(************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) (* raise Occur | Evar (ev,args) -> (match evar_body (Evd.find evd ev) with | Evar_defined c -> occrec c; Array.iter occrec args | Evar_empty -> raise Occur) | Sort s when is_sort_variable evd s -> raise Occur | _ -> iter_constr occrec c in try occrec c; false with Occur | Not_found -> true let occur_meta_evd sigma mv c = let rec occrec c = (* Note: evars are not instantiated by terms with metas *) let c = whd_evar sigma (whd_meta sigma c) in match kind_of_term c with | Meta mv' when mv = mv' -> raise Occur | _ -> iter_constr occrec c in try occrec c; false with Occur -> true (* if lname_typ is [xn,An;..;x1,A1] and l is a list of terms, gives [x1:A1]..[xn:An]c' such that c converts to ([x1:A1]..[xn:An]c' l) *) let abstract_scheme env c l lname_typ = List.fold_left2 (fun t (locc,a) (na,_,ta) -> let na = match kind_of_term a with Var id -> Name id | _ -> na in (* [occur_meta ta] test removed for support of eelim/ecase but consequences are unclear... if occur_meta ta then error "cannot find a type for the generalisation" else *) if occur_meta a then mkLambda_name env (na,ta,t) else mkLambda_name env (na,ta,subst_closed_term_occ locc a t)) c (List.rev l) lname_typ let abstract_list_all env evd typ c l = let ctxt,_ = splay_prod_n env evd (List.length l) typ in let l_with_all_occs = List.map (function a -> (AllOccurrences,a)) l in let p = abstract_scheme env c l_with_all_occs ctxt in try if is_conv_leq env evd (Typing.type_of env evd p) typ then p else error "abstract_list_all" with UserError _ | Type_errors.TypeError _ -> error_cannot_find_well_typed_abstraction env evd p l let set_occurrences_of_last_arg args = Some AllOccurrences :: List.tl (array_map_to_list (fun _ -> None) args) let abstract_list_all_with_dependencies env evd typ c l = let evd,ev = new_evar evd env typ in let evd,ev' = evar_absorb_arguments env evd (destEvar ev) l in let argoccs = set_occurrences_of_last_arg (snd ev') in let evd,b = Evarconv.second_order_matching empty_transparent_state env evd ev' argoccs c in if b then nf_evar evd (existential_value evd (destEvar ev)) else error "Cannot find a well-typed abstraction." (**) (* A refinement of [conv_pb]: the integers tells how many arguments were applied in the context of the conversion problem; if the number is non zero, steps of eta-expansion will be allowed *) let opp_status = function | IsSuperType -> IsSubType | IsSubType -> IsSuperType | Conv -> Conv let add_type_status (x,y) = ((x,TypeNotProcessed),(y,TypeNotProcessed)) let extract_instance_status = function | CUMUL -> add_type_status (IsSubType, IsSuperType) | CONV -> add_type_status (Conv, Conv) let rec assoc_pair x = function [] -> raise Not_found | (a,b,_)::l -> if compare a x = 0 then b else assoc_pair x l let rec subst_meta_instances bl c = match kind_of_term c with | Meta i -> (try assoc_pair i bl with Not_found -> c) | _ -> map_constr (subst_meta_instances bl) c let pose_all_metas_as_evars env evd t = let evdref = ref evd in let rec aux t = match kind_of_term t with | Meta mv -> (match Evd.meta_opt_fvalue !evdref mv with | Some ({rebus=c},_) -> c | None -> let {rebus=ty;freemetas=mvs} = Evd.meta_ftype evd mv in let ty = if mvs = Evd.Metaset.empty then ty else aux ty in let ev = Evarutil.e_new_evar evdref env ~src:(Loc.ghost,Evar_kinds.GoalEvar) ty in evdref := meta_assign mv (ev,(Conv,TypeNotProcessed)) !evdref; ev) | _ -> map_constr aux t in let c = aux t in (* side-effect *) (!evdref, c) let solve_pattern_eqn_array (env,nb) f l c (sigma,metasubst,evarsubst) = match kind_of_term f with | Meta k -> let sigma,c = pose_all_metas_as_evars env sigma c in let c = solve_pattern_eqn env l c in let pb = (Conv,TypeNotProcessed) in if noccur_between 1 nb c then sigma,(k,lift (-nb) c,pb)::metasubst,evarsubst else error_cannot_unify_local env sigma (applist (f, l),c,c) | Evar ev -> let sigma,c = pose_all_metas_as_evars env sigma c in sigma,metasubst,(env,ev,solve_pattern_eqn env l c)::evarsubst | _ -> assert false let push d (env,n) = (push_rel_assum d env,n+1) (*******************************) (* Unification à l'ordre 0 de m et n: [unify_0 env sigma cv_pb m n] renvoie deux listes: metasubst:(int*constr)list récolte les instances des (Meta k) evarsubst:(constr*constr)list récolte les instances des (Const "?k") Attention : pas d'unification entre les différences instances d'une même meta ou evar, il peut rester des doublons *) (* Unification order: *) (* Left to right: unifies first argument and then the other arguments *) (*let unify_l2r x = List.rev x (* Right to left: unifies last argument and then the other arguments *) let unify_r2l x = x let sort_eqns = unify_r2l *) (* Option introduced and activated in Coq 8.3 *) let global_evars_pattern_unification_flag = ref true open Goptions let _ = declare_bool_option { optsync = true; optdepr = false; optname = "pattern-unification for existential variables in tactics"; optkey = ["Tactic";"Evars";"Pattern";"Unification"]; optread = (fun () -> !global_evars_pattern_unification_flag); optwrite = (:=) global_evars_pattern_unification_flag } let _ = declare_bool_option { optsync = true; optdepr = false; optname = "pattern-unification for existential variables in tactics"; optkey = ["Tactic";"Pattern";"Unification"]; optread = (fun () -> !global_evars_pattern_unification_flag); optwrite = (:=) global_evars_pattern_unification_flag } type unify_flags = { modulo_conv_on_closed_terms : Names.transparent_state option; (* What this flag controls was activated with all constants transparent, *) (* even for auto, since Coq V5.10 *) use_metas_eagerly_in_conv_on_closed_terms : bool; (* This refinement of the conversion on closed terms is activable *) (* (and activated for apply, rewrite but not auto since Feb 2008 for 8.2) *) modulo_delta : Names.transparent_state; (* This controls which constant are unfoldable; this is on for apply *) (* (but not simple apply) since Feb 2008 for 8.2 *) modulo_delta_types : Names.transparent_state; check_applied_meta_types : bool; (* This controls whether meta's applied to arguments have their *) (* type unified with the type of their instance *) resolve_evars : bool; (* This says if type classes instances resolution must be used to infer *) (* the remaining evars *) use_pattern_unification : bool; (* This says if type classes instances resolution must be used to infer *) (* the remaining evars *) use_meta_bound_pattern_unification : bool; (* This solves pattern "?n x1 ... xn = t" when the xi are distinct rels *) (* This allows for instance to unify "forall x:A, B(x)" with "A' -> B'" *) (* This was on for all tactics, including auto, since Sep 2006 for 8.1 *) frozen_evars : ExistentialSet.t; (* Evars of this set are considered axioms and never instantiated *) (* Useful e.g. for autorewrite *) restrict_conv_on_strict_subterms : bool; (* No conversion at the root of the term; potentially useful for rewrite *) modulo_betaiota : bool; (* Support betaiota in the reduction *) (* Note that zeta is always used *) modulo_eta : bool; (* Support eta in the reduction *) allow_K_in_toplevel_higher_order_unification : bool (* This is used only in second/higher order unification when looking for *) (* subterms (rewrite and elim) *) } (* Default flag for unifying a type against a type (e.g. apply) *) (* We set all conversion flags *) let default_unify_flags = { modulo_conv_on_closed_terms = Some full_transparent_state; use_metas_eagerly_in_conv_on_closed_terms = true; modulo_delta = full_transparent_state; modulo_delta_types = full_transparent_state; check_applied_meta_types = true; resolve_evars = false; use_pattern_unification = true; use_meta_bound_pattern_unification = true; frozen_evars = ExistentialSet.empty; restrict_conv_on_strict_subterms = false; modulo_betaiota = true; modulo_eta = true; allow_K_in_toplevel_higher_order_unification = false (* in fact useless when not used in w_unify_to_subterm_list *) } (* Default flag for the "simple apply" version of unification of a *) (* type against a type (e.g. apply) *) (* We set only the flags available at the time the new "apply" extends *) (* out of "simple apply" *) let default_no_delta_unify_flags = { modulo_conv_on_closed_terms = Some full_transparent_state; use_metas_eagerly_in_conv_on_closed_terms = true; modulo_delta = empty_transparent_state; modulo_delta_types = full_transparent_state; check_applied_meta_types = false; resolve_evars = false; use_pattern_unification = false; use_meta_bound_pattern_unification = true; frozen_evars = ExistentialSet.empty; restrict_conv_on_strict_subterms = false; modulo_betaiota = false; modulo_eta = true; allow_K_in_toplevel_higher_order_unification = false } (* Default flags for looking for subterms in elimination tactics *) (* Not used in practice at the current date, to the exception of *) (* allow_K) because only closed terms are involved in *) (* induction/destruct/case/elim and w_unify_to_subterm_list does not *) (* call w_unify for induction/destruct/case/elim (13/6/2011) *) let elim_flags = { modulo_conv_on_closed_terms = Some full_transparent_state; use_metas_eagerly_in_conv_on_closed_terms = true; modulo_delta = full_transparent_state; modulo_delta_types = full_transparent_state; check_applied_meta_types = true; resolve_evars = false; use_pattern_unification = true; use_meta_bound_pattern_unification = true; frozen_evars = ExistentialSet.empty; restrict_conv_on_strict_subterms = false; (* ? *) modulo_betaiota = false; modulo_eta = true; allow_K_in_toplevel_higher_order_unification = true } let elim_no_delta_flags = { modulo_conv_on_closed_terms = Some full_transparent_state; use_metas_eagerly_in_conv_on_closed_terms = true; modulo_delta = empty_transparent_state; modulo_delta_types = full_transparent_state; check_applied_meta_types = false; resolve_evars = false; use_pattern_unification = false; use_meta_bound_pattern_unification = true; frozen_evars = ExistentialSet.empty; restrict_conv_on_strict_subterms = false; (* ? *) modulo_betaiota = false; modulo_eta = true; allow_K_in_toplevel_higher_order_unification = true } let set_no_head_reduction flags = { flags with restrict_conv_on_strict_subterms = true } let use_evars_pattern_unification flags = !global_evars_pattern_unification_flag && flags.use_pattern_unification && Flags.version_strictly_greater Flags.V8_2 let use_metas_pattern_unification flags nb l = !global_evars_pattern_unification_flag && flags.use_pattern_unification || (Flags.version_less_or_equal Flags.V8_3 || flags.use_meta_bound_pattern_unification) && array_for_all (fun c -> isRel c && destRel c <= nb) l let expand_key env = function | Some (ConstKey cst) -> constant_opt_value env cst | Some (VarKey id) -> (try named_body id env with Not_found -> None) | Some (RelKey _) -> None | None -> None let subterm_restriction is_subterm flags = not is_subterm && flags.restrict_conv_on_strict_subterms let key_of b flags f = if subterm_restriction b flags then None else match kind_of_term f with | Const cst when is_transparent (ConstKey cst) && Cpred.mem cst (snd flags.modulo_delta) -> Some (ConstKey cst) | Var id when is_transparent (VarKey id) && Idpred.mem id (fst flags.modulo_delta) -> Some (VarKey id) | _ -> None let oracle_order env cf1 cf2 = match cf1 with | None -> (match cf2 with | None -> None | Some k2 -> Some false) | Some k1 -> match cf2 with | None -> Some true | Some k2 -> Some (Conv_oracle.oracle_order false k1 k2) let do_reduce ts (env, nb) sigma c = zip (whd_betaiota_deltazeta_for_iota_state ts env sigma (c, empty_stack)) let use_full_betaiota flags = flags.modulo_betaiota && Flags.version_strictly_greater Flags.V8_3 let isAllowedEvar flags c = match kind_of_term c with | Evar (evk,_) -> not (ExistentialSet.mem evk flags.frozen_evars) | _ -> false let check_compatibility env (sigma,metasubst,evarsubst) tyM tyN = match subst_defined_metas metasubst tyM with | None -> () | Some m -> match subst_defined_metas metasubst tyN with | None -> () | Some n -> if not (is_trans_fconv CONV full_transparent_state env sigma m n) && is_ground_term sigma m && is_ground_term sigma n then error_cannot_unify env sigma (m,n) let unify_0_with_initial_metas (sigma,ms,es as subst) conv_at_top env cv_pb flags m n = let rec unirec_rec (curenv,nb as curenvnb) pb b wt ((sigma,metasubst,evarsubst) as substn) curm curn = let cM = Evarutil.whd_head_evar sigma curm and cN = Evarutil.whd_head_evar sigma curn in match (kind_of_term cM,kind_of_term cN) with | Meta k1, Meta k2 -> if k1 = k2 then substn else let stM,stN = extract_instance_status pb in if wt && flags.check_applied_meta_types then (let tyM = Typing.meta_type sigma k1 in let tyN = Typing.meta_type sigma k2 in check_compatibility curenv substn tyM tyN); if k2 < k1 then sigma,(k1,cN,stN)::metasubst,evarsubst else sigma,(k2,cM,stM)::metasubst,evarsubst | Meta k, _ -> if wt && flags.check_applied_meta_types then (let tyM = Typing.meta_type sigma k in let tyN = get_type_of curenv sigma cN in check_compatibility curenv substn tyM tyN); (* Here we check that [cN] does not contain any local variables *) if nb = 0 then sigma,(k,cN,snd (extract_instance_status pb))::metasubst,evarsubst else if noccur_between 1 nb cN then (sigma, (k,lift (-nb) cN,snd (extract_instance_status pb))::metasubst, evarsubst) else error_cannot_unify_local curenv sigma (m,n,cN) | _, Meta k -> if wt && flags.check_applied_meta_types then (let tyM = get_type_of curenv sigma cM in let tyN = Typing.meta_type sigma k in check_compatibility curenv substn tyM tyN); (* Here we check that [cM] does not contain any local variables *) if nb = 0 then (sigma,(k,cM,fst (extract_instance_status pb))::metasubst,evarsubst) else if noccur_between 1 nb cM then (sigma,(k,lift (-nb) cM,fst (extract_instance_status pb))::metasubst, evarsubst) else error_cannot_unify_local curenv sigma (m,n,cM) | Evar (evk,_ as ev), _ when not (ExistentialSet.mem evk flags.frozen_evars) -> let cmvars = free_rels cM and cnvars = free_rels cN in if Intset.subset cnvars cmvars then sigma,metasubst,((curenv,ev,cN)::evarsubst) else error_cannot_unify_local curenv sigma (m,n,cN) | _, Evar (evk,_ as ev) when not (ExistentialSet.mem evk flags.frozen_evars) -> let cmvars = free_rels cM and cnvars = free_rels cN in if Intset.subset cmvars cnvars then sigma,metasubst,((curenv,ev,cM)::evarsubst) else error_cannot_unify_local curenv sigma (m,n,cN) | Sort s1, Sort s2 -> (try let sigma' = if cv_pb = CUMUL then Evd.set_leq_sort sigma s1 s2 else Evd.set_eq_sort sigma s1 s2 in (sigma', metasubst, evarsubst) with _ -> error_cannot_unify curenv sigma (m,n)) | Lambda (na,t1,c1), Lambda (_,t2,c2) -> unirec_rec (push (na,t1) curenvnb) CONV true wt (unirec_rec curenvnb CONV true false substn t1 t2) c1 c2 | Prod (na,t1,c1), Prod (_,t2,c2) -> unirec_rec (push (na,t1) curenvnb) pb true false (unirec_rec curenvnb CONV true false substn t1 t2) c1 c2 | LetIn (_,a,_,c), _ -> unirec_rec curenvnb pb b wt substn (subst1 a c) cN | _, LetIn (_,a,_,c) -> unirec_rec curenvnb pb b wt substn cM (subst1 a c) (* eta-expansion *) | Lambda (na,t1,c1), _ when flags.modulo_eta -> unirec_rec (push (na,t1) curenvnb) CONV true wt substn c1 (mkApp (lift 1 cN,[|mkRel 1|])) | _, Lambda (na,t2,c2) when flags.modulo_eta -> unirec_rec (push (na,t2) curenvnb) CONV true wt substn (mkApp (lift 1 cM,[|mkRel 1|])) c2 | Case (_,p1,c1,cl1), Case (_,p2,c2,cl2) -> (try array_fold_left2 (unirec_rec curenvnb CONV true wt) (unirec_rec curenvnb CONV true false (unirec_rec curenvnb CONV true false substn p1 p2) c1 c2) cl1 cl2 with ex when precatchable_exception ex -> reduce curenvnb pb b wt substn cM cN) | App (f1,l1), _ when (isMeta f1 && use_metas_pattern_unification flags nb l1 || use_evars_pattern_unification flags && isAllowedEvar flags f1) -> (match is_unification_pattern curenvnb sigma f1 (Array.to_list l1) cN with | None -> (match kind_of_term cN with | App (f2,l2) -> unify_app curenvnb pb b substn cM f1 l1 cN f2 l2 | _ -> unify_not_same_head curenvnb pb b wt substn cM cN) | Some l -> solve_pattern_eqn_array curenvnb f1 l cN substn) | _, App (f2,l2) when (isMeta f2 && use_metas_pattern_unification flags nb l2 || use_evars_pattern_unification flags && isAllowedEvar flags f2) -> (match is_unification_pattern curenvnb sigma f2 (Array.to_list l2) cM with | None -> (match kind_of_term cM with | App (f1,l1) -> unify_app curenvnb pb b substn cM f1 l1 cN f2 l2 | _ -> unify_not_same_head curenvnb pb b wt substn cM cN) | Some l -> solve_pattern_eqn_array curenvnb f2 l cM substn) | App (f1,l1), App (f2,l2) -> unify_app curenvnb pb b substn cM f1 l1 cN f2 l2 | _ -> unify_not_same_head curenvnb pb b wt substn cM cN and unify_app curenvnb pb b substn cM f1 l1 cN f2 l2 = try let (f1,l1,f2,l2) = adjust_app_array_size f1 l1 f2 l2 in array_fold_left2 (unirec_rec curenvnb CONV true false) (unirec_rec curenvnb CONV true true substn f1 f2) l1 l2 with ex when precatchable_exception ex -> try reduce curenvnb pb b false substn cM cN with ex when precatchable_exception ex -> try expand curenvnb pb b false substn cM f1 l1 cN f2 l2 with ex when precatchable_exception ex -> canonical_projections curenvnb pb b cM cN substn and unify_not_same_head curenvnb pb b wt substn cM cN = try canonical_projections curenvnb pb b cM cN substn with ex when precatchable_exception ex -> if constr_cmp cv_pb cM cN then substn else try reduce curenvnb pb b wt substn cM cN with ex when precatchable_exception ex -> let (f1,l1) = match kind_of_term cM with App (f,l) -> (f,l) | _ -> (cM,[||]) in let (f2,l2) = match kind_of_term cN with App (f,l) -> (f,l) | _ -> (cN,[||]) in expand curenvnb pb b wt substn cM f1 l1 cN f2 l2 and reduce curenvnb pb b wt (sigma, metas, evars as substn) cM cN = if use_full_betaiota flags && not (subterm_restriction b flags) then let cM' = do_reduce flags.modulo_delta curenvnb sigma cM in if not (eq_constr cM cM') then unirec_rec curenvnb pb b wt substn cM' cN else let cN' = do_reduce flags.modulo_delta curenvnb sigma cN in if not (eq_constr cN cN') then unirec_rec curenvnb pb b wt substn cM cN' else error_cannot_unify (fst curenvnb) sigma (cM,cN) else error_cannot_unify (fst curenvnb) sigma (cM,cN) and expand (curenv,_ as curenvnb) pb b wt (sigma,metasubst,_ as substn) cM f1 l1 cN f2 l2 = if (* Try full conversion on meta-free terms. *) (* Back to 1995 (later on called trivial_unify in 2002), the heuristic was to apply conversion on meta-free (but not evar-free!) terms in all cases (i.e. for apply but also for auto and rewrite, even though auto and rewrite did not use modulo conversion in the rest of the unification algorithm). By compatibility we need to support this separately from the main unification algorithm *) (* The exploitation of known metas has been added in May 2007 (it is used by apply and rewrite); it might now be redundant with the support for delta-expansion (which is used essentially for apply)... *) not (subterm_restriction b flags) && match flags.modulo_conv_on_closed_terms with | None -> false | Some convflags -> let subst = if flags.use_metas_eagerly_in_conv_on_closed_terms then metasubst else ms in match subst_defined_metas subst cM with | None -> (* some undefined Metas in cM *) false | Some m1 -> match subst_defined_metas subst cN with | None -> (* some undefined Metas in cN *) false | Some n1 -> (* No subterm restriction there, too much incompatibilities *) if is_trans_fconv pb convflags env sigma m1 n1 then true else if is_ground_term sigma m1 && is_ground_term sigma n1 then error_cannot_unify curenv sigma (cM,cN) else false then substn else let cf1 = key_of b flags f1 and cf2 = key_of b flags f2 in match oracle_order curenv cf1 cf2 with | None -> error_cannot_unify curenv sigma (cM,cN) | Some true -> (match expand_key curenv cf1 with | Some c -> unirec_rec curenvnb pb b wt substn (whd_betaiotazeta sigma (mkApp(c,l1))) cN | None -> (match expand_key curenv cf2 with | Some c -> unirec_rec curenvnb pb b wt substn cM (whd_betaiotazeta sigma (mkApp(c,l2))) | None -> error_cannot_unify curenv sigma (cM,cN))) | Some false -> (match expand_key curenv cf2 with | Some c -> unirec_rec curenvnb pb b wt substn cM (whd_betaiotazeta sigma (mkApp(c,l2))) | None -> (match expand_key curenv cf1 with | Some c -> unirec_rec curenvnb pb b wt substn (whd_betaiotazeta sigma (mkApp(c,l1))) cN | None -> error_cannot_unify curenv sigma (cM,cN))) and canonical_projections curenvnb pb b cM cN (sigma,_,_ as substn) = let f1 () = if isApp cM then let f1l1 = decompose_app cM in if is_open_canonical_projection env sigma f1l1 then let f2l2 = decompose_app cN in solve_canonical_projection curenvnb pb b cM f1l1 cN f2l2 substn else error_cannot_unify (fst curenvnb) sigma (cM,cN) else error_cannot_unify (fst curenvnb) sigma (cM,cN) in if flags.modulo_conv_on_closed_terms = None || subterm_restriction b flags then error_cannot_unify (fst curenvnb) sigma (cM,cN) else try f1 () with e when precatchable_exception e -> if isApp cN then let f2l2 = decompose_app cN in if is_open_canonical_projection env sigma f2l2 then let f1l1 = decompose_app cM in solve_canonical_projection curenvnb pb b cN f2l2 cM