_scopes (mt()) scopes @ print_if_is_coercion ref let print_id_args_data test pr id l = if List.exists test l then pr (str "For " ++ Id.print id) l else [] let print_args_data_of_inductive_ids get test pr sp mipv = List.flatten (Array.to_list (Array.mapi (fun i mip -> print_id_args_data test pr mip.mind_typename (get (IndRef (sp,i))) @ List.flatten (Array.to_list (Array.mapi (fun j idc -> print_id_args_data test pr idc (get (ConstructRef ((sp,i),j+1)))) mip.mind_consnames))) mipv)) let print_inductive_implicit_args = print_args_data_of_inductive_ids implicits_of_global (fun l -> not (List.is_empty (positions_of_implicits l))) print_impargs_list let print_inductive_renames = print_args_data_of_inductive_ids (fun r -> try Arguments_renaming.arguments_names r with Not_found -> []) ((!=) Anonymous) print_renames_list let print_inductive_argument_scopes = print_args_data_of_inductive_ids Notation.find_arguments_scope (Option.has_some) print_argument_scopes (*********************) (* "Locate" commands *) type 'a locatable_info = { locate : qualid -> 'a option; locate_all : qualid -> 'a list; shortest_qualid : 'a -> qualid; name : 'a -> Pp.t; print : 'a -> Pp.t; about : 'a -> Pp.t; } type locatable = Locatable : 'a locatable_info -> locatable type logical_name = | Term of GlobRef.t | Dir of global_dir_reference | Syntactic of KerName.t | ModuleType of ModPath.t | Other : 'a * 'a locatable_info -> logical_name | Undefined of qualid (** Generic table for objects that are accessible through a name. *) let locatable_map : locatable String.Map.t ref = ref String.Map.empty let register_locatable name f = locatable_map := String.Map.add name (Locatable f) !locatable_map exception ObjFound of logical_name let locate_any_name qid = try Term (Nametab.locate qid) with Not_found -> try Syntactic (Nametab.locate_syndef qid) with Not_found -> try Dir (Nametab.locate_dir qid) with Not_found -> try ModuleType (Nametab.locate_modtype qid) with Not_found -> let iter _ (Locatable info) = match info.locate qid with | None -> () | Some ans -> raise (ObjFound (Other (ans, info))) in try String.Map.iter iter !locatable_map; Undefined qid with ObjFound obj -> obj let pr_located_qualid = function | Term ref -> let ref_str = match ref with ConstRef _ -> "Constant" | IndRef _ -> "Inductive" | ConstructRef _ -> "Constructor" | VarRef _ -> "Variable" in str ref_str ++ spc () ++ pr_path (Nametab.path_of_global ref) | Syntactic kn -> str "Notation" ++ spc () ++ pr_path (Nametab.path_of_syndef kn) | Dir dir -> let s,dir = match dir with | DirOpenModule { obj_dir ; _ } -> "Open Module", obj_dir | DirOpenModtype { obj_dir ; _ } -> "Open Module Type", obj_dir | DirOpenSection { obj_dir ; _ } -> "Open Section", obj_dir | DirModule { obj_dir ; _ } -> "Module", obj_dir in str s ++ spc () ++ DirPath.print dir | ModuleType mp -> str "Module Type" ++ spc () ++ pr_path (Nametab.path_of_modtype mp) | Other (obj, info) -> info.name obj | Undefined qid -> pr_qualid qid ++ spc () ++ str "not a defined object." let canonize_ref = function | ConstRef c -> let kn = Constant.canonical c in if KerName.equal (Constant.user c) kn then None else Some (ConstRef (Constant.make1 kn)) | IndRef (ind,i) -> let kn = MutInd.canonical ind in if KerName.equal (MutInd.user ind) kn then None else Some (IndRef (MutInd.make1 kn, i)) | ConstructRef ((ind,i),j) -> let kn = MutInd.canonical ind in if KerName.equal (MutInd.user ind) kn then None else Some (ConstructRef ((MutInd.make1 kn, i),j)) | VarRef _ -> None let display_alias = function | Term r -> begin match canonize_ref r with | None -> mt () | Some r' -> let q' = Nametab.shortest_qualid_of_global Id.Set.empty r' in spc () ++ str "(alias of " ++ pr_qualid q' ++ str ")" end | _ -> mt () let locate_term qid = let expand = function | TrueGlobal ref -> Term ref, Nametab.shortest_qualid_of_global Id.Set.empty ref | SynDef kn -> Syntactic kn, Nametab.shortest_qualid_of_syndef Id.Set.empty kn in List.map expand (Nametab.locate_extended_all qid) let locate_module qid = let all = Nametab.locate_extended_all_dir qid in let map dir = match dir with | DirModule { obj_mp ; _ } -> Some (Dir dir, Nametab.shortest_qualid_of_module obj_mp) | DirOpenModule _ -> Some (Dir dir, qid) | _ -> None in List.map_filter map all let locate_modtype qid = let all = Nametab.locate_extended_all_modtype qid in let map mp = ModuleType mp, Nametab.shortest_qualid_of_modtype mp in let modtypes = List.map map all in (** Don't forget the opened module types: they are not part of the same name tab. *) let all = Nametab.locate_extended_all_dir qid in let map dir = match dir with | DirOpenModtype _ -> Some (Dir dir, qid) | _ -> None in modtypes @ List.map_filter map all let locate_other s qid = let Locatable info = String.Map.find s !locatable_map in let ans = info.locate_all qid in let map obj = (Other (obj, info), info.shortest_qualid obj) in List.map map ans type locatable_kind = | LocTerm | LocModule | LocOther of string | LocAny let print_located_qualid name flags qid = let located = match flags with | LocTerm -> locate_term qid | LocModule -> locate_modtype qid @ locate_module qid | LocOther s -> locate_other s qid | LocAny -> locate_term qid @ locate_modtype qid @ locate_module qid @ String.Map.fold (fun s _ accu -> locate_other s qid @ accu) !locatable_map [] in match located with | [] -> let (dir,id) = repr_qualid qid in if DirPath.is_empty dir then str "No " ++ str name ++ str " of basename" ++ spc () ++ Id.print id else str "No " ++ str name ++ str " of suffix" ++ spc () ++ pr_qualid qid | l -> prlist_with_sep fnl (fun (o,oqid) -> hov 2 (pr_located_qualid o ++ (if not (qualid_eq oqid qid) then spc() ++ str "(shorter name to refer to it in current context is " ++ pr_qualid oqid ++ str")" else mt ()) ++ display_alias o)) l let print_located_term ref = print_located_qualid "term" LocTerm ref let print_located_other s ref = print_located_qualid s (LocOther s) ref let print_located_module ref = print_located_qualid "module" LocModule ref let print_located_qualid ref = print_located_qualid "object" LocAny ref (******************************************) (**** Printing declarations and judgments *) (**** Gallina layer *****) let gallina_print_typed_value_in_env env sigma (trm,typ) = (pr_leconstr_env env sigma trm ++ fnl () ++ str " : " ++ pr_letype_env env sigma typ) (* To be improved; the type should be used to provide the types in the abstractions. This should be done recursively inside pr_lconstr, so that the pretty-print of a proposition (P:(nat->nat)->Prop)(P [u]u) synthesizes the type nat of the abstraction on u *) let print_named_def env sigma name body typ = let pbody = pr_lconstr_env env sigma body in let ptyp = pr_ltype_env env sigma typ in let pbody = if Constr.isCast body then surround pbody else pbody in (str "*** [" ++ str name ++ str " " ++ hov 0 (str ":=" ++ brk (1,2) ++ pbody ++ spc () ++ str ":" ++ brk (1,2) ++ ptyp) ++ str "]") let print_named_assum env sigma name typ = str "*** [" ++ str name ++ str " : " ++ pr_ltype_env env sigma typ ++ str "]" let gallina_print_named_decl env sigma = let open Context.Named.Declaration in function | LocalAssum (id, typ) -> print_named_assum env sigma (Id.to_string id) typ | LocalDef (id, body, typ) -> print_named_def env sigma (Id.to_string id) body typ let assumptions_for_print lna = List.fold_right (fun na env -> add_name na env) lna empty_names_context (*********************) (* *) let gallina_print_inductive sp udecl = let env = Global.env() in let mib = Environ.lookup_mind sp env in let mipv = mib.mind_packets in pr_mutual_inductive_body env sp mib udecl ++ with_line_skip (print_primitive_record mib.mind_finite mipv mib.mind_record @ print_inductive_renames sp mipv @ print_inductive_implicit_args sp