f1l1 substn else error_cannot_unify (fst curenvnb) sigma (cM,cN) else error_cannot_unify (fst curenvnb) sigma (cM,cN) and solve_canonical_projection curenvnb pb b cM f1l1 cN f2l2 (sigma,ms,es) = let (c,bs,(params,params1),(us,us2),(ts,ts1),c1,(n,t2)) = try Evarconv.check_conv_record f1l1 f2l2 with Not_found -> error_cannot_unify (fst curenvnb) sigma (cM,cN) in let (evd,ks,_) = List.fold_left (fun (evd,ks,m) b -> if m=n then (evd,t2::ks, m-1) else let mv = new_meta () in let evd' = meta_declare mv (substl ks b) evd in (evd', mkMeta mv :: ks, m - 1)) (sigma,[],List.length bs - 1) bs in let unilist2 f substn l l' = try List.fold_left2 f substn l l' with Invalid_argument "List.fold_left2" -> error_cannot_unify (fst curenvnb) sigma (cM,cN) in let substn = unilist2 (fun s u1 u -> unirec_rec curenvnb pb b false s u1 (substl ks u)) (evd,ms,es) us2 us in let substn = unilist2 (fun s u1 u -> unirec_rec curenvnb pb b false s u1 (substl ks u)) substn params1 params in let substn = unilist2 (unirec_rec curenvnb pb b false) substn ts ts1 in unirec_rec curenvnb pb b false substn c1 (applist (c,(List.rev ks))) in let evd = sigma in if (if occur_meta_or_undefined_evar evd m || occur_meta_or_undefined_evar evd n || subterm_restriction conv_at_top flags then false else if (match flags.modulo_conv_on_closed_terms with | Some convflags -> is_trans_fconv cv_pb convflags env sigma m n | _ -> constr_cmp cv_pb m n) then true else if (match flags.modulo_conv_on_closed_terms, flags.modulo_delta with | Some (cv_id, cv_k), (dl_id, dl_k) -> Idpred.subset dl_id cv_id && Cpred.subset dl_k cv_k | None,(dl_id, dl_k) -> Idpred.is_empty dl_id && Cpred.is_empty dl_k) then error_cannot_unify env sigma (m, n) else false) then subst else unirec_rec (env,0) cv_pb conv_at_top false subst m n let unify_0 env sigma = unify_0_with_initial_metas (sigma,[],[]) true env let left = true let right = false let rec unify_with_eta keptside flags env sigma c1 c2 = (* Question: try whd_betadeltaiota on ci if not two lambdas? *) match kind_of_term c1, kind_of_term c2 with | (Lambda (na,t1,c1'), Lambda (_,t2,c2')) -> let env' = push_rel_assum (na,t1) env in let sigma,metas,evars = unify_0 env sigma CONV flags t1 t2 in let side,(sigma,metas',evars') = unify_with_eta keptside flags env' sigma c1' c2' in (side,(sigma,metas@metas',evars@evars')) | (Lambda (na,t,c1'),_)-> let env' = push_rel_assum (na,t) env in let side = left in (* expansion on the right: we keep the left side *) unify_with_eta side flags env' sigma c1' (mkApp (lift 1 c2,[|mkRel 1|])) | (_,Lambda (na,t,c2')) -> let env' = push_rel_assum (na,t) env in let side = right in (* expansion on the left: we keep the right side *) unify_with_eta side flags env' sigma (mkApp (lift 1 c1,[|mkRel 1|])) c2' | _ -> (keptside,unify_0 env sigma CONV flags c1 c2) (* We solved problems [?n =_pb u] (i.e. [u =_(opp pb) ?n]) and [?n =_pb' u'], we now compute the problem on [u =? u'] and decide which of u or u' is kept Rem: the upper constraint is lost in case u <= ?n <= u' (and symmetrically in the case u' <= ?n <= u) *) let merge_instances env sigma flags st1 st2 c1 c2 = match (opp_status st1, st2) with | (Conv, Conv) -> let side = left (* arbitrary choice, but agrees with compatibility *) in let (side,res) = unify_with_eta side flags env sigma c1 c2 in (side,Conv,res) | ((IsSubType | Conv as oppst1), (IsSubType | Conv)) -> let res = unify_0 env sigma CUMUL flags c2 c1 in if oppst1=st2 then (* arbitrary choice *) (left, st1, res) else if st2=IsSubType then (left, st1, res) else (right, st2, res) | ((IsSuperType | Conv as oppst1), (IsSuperType | Conv)) -> let res = unify_0 env sigma CUMUL flags c1 c2 in if oppst1=st2 then (* arbitrary choice *) (left, st1, res) else if st2=IsSuperType then (left, st1, res) else (right, st2, res) | (IsSuperType,IsSubType) -> (try (left, IsSubType, unify_0 env sigma CUMUL flags c2 c1) with _ -> (right, IsSubType, unify_0 env sigma CUMUL flags c1 c2)) | (IsSubType,IsSuperType) -> (try (left, IsSuperType, unify_0 env sigma CUMUL flags c1 c2) with _ -> (right, IsSuperType, unify_0 env sigma CUMUL flags c2 c1)) (* Unification * * Procedure: * (1) The function [unify mc wc M N] produces two lists: * (a) a list of bindings Meta->RHS * (b) a list of bindings EVAR->RHS * * The Meta->RHS bindings cannot themselves contain * meta-vars, so they get applied eagerly to the other * bindings. This may or may not close off all RHSs of * the EVARs. For each EVAR whose RHS is closed off, * we can just apply it, and go on. For each which * is not closed off, we need to do a mimick step - * in general, we have something like: * * ?X == (c e1 e2 ... ei[Meta(k)] ... en) * * so we need to do a mimick step, converting ?X * into * * ?X -> (c ?z1 ... ?zn) * * of the proper types. Then, we can decompose the * equation into * * ?z1 --> e1 * ... * ?zi --> ei[Meta(k)] * ... * ?zn --> en * * and keep on going. Whenever we find that a R.H.S. * is closed, we can, as before, apply the constraint * directly. Whenever we find an equation of the form: * * ?z -> Meta(n) * * we can reverse the equation, put it into our metavar * substitution, and keep going. * * The most efficient mimick possible is, for each * Meta-var remaining in the term, to declare a * new EVAR of the same type. This is supposedly * determinable from the clausale form context - * we look up the metavar, take its type there, * and apply the metavar substitution to it, to * close it off. But this might not always work, * since other metavars might also need to be resolved. *) let applyHead env evd n c = let rec apprec n c cty evd = if n = 0 then (evd, c) else match kind_of_term (whd_betadeltaiota env evd cty) with | Prod (_,c1,c2) -> let (evd',evar) = Evarutil.new_evar evd env ~src:(Loc.ghost,Evar_kinds.GoalEvar) c1 in apprec (n-1) (mkApp(c,[|evar|])) (subst1 evar c2) evd' | _ -> error "Apply_Head_Then" in apprec n c (Typing.type_of env evd c) evd let is_mimick_head ts f = match kind_of_term f with | Const c -> not (Closure.is_transparent_constant ts c) | Var id -> not (Closure.is_transparent_variable ts id) | (Rel _|Construct _|Ind _) -> true | _ -> false let try_to_coerce env evd c cty tycon = let j = make_judge c cty in let (evd',j') = inh_conv_coerce_rigid_to Loc.ghost env evd j tycon in let evd' = Evarconv.consider_remaining_unif_problems env evd' in let evd' = Evd.map_metas_fvalue (nf_evar evd') evd' in (evd',j'.uj_val) let w_coerce_to_type env evd c cty mvty = let evd,tycon = pose_all_metas_as_evars env evd mvty in try try_to_coerce env evd c cty tycon with e when precatchable_exception e -> (* inh_conv_coerce_rigid_to should have reasoned modulo reduction but there are cases where it though it was not rigid (like in fst (nat,nat)) and stops while it could have seen that it is rigid *) let cty = Tacred.hnf_constr env evd cty in try_to_coerce env evd c cty tycon let w_coerce env evd mv c = let cty = get_type_of env evd c in let mvty = Typing.meta_type evd mv in w_coerce_to_type env evd c cty mvty let unify_to_type env sigma flags c status u = let c = refresh_universes c in let t = get_type_of env sigma c in let t = nf_betaiota sigma (nf_meta sigma t) in unify_0 env sigma CUMUL flags t u let unify_type env sigma flags mv status c = let mvty = Typing.meta_type sigma mv in let mvty = nf_meta sigma mvty in unify_to_type env sigma {flags with modulo_delta = flags.modulo_delta_types; modulo_conv_on_closed_terms = Some flags.modulo_delta_types; modulo_betaiota = true} c status mvty (* Move metas that may need coercion at the end of the list of instances *) let order_metas metas = let rec order latemetas = function | [] -> List.rev latemetas | (_,_,(status,to_type) as meta)::metas -> if to_type = CoerceToType then order (meta::latemetas) metas else meta :: order latemetas metas in order [] metas (* Solve an equation ?n[x1=u1..xn=un] = t where ?n is an evar *) let solve_simple_evar_eqn ts env evd ev rhs = let evd,b = solve_simple_eqn (Evarconv.evar_conv_x ts) env evd (None,ev,rhs) in if not b then error_cannot_unify env evd (mkEvar ev,rhs); Evarconv.consider_remaining_unif_problems env evd (* [w_merge env sigma b metas evars] merges common instances in metas or in evars, possibly generating new unification problems; if [b] is true, unification of types of metas is required *) let w_merge env with_types flags (evd,metas,evars) = let rec w_merge_rec evd metas evars eqns = (* Process evars *) match evars with | (curenv,(evk,_ as ev),rhs)::evars' -> if Evd.is_defined evd evk then let v = Evd.existential_value evd ev in let (evd,metas',evars'') = unify_0 curenv evd CONV flags rhs v in w_merge_rec evd (metas'@metas) (evars''@evars') eqns else begin (* This can make rhs' ill-typed if metas are *) let rhs' = subst_meta_instances metas rhs in match kind_of_term rhs with | App (f,cl) when occur_meta rhs' -> if occur_evar evk rhs' then error_occur_check curenv evd evk rhs'; if is_mimick_head flags.modulo_delta f then let evd' = mimick_undefined_evar evd flags f (Array.length cl) evk in w_merge_rec evd' metas evars eqns else let evd', rhs'' = pose_all_metas_as_evars curenv evd rhs' in w_merge_rec (solve_simple_evar_eqn flags.modulo_delta_types curenv evd' ev rhs'') metas evars' eqns | _ -> let evd', rhs'' = pose_all_metas_as_evars curenv evd rhs' in w_merge_rec (solve_simple_evar_eqn flags.modulo_delta_types curenv evd' ev rhs'') metas evars' eqns end | [] -> (* Process metas *) match metas with | (mv,c,(status,to_type))::metas -> let ((evd,c),(metas'',evars'')),eqns = if with_types & to_type <> TypeProcessed then if to_type = CoerceToType then (* Some coercion may have to be inserted *) (w_coerce env evd mv c,([],[])),eqns else (* No coercion needed: delay the unification of types *) ((evd,c),([],[])),(mv,status,c)::eqns else ((evd,c),([],[])),eqns in if meta_defined evd mv then let {rebus=c'},(status',_) = meta_fvalue evd mv in let (take_left,st,(evd,metas',evars')) = merge_instances env evd flags status' status c' c in let evd' = if take_left then evd else meta_reassign mv (c,(st,TypeProcessed)) evd in w_merge_rec evd' (metas'@metas@metas'') (evars'@evars'') eqns else let evd' = if occur_meta_evd evd mv c then if isMetaOf mv (whd_betadeltaiota env evd c) then evd else error_cannot_unify env evd (mkMeta mv,c) else meta_assign mv (c,(status,TypeProcessed)) evd in w_merge_rec evd' (metas''@metas) evars'' eqns | [] -> (* Process type eqns *) let rec process_eqns failures = function | (mv,status,c)::eqns -> (match (try Inl (unify_type env evd flags mv status c) with e -> Inr e) with | Inr e -> process_eqns (((mv,status,c),e)::failures) eqns | Inl (evd,metas,evars) -> w_merge_rec evd metas evars (List.map fst failures @ eqns)) | [] -> (match failures with | [] -> evd | ((mv,status,c),e)::_ -> raise e) in process_eqns [] eqns and mimick_undefined_evar evd flags hdc nargs sp = let ev = Evd.find_undefined evd sp in let sp_env = Global.env_of_context ev.evar_hyps in let (evd', c) = applyHead sp_env evd nargs hdc in let (evd'',mc,ec) = unify_0 sp_env evd' CUMUL flags (get_type_of sp_env evd' c) ev.evar_concl in let evd''' = w_merge_rec evd'' mc ec [] in if evd' == evd''' then Evd.define sp c evd''' else Evd.define sp (Evarutil.nf_evar evd''' c) evd''' in (* merge constraints *) w_merge_rec evd (order_metas metas) evars [] let w_unify_meta_types env ?