mipv @ print_inductive_argument_scopes sp mipv) let print_named_decl env sigma id = gallina_print_named_decl env sigma (Global.lookup_named id) ++ fnl () let gallina_print_section_variable env sigma id = print_named_decl env sigma id ++ with_line_skip (print_name_infos (VarRef id)) let print_body env evd = function | Some c -> pr_lconstr_env env evd c | None -> (str"") let print_typed_body env evd (val_0,typ) = (print_body env evd val_0 ++ fnl () ++ str " : " ++ pr_ltype_env env evd typ) let print_instance sigma cb = if Declareops.constant_is_polymorphic cb then let univs = Declareops.constant_polymorphic_context cb in let inst = Univ.AUContext.instance univs in let univs = Univ.UContext.make (inst, Univ.AUContext.instantiate inst univs) in pr_universe_instance sigma univs else mt() let print_constant with_values sep sp udecl = let cb = Global.lookup_constant sp in let val_0 = Global.body_of_constant_body cb in let typ = match cb.const_universes with | Monomorphic_const _ -> cb.const_type | Polymorphic_const univs -> let inst = Univ.AUContext.instance univs in Vars.subst_instance_constr inst cb.const_type in let univs, ulist = let open Entries in let open Univ in let otab = Global.opaque_tables () in match cb.const_body with | Undef _ | Def _ -> begin match cb.const_universes with | Monomorphic_const ctx -> Monomorphic_const_entry ctx, [] | Polymorphic_const ctx -> let inst = AUContext.instance ctx in Polymorphic_const_entry (UContext.make (inst, AUContext.instantiate inst ctx)), Array.to_list (Instance.to_array inst) end | OpaqueDef o -> let body_uctxs = Opaqueproof.force_constraints otab o in match cb.const_universes with | Monomorphic_const ctx -> Monomorphic_const_entry (ContextSet.union body_uctxs ctx), [] | Polymorphic_const ctx -> assert(ContextSet.is_empty body_uctxs); let inst = AUContext.instance ctx in Polymorphic_const_entry (UContext.make (inst, AUContext.instantiate inst ctx)), Array.to_list (Instance.to_array inst) in let ctx = UState.of_binders (UnivNames.universe_binders_with_opt_names (ConstRef sp) ulist udecl) in let env = Global.env () and sigma = Evd.from_ctx ctx in let pr_ltype = pr_ltype_env env sigma in hov 0 (pr_polymorphic (Declareops.constant_is_polymorphic cb) ++ match val_0 with | None -> str"*** [ " ++ print_basename sp ++ print_instance sigma cb ++ str " : " ++ cut () ++ pr_ltype typ ++ str" ]" ++ Printer.pr_constant_universes sigma univs | Some (c, ctx) -> let c = Vars.subst_instance_constr (Univ.AUContext.instance ctx) c in print_basename sp ++ print_instance sigma cb ++ str sep ++ cut () ++ (if with_values then print_typed_body env sigma (Some c,typ) else pr_ltype typ)++ Printer.pr_constant_universes sigma univs) let gallina_print_constant_with_infos sp udecl = print_constant true " = " sp udecl ++ with_line_skip (print_name_infos (ConstRef sp)) let gallina_print_syntactic_def env kn = let qid = Nametab.shortest_qualid_of_syndef Id.Set.empty kn and (vars,a) = Syntax_def.search_syntactic_definition kn in let c = Notation_ops.glob_constr_of_notation_constr a in hov 2 (hov 4 (str "Notation " ++ pr_qualid qid ++ prlist (fun id -> spc () ++ Id.print id) (List.map fst vars) ++ spc () ++ str ":=") ++ spc () ++ Constrextern.without_specific_symbols [Notation.SynDefRule kn] (pr_glob_constr_env env) c) let gallina_print_leaf_entry env sigma with_values ((sp,kn as oname),lobj) = let sep = if with_values then " = " else " : " and tag = object_tag lobj in match (oname,tag) with | (_,"VARIABLE") -> (* Outside sections, VARIABLES still exist but only with universes constraints *) (try Some(print_named_decl env sigma (basename sp)) with Not_found -> None) | (_,"CONSTANT") -> Some (print_constant with_values sep (Constant.make1 kn) None) | (_,"INDUCTIVE") -> Some (gallina_print_inductive (MutInd.make1 kn) None) | (_,"MODULE") -> let (mp,_,l) = KerName.repr kn in Some (print_module with_values (MPdot (mp,l))) | (_,"MODULE TYPE") -> let (mp,_,l) = KerName.repr kn in Some (print_modtype (MPdot (mp,l))) | (_,("AUTOHINT"|"GRAMMAR"|"SYNTAXCONSTANT"|"PPSYNTAX"|"TOKEN"|"CLASS"| "COERCION"|"REQUIRE"|"END-SECTION"|"STRUCTURE")) -> None (* To deal with forgotten cases... *) | (_,s) -> None let gallina_print_library_entry env sigma with_values ent = let pr_name (sp,_) = Id.print (basename sp) in match ent with | (oname,Lib.Leaf lobj) -> gallina_print_leaf_entry env sigma with_values (oname,lobj) | (oname,Lib.OpenedSection (dir,_)) -> Some (str " >>>>>>> Section " ++ pr_name oname) | (oname,Lib.ClosedSection _) -> Some (str " >>>>>>> Closed Section " ++ pr_name oname) | (_,Lib.CompilingLibrary { obj_dir; _ }) -> Some (str " >>>>>>> Library " ++ DirPath.print obj_dir) | (oname,Lib.OpenedModule _) -> Some (str " >>>>>>> Module " ++ pr_name oname) | (oname,Lib.ClosedModule _) -> Some (str " >>>>>>> Closed Module " ++ pr_name oname) let gallina_print_context env sigma with_values = let rec prec n = function | h::rest when Option.is_empty n || Option.get n > 0 -> (match gallina_print_library_entry env sigma with_values h with | None -> prec n rest | Some pp -> prec (Option.map ((+) (-1)) n) rest ++ pp ++ fnl ()) | _ -> mt () in prec let gallina_print_eval red_fun env sigma _ {uj_val=trm;uj_type=typ} = let ntrm = red_fun env sigma trm in (str " = " ++ gallina_print_typed_value_in_env env sigma (ntrm,typ)) (******************************************) (**** Printing abstraction layer *) let default_object_pr = { print_inductive = gallina_print_inductive; print_constant_with_infos = gallina_print_constant_with_infos; print_section_variable = gallina_print_section_variable; print_syntactic_def = gallina_print_syntactic_def; print_module = gallina_print_module; print_modtype = gallina_print_modtype; print_named_decl = gallina_print_named_decl; print_library_entry = gallina_print_library_entry; print_context = gallina_print_context; print_typed_value_in_env = gallina_print_typed_value_in_env; print_eval = gallina_print_eval; } let object_pr = ref default_object_pr let set_object_pr = (:=) object_pr let print_inductive x = !object_pr.print_inductive x let print_constant_with_infos c = !object_pr.print_constant_with_infos c let print_section_variable c = !object_pr.print_section_variable c let print_syntactic_def x = !object_pr.print_syntactic_def x let print_module x = !object_pr.print_module x let print_modtype x = !object_pr.print_modtype x let print_named_decl x = !object_pr.print_named_decl x let print_library_entry x = !object_pr.print_library_entry x let print_context x = !object_pr.print_context x let print_typed_value_in_env x = !object_pr.print_typed_value_in_env x let print_eval x = !object_pr.print_eval x (******************************************) (**** Printing declarations and judgments *) (**** Abstract layer *****) let print_typed_value x = let env = Global.env () in let sigma = Evd.from_env env in print_typed_value_in_env env sigma x let print_judgment env sigma {uj_val=trm;uj_type=typ} = print_typed_value_in_env env sigma (trm, typ) let print_safe_judgment env sigma j = let trm = Safe_typing.j_val j in let typ = Safe_typing.j_type j in let trm = EConstr.of_constr trm in let typ = EConstr.of_constr typ in print_typed_value_in_env env sigma (trm, typ) (*********************) (* *) let print_full_context env sigma = print_context env sigma true None (Lib.contents ()) let print_full_context_typ env sigma = print_context env sigma false None (Lib.contents ()) let print_full_pure_context env sigma = let rec prec = function | ((_,kn),Lib.Leaf lobj)::rest -> let pp = match object_tag lobj with | "CONSTANT" -> let con = Global.constant_of_delta_kn kn in let cb = Global.lookup_constant con in let typ = cb.const_type in hov 0 ( match cb.const_body with | Undef _ -> str "Parameter " ++ print_basename con ++ str " : " ++ cut () ++ pr_ltype_env env sigma typ | OpaqueDef lc -> str "Theorem " ++ print_basename con ++ cut () ++ str " : " ++ pr_ltype_env env sigma typ ++ str "." ++ fnl () ++ str "Proof " ++ pr_lconstr_env env sigma (Opaqueproof.force_proof (Global.opaque_tables ()) lc) | Def c -> str "Definition " ++ print_basename con ++ cut () ++ str " : " ++ pr_ltype_env env sigma typ ++ cut () ++ str " := " ++ pr_lconstr_env env sigma (Mod_subst.force_constr c)) ++ str "." ++ fnl () ++ fnl () | "INDUCTIVE" -> let mind = Global.mind_of_delta_kn kn in let mib = Global.lookup_mind mind in pr_mutual_inductive_body (Global.env()) mind mib None ++ str "." ++ fnl () ++ fnl () | "MODULE" -> (* TODO: make it reparsable *) let (mp,_,l) = KerName.repr kn in print_module true (MPdot (mp,l)) ++ str "." ++ fnl () ++ fnl () | "MODULE TYPE" -> (* TODO: make it reparsable *) (* TODO: make it reparsable *) let (mp,_,l) = KerName.repr kn in print_modtype (MPdot (mp,l)) ++ str "." ++ fnl () ++ fnl () | _ -> mt () in prec rest ++ pp | _::rest -> prec rest | _ -> mt () in prec (Lib.contents ()) (* For printing an inductive definition with its constructors and elimination, assume that the declaration of constructors and eliminations follows the definition of the inductive type *) (* This is designed to print the contents of an opened section *) let read_sec_context qid = let dir = try Nametab.locate_section qid with Not_found -> user_err ?loc:qid.loc ~hdr:"read_sec_context" (str "Unknown section.") in let rec get_cxt in_cxt = function | (_,Lib.OpenedSection ({obj_dir;_},_) as hd)::rest -> if DirPath.equal dir obj_dir then (hd::in_cxt) else get_cxt (hd::in_cxt) rest | (_,Lib.ClosedSection _)::rest -> user_err Pp.(str "Cannot print the contents of a closed section.") (* LEM: Actually, we could if we wanted to. *) | [] -> [] | hd::rest -> get_cxt (hd::in_cxt) rest in let cxt = Lib.contents () in List.rev (get_cxt [] cxt) let print_sec_context env sigma sec = print_context env sigma true None (read_sec_context sec) let print_sec_context_typ env sigma sec = print_context env sigma false None (read_sec_context sec) let maybe_error_reject_univ_decl na udecl = match na, udecl with | _, None | Term (ConstRef _ | IndRef _ | ConstructRef _), Some _ -> () | (Term (VarRef _) | Syntactic _ | Dir _ | ModuleType _ | Other _ | Undefined _), Some udecl -> (* TODO Print na somehow *) user_err ~hdr:"reject_univ_decl" (str "This object does not support universe names.") let print_any_name env sigma na udecl = maybe_error_reject_univ_decl na udecl; match na with | Term (ConstRef sp) -> print_constant_with_infos sp udecl | Term (IndRef (sp,_)) -> print_inductive sp udecl | Term (ConstructRef ((sp,_),_)) -> print_inductive sp udecl | Term (VarRef sp) -> print_section_variable env sigma sp | Syntactic kn -> print_syntactic_def env kn | Dir (DirModule { obj_dir; obj_mp; _ } ) -> print_module (printable_body obj_dir) obj_mp | Dir _ -> mt () | ModuleType mp -> print_modtype mp | Other (obj, info) -> info.print obj | Undefined qid -> try (* Var locale de but, pas var de section... donc pas d'implicits *) let dir,str = repr_qualid qid in if not (DirPath.is_empty dir) then raise Not_found; str |> Global.lookup_named |> print_named_decl env sigma with Not_found -> user_err ~hdr:"print_name" (pr_qualid qid ++ spc () ++ str "not a defined object.") let print_name env sigma na udecl = match na with | {loc; v=Constrexpr.ByNotation (ntn,sc)} -> print_any_name env sigma (Term (Notation.interp_notation_as_global_reference ?loc (fun _ -> true) ntn sc)) udecl | {loc; v=Constrexpr.AN ref} -> print_any_name env sigma (locate_any_name ref) udecl let print_opaque_name env sigma qid = match Nametab.global qid with | ConstRef cst -> let cb = Global.lookup_constant cst in if Declareops.constant_has_body cb then print_constant_with_infos cst None else user_err Pp.