(flags=default_unify_flags) evd = let metas,evd = retract_coercible_metas evd in w_merge env true flags (evd,metas,[]) (* [w_unify env evd M N] performs a unification of M and N, generating a bunch of unification constraints in the process. These constraints are processed, one-by-one - they may either generate new bindings, or, if there is already a binding, new unifications, which themselves generate new constraints. This continues until we get failure, or we run out of constraints. [clenv_typed_unify M N clenv] expects in addition that expected types of metavars are unifiable with the types of their instances *) let check_types env flags (sigma,_,_ as subst) m n = if isEvar_or_Meta (fst (whd_stack sigma m)) then unify_0_with_initial_metas subst true env CUMUL flags (get_type_of env sigma n) (get_type_of env sigma m) else if isEvar_or_Meta (fst (whd_stack sigma n)) then unify_0_with_initial_metas subst true env CUMUL flags (get_type_of env sigma m) (get_type_of env sigma n) else subst let try_resolve_typeclasses env evd flags m n = if flags.resolve_evars then try Typeclasses.resolve_typeclasses ~filter:Typeclasses.no_goals ~split:false ~fail:true env evd with e when Typeclasses_errors.unsatisfiable_exception e -> error_cannot_unify env evd (m, n) else evd let w_unify_core_0 env evd with_types cv_pb flags m n = let (mc1,evd') = retract_coercible_metas evd in let (sigma,ms,es) = check_types env flags (evd,mc1,[]) m n in let subst2 = unify_0_with_initial_metas (evd',ms,es) false env cv_pb flags m n in let evd = w_merge env with_types flags subst2 in try_resolve_typeclasses env evd flags m n let w_unify_0 env evd = w_unify_core_0 env evd false let w_typed_unify env evd = w_unify_core_0 env evd true let w_typed_unify_list env evd flags f1 l1 f2 l2 = let flags' = { flags with resolve_evars = false } in let f1,l1,f2,l2 = adjust_app_list_size f1 l1 f2 l2 in let (mc1,evd') = retract_coercible_metas evd in let subst = List.fold_left2 (fun subst m n -> unify_0_with_initial_metas subst true env CONV flags' m n) (evd',[],[]) (f1::l1) (f2::l2) in let evd = w_merge env true flags subst in try_resolve_typeclasses env evd flags (applist(f1,l1)) (applist(f2,l2)) (* takes a substitution s, an open term op and a closed term cl try to find a subterm of cl which matches op, if op is just a Meta FAIL because we cannot find a binding *) let iter_fail f a = let n = Array.length a in let rec ffail i = if i = n then error "iter_fail" else try f a.(i) with ex when precatchable_exception ex -> ffail (i+1) in ffail 0 (* Tries to find an instance of term [cl] in term [op]. Unifies [cl] to every subterm of [op] until it finds a match. Fails if no match is found *) let w_unify_to_subterm env evd ?(flags=default_unify_flags) (op,cl) = let rec matchrec cl = let cl = strip_outer_cast cl in (try if closed0 cl && not (isEvar cl) then w_typed_unify env evd CONV flags op cl,cl else error "Bound 1" with ex when precatchable_exception ex -> (match kind_of_term cl with | App (f,args) -> let n = Array.length args in assert (n>0); let c1 = mkApp (f,Array.sub args 0 (n-1)) in let c2 = args.(n-1) in (try matchrec c1 with ex when precatchable_exception ex -> matchrec c2) | Case(_,_,c,lf) -> (* does not search in the predicate *) (try matchrec c with ex when precatchable_exception ex -> iter_fail matchrec lf) | LetIn(_,c1,_,c2) -> (try matchrec c1 with ex when precatchable_exception ex -> matchrec c2) | Fix(_,(_,types,terms)) -> (try iter_fail matchrec types with ex when precatchable_exception ex -> iter_fail matchrec terms) | CoFix(_,(_,types,terms)) -> (try iter_fail matchrec types with ex when precatchable_exception ex -> iter_fail matchrec terms) | Prod (_,t,c) -> (try matchrec t with ex when precatchable_exception ex -> matchrec c) | Lambda (_,t,c) -> (try matchrec t with ex when precatchable_exception ex -> matchrec c) | _ -> error "Match_subterm")) in try matchrec cl with ex when precatchable_exception ex -> raise (PretypeError (env,evd,NoOccurrenceFound (op, None))) (* Tries to find all instances of term [cl] in term [op]. Unifies [cl] to every subterm of [op] and return all the matches. Fails if no match is found *) let w_unify_to_subterm_all env evd ?(flags=default_unify_flags) (op,cl) = let return a b = let (evd,c as a) = a () in if List.exists (fun (evd',c') -> eq_constr c c') b then b else a :: b in let fail str _ = error str in let bind f g a = let a1 = try f a with ex when precatchable_exception ex -> a in try g a1 with ex when precatchable_exception ex -> a1 in let bind_iter f a = let n = Array.length a in let rec ffail i = if i = n then fun a -> a else bind (f a.(i)) (ffail (i+1)) in ffail 0 in let rec matchrec cl = let cl = strip_outer_cast cl in (bind (if closed0 cl then return (fun () -> w_typed_unify env evd CONV flags op cl,cl) else fail "Bound 1") (match kind_of_term cl with | App (f,args) -> let n = Array.length args in assert (n>0); let c1 = mkApp (f,Array.sub args 0 (n-1)) in let c2 = args.(n-1) in bind (matchrec c1) (matchrec c2) | Case(_,_,c,lf) -> (* does not search in the predicate *) bind (matchrec c) (bind_iter matchrec lf) | LetIn(_,c1,_,c2) -> bind (matchrec c1) (matchrec c2) | Fix(_,(_,types,terms)) -> bind (bind_iter matchrec types) (bind_iter matchrec terms) | CoFix(_,(_,types,terms)) -> bind (bind_iter matchrec types) (bind_iter matchrec terms) | Prod (_,t,c) -> bind (matchrec t) (matchrec c) | Lambda (_,t,c) -> bind (matchrec t) (matchrec c) | _ -> fail "Match_subterm")) in let res = matchrec cl [] in if res = [] then raise (PretypeError (env,evd,NoOccurrenceFound (op, None))) else res let w_unify_to_subterm_list env evd flags hdmeta oplist t = List.fold_right (fun op (evd,l) -> let op = whd_meta evd op in if isMeta op then if flags.allow_K_in_toplevel_higher_order_unification then (evd,op::l) else error_abstraction_over_meta env evd hdmeta (destMeta op) else if occur_meta_or_existential op then let (evd',cl) = try (* This is up to delta for subterms w/o metas ... *) w_unify_to_subterm env evd ~flags (strip_outer_cast op,t) with PretypeError (env,_,NoOccurrenceFound _) when flags.allow_K_in_toplevel_higher_order_unification -> (evd,op) in if not flags.allow_K_in_toplevel_higher_order_unification && (* ensure we found a different instance *) List.exists (fun op -> eq_constr op cl) l then error_non_linear_unification env evd hdmeta cl else (evd',cl::l) else if flags.allow_K_in_toplevel_higher_order_unification or dependent op t then (evd,op::l) else (* This is not up to delta ... *) raise (PretypeError (env,evd,NoOccurrenceFound (op, None)))) oplist (evd,[]) let secondOrderAbstraction env evd flags typ (p, oplist) = (* Remove delta when looking for a subterm *) let flags = { flags with modulo_delta = (fst flags.modulo_delta, Cpred.empty) } in let (evd',cllist) = w_unify_to_subterm_list env evd flags p oplist typ in let typp = Typing.meta_type evd' p in let pred = abstract_list_all env evd' typp typ cllist in w_merge env false flags (evd',[p,pred,(Conv,TypeProcessed)],[]) let secondOrderDependentAbstraction env evd flags typ (p, oplist) = let typp = Typing.meta_type evd p in let pred = abstract_list_all_with_dependencies env evd typp typ oplist in w_merge env false flags (evd,[p,pred,(Conv,TypeProcessed)],[]) let secondOrderAbstractionAlgo dep = if dep then secondOrderDependentAbstraction else secondOrderAbstraction let w_unify2 env evd flags dep cv_pb ty1 ty2 = let c1, oplist1 = whd_stack evd ty1 in let c2, oplist2 = whd_stack evd ty2 in match kind_of_term c1, kind_of_term c2 with | Meta p1, _ -> (* Find the predicate *) secondOrderAbstractionAlgo dep env evd flags ty2 (p1,oplist1) | _, Meta p2 -> (* Find the predicate *) secondOrderAbstractionAlgo dep env evd flags ty1 (p2, oplist2) | _ -> error "w_unify2" (* The unique unification algorithm works like this: If the pattern is flexible, and the goal has a lambda-abstraction at the head, then we do a first-order unification. If the pattern is not flexible, then we do a first-order unification, too. If the pattern is flexible, and the goal doesn't have a lambda-abstraction head, then we second-order unification. *) (* We decide here if first-order or second-order unif is used for Apply *) (* We apply a term of type (ai:Ai)C and try to solve a goal C' *) (* The type C is in clenv.templtyp.rebus with a lot of Meta to solve *) (* 3-4-99 [HH] New fo/so choice heuristic : In case we have to unify (Meta(1) args) with ([x:A]t args') we first try second-order unification and if it fails first-order. Before, second-order was used if the type of Meta(1) and [x:A]t was convertible and first-order otherwise. But if failed if e.g. the type of Meta(1) had meta-variables in it. *) let w_unify env evd cv_pb ?(flags=default_unify_flags) ty1 ty2 = let hd1,l1 = whd_stack evd ty1 in let hd2,l2 = whd_stack evd ty2 in match kind_of_term hd1, l1<>[], kind_of_term hd2, l2<>[] with (* Pattern case *) | (Meta _, true, Lambda _, _ | Lambda _, _, Meta _, true) when List.length l1 = List.length l2 -> (try w_typed_unify_list env evd flags hd1 l1 hd2 l2 with ex when precatchable_exception ex -> try w_unify2 env evd flags false cv_pb ty1 ty2 with PretypeError (env,_,NoOccurrenceFound _) as e -> raise e) (* Second order case *) | (Meta _, true, _, _ | _, _, Meta _, true) -> (try w_unify2 env evd flags false cv_pb ty1 ty2 with PretypeError (env,_,NoOccurrenceFound _) as e -> raise e | ex when precatchable_exception ex -> try w_typed_unify_list env evd flags hd1 l1 hd2 l2 with ex' when precatchable_exception ex' -> (* Last chance, use pattern-matching with typed dependencies (done late for compatibility) *) try w_unify2 env evd flags true cv_pb ty1 ty2 with ex' when precatchable_exception ex' -> raise ex) (* General case: try first order *) | _ -> w_typed_unify env evd cv_pb flags ty1 ty2