(str "Not a defined constant.") | IndRef (sp,_) -> print_inductive sp None | ConstructRef cstr as gr -> let ty, ctx = Global.type_of_global_in_context env gr in let inst = Univ.AUContext.instance ctx in let ty = Vars.subst_instance_constr inst ty in let ty = EConstr.of_constr ty in let open EConstr in print_typed_value (mkConstruct cstr, ty) | VarRef id -> env |> lookup_named id |> print_named_decl env sigma let print_about_any ?loc env sigma k udecl = maybe_error_reject_univ_decl k udecl; match k with | Term ref -> let rb = Reductionops.ReductionBehaviour.print ref in Dumpglob.add_glob ?loc ref; pr_infos_list (print_ref false ref udecl :: blankline :: print_name_infos ref @ (if Pp.ismt rb then [] else [rb]) @ print_opacity ref @ [hov 0 (str "Expands to: " ++ pr_located_qualid k)]) | Syntactic kn -> let () = match Syntax_def.search_syntactic_definition kn with | [],Notation_term.NRef ref -> Dumpglob.add_glob ?loc ref | _ -> () in v 0 ( print_syntactic_def env kn ++ fnl () ++ hov 0 (str "Expands to: " ++ pr_located_qualid k)) | Dir _ | ModuleType _ | Undefined _ -> hov 0 (pr_located_qualid k) | Other (obj, info) -> hov 0 (info.about obj) let print_about env sigma na udecl = match na with | {loc;v=Constrexpr.ByNotation (ntn,sc)} -> print_about_any ?loc env sigma (Term (Notation.interp_notation_as_global_reference ?loc (fun _ -> true) ntn sc)) udecl | {loc;v=Constrexpr.AN ref} -> print_about_any ?loc env sigma (locate_any_name ref) udecl (* for debug *) let inspect env sigma depth = print_context env sigma false (Some depth) (Lib.contents ()) (*************************************************************************) (* Pretty-printing functions coming from classops.ml *) open Classops let print_coercion_value env sigma v = pr_lconstr_env env sigma (get_coercion_value v) let print_class i = let cl,_ = class_info_from_index i in pr_class cl let print_path env sigma ((i,j),p) = hov 2 ( str"[" ++ hov 0 (prlist_with_sep pr_semicolon (print_coercion_value env sigma) p) ++ str"] : ") ++ print_class i ++ str" >-> " ++ print_class j let _ = Classops.install_path_printer print_path let print_graph env sigma = prlist_with_sep fnl (print_path env sigma) (inheritance_graph()) let print_classes () = pr_sequence pr_class (classes()) let print_coercions env sigma = pr_sequence (print_coercion_value env sigma) (coercions()) let index_of_class cl = try fst (class_info cl) with Not_found -> user_err ~hdr:"index_of_class" (pr_class cl ++ spc() ++ str "not a defined class.") let print_path_between env sigma cls clt = let i = index_of_class cls in let j = index_of_class clt in let p = try lookup_path_between_class (i,j) with Not_found -> user_err ~hdr:"index_cl_of_id" (str"No path between " ++ pr_class cls ++ str" and " ++ pr_class clt ++ str ".") in print_path env sigma ((i,j),p) let print_canonical_projections env sigma = prlist_with_sep fnl (fun ((r1,r2),o) -> pr_cs_pattern r2 ++ str " <- " ++ pr_global r1 ++ str " ( " ++ pr_lconstr_env env sigma o.o_DEF ++ str " )") (canonical_projections ()) (*************************************************************************) (*************************************************************************) (* Pretty-printing functions for type classes *) open Typeclasses let pr_typeclass env t = print_ref false t.cl_impl None let print_typeclasses () = let env = Global.env () in prlist_with_sep fnl (pr_typeclass env) (typeclasses ()) let pr_instance env i = (* gallina_print_constant_with_infos i.is_impl *) (* lighter *) print_ref false (instance_impl i) None ++ begin match hint_priority i with | None -> mt () | Some i -> spc () ++ str "|" ++ spc () ++ int i end let print_all_instances () = let env = Global.env () in let inst = all_instances () in prlist_with_sep fnl (pr_instance env) inst let print_instances r = let env = Global.env () in let inst = instances r in prlist_with_sep fnl (pr_instance env) inst