(************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) (* let na = match kind_of_term a with Var id -> Name id | _ -> na in if occur_meta ta then error "cannot find a type for the generalisation" else if occur_meta a then lambda_name env (na,ta,t) else lambda_name env (na,ta,subst_term_occ locc a t)) c (List.rev l) lname_typ let abstract_list_all env sigma typ c l = let ctxt,_ = decomp_n_prod env sigma (List.length l) typ in let p = abstract_scheme env c (List.map (function a -> [],a) l) ctxt in try if is_conv_leq env sigma (Typing.type_of env sigma p) typ then p else error "abstract_list_all" with UserError _ -> raise (PretypeError (env,CannotGeneralize typ)) (**) let solve_pattern_eqn_array env f l c (metasubst,evarsubst) = match kind_of_term f with | Meta k -> (k,solve_pattern_eqn env (Array.to_list l) c)::metasubst,evarsubst | Evar ev -> (* Currently unused: incompatible with eauto/eassumption backtracking *) metasubst,(f,solve_pattern_eqn env (Array.to_list l) c)::evarsubst | _ -> assert false (*******************************) (* Unification à l'ordre 0 de m et n: [unify_0 env sigma cv_pb m n] renvoie deux listes: metasubst:(int*constr)list récolte les instances des (Meta k) evarsubst:(constr*constr)list récolte les instances des (Const "?k") Attention : pas d'unification entre les différences instances d'une même meta ou evar, il peut rester des doublons *) (* Unification order: *) (* Left to right: unifies first argument and then the other arguments *) (*let unify_l2r x = List.rev x (* Right to left: unifies last argument and then the other arguments *) let unify_r2l x = x let sort_eqns = unify_r2l *) let unify_0 env sigma cv_pb mod_delta m n = let trivial_unify pb substn m n = if (not(occur_meta m)) && (if mod_delta then is_fconv pb env sigma m n else eq_constr m n) then substn else error_cannot_unify env sigma (m,n) in let rec unirec_rec env pb ((metasubst,evarsubst) as substn) m n = let cM = Evarutil.whd_castappevar sigma m and cN = Evarutil.whd_castappevar sigma n in match (kind_of_term cM,kind_of_term cN) with | Meta k1, Meta k2 -> if k1 < k2 then (k1,cN)::metasubst,evarsubst else if k1 = k2 then substn else (k2,cM)::metasubst,evarsubst | Meta k, _ -> (k,cN)::metasubst,evarsubst | _, Meta k -> (k,cM)::metasubst,evarsubst | Evar _, _ -> metasubst,((cM,cN)::evarsubst) | _, Evar _ -> metasubst,((cN,cM)::evarsubst) | Lambda (na,t1,c1), Lambda (_,t2,c2) -> unirec_rec (push_rel_assum (na,t1) env) CONV (unirec_rec env CONV substn t1 t2) c1 c2 | Prod (na,t1,c1), Prod (_,t2,c2) -> unirec_rec (push_rel_assum (na,t1) env) pb (unirec_rec env CONV substn t1 t2) c1 c2 | LetIn (_,b,_,c), _ -> unirec_rec env pb substn (subst1 b c) cN | _, LetIn (_,b,_,c) -> unirec_rec env pb substn cM (subst1 b c) | App (f1,l1), App (f2,l2) -> if isMeta f1 & is_unification_pattern f1 l1 & not (dependent f1 cN) then solve_pattern_eqn_array env f1 l1 cN substn else if isMeta f2 & is_unification_pattern f2 l2 & not (dependent f2 cM) then solve_pattern_eqn_array env f2 l2 cM substn else let len1 = Array.length l1 and len2 = Array.length l2 in let (f1,l1,f2,l2) = if len1 = len2 then (f1,l1,f2,l2) else if len1 < len2 then let extras,restl2 = array_chop (len2-len1) l2 in (f1, l1, appvect (f2,extras), restl2) else let extras,restl1 = array_chop (len1-len2) l1 in (appvect (f1,extras), restl1, f2, l2) in (try array_fold_left2 (unirec_rec env CONV) (unirec_rec env CONV substn f1 f2) l1 l2 with ex when precatchable_exception ex -> trivial_unify pb substn cM cN) | Case (_,p1,c1,cl1), Case (_,p2,c2,cl2) -> array_fold_left2 (unirec_rec env CONV) (unirec_rec env CONV (unirec_rec env CONV substn p1 p2) c1 c2) cl1 cl2 | _ -> trivial_unify pb substn cM cN in if (not(occur_meta m)) && (if mod_delta then is_fconv cv_pb env sigma m n else eq_constr m n) then ([],[]) else let (mc,ec) = unirec_rec env cv_pb ([],[]) m n in ((*sort_eqns*) mc, (*sort_eqns*) ec) (* Unification * * Procedure: * (1) The function [unify mc wc M N] produces two lists: * (a) a list of bindings Meta->RHS * (b) a list of bindings EVAR->RHS * * The Meta->RHS bindings cannot themselves contain * meta-vars, so they get applied eagerly to the other * bindings. This may or may not close off all RHSs of * the EVARs. For each EVAR whose RHS is closed off, * we can just apply it, and go on. For each which * is not closed off, we need to do a mimick step - * in general, we have something like: * * ?X == (c e1 e2 ... ei[Meta(k)] ... en) * * so we need to do a mimick step, converting ?X * into * * ?X -> (c ?z1 ... ?zn) * * of the proper types. Then, we can decompose the * equation into * * ?z1 --> e1 * ... * ?zi --> ei[Meta(k)] * ... * ?zn --> en * * and keep on going. Whenever we find that a R.H.S. * is closed, we can, as before, apply the constraint * directly. Whenever we find an equation of the form: * * ?z -> Meta(n) * * we can reverse the equation, put it into our metavar * substitution, and keep going. * * The most efficient mimick possible is, for each * Meta-var remaining in the term, to declare a * new EVAR of the same type. This is supposedly * determinable from the clausale form context - * we look up the metavar, take its type there, * and apply the metavar substitution to it, to * close it off. But this might not always work, * since other metavars might also need to be resolved. *) let applyHead env evd n c = let rec apprec n c cty evd = if n = 0 then (evd, c) else match kind_of_term (whd_betadeltaiota env (evars_of evd) cty) with | Prod (_,c1,c2) -> let (evd',evar) = Evarutil.new_evar evd env c1 in apprec (n-1) (mkApp(c,[|evar|])) (subst1 evar c2) evd' | _ -> error "Apply_Head_Then" in apprec n c (Typing.type_of env (evars_of evd) c) evd let is_mimick_head f = match kind_of_term f with (Const _|Var _|Rel _|Construct _|Ind _) -> true | _ -> false (* [w_merge env sigma b metas evars] merges common instances in metas or in evars, possibly generating new unification problems; if [b] is true, unification of types of metas is required *) let w_merge env with_types mod_delta metas evars evd = let ty_metas = ref [] in let ty_evars = ref [] in let rec w_merge_rec evd metas evars = match (evars,metas) with | ([], []) -> evd | ((lhs,rhs)::t, metas) -> (match kind_of_term rhs with | Meta k -> w_merge_rec evd ((k,lhs)::metas) t | krhs -> (match kind_of_term lhs with | Evar (evn,_ as ev) -> if is_defined_evar evd ev then let (metas',evars') = unify_0 env (evars_of evd) CONV mod_delta rhs lhs in w_merge_rec evd (metas'@metas) (evars'@t) else begin let rhs' = if occur_meta rhs then subst_meta metas rhs else rhs in if occur_evar evn rhs' then error "w_merge: recursive equation"; match krhs with | App (f,cl) when is_mimick_head f -> (try w_merge_rec (fst (evar_define env ev rhs' evd)) metas t with ex when precatchable_exception ex -> let evd' = mimick_evar evd mod_delta f (Array.length cl) evn in w_merge_rec evd' metas evars) | _ -> (* ensure tail recursion in non-mimickable case! *) w_merge_rec (fst (evar_define env ev rhs' evd)) metas t end | _ -> anomaly "w_merge_rec")) | ([], (mv,n)::t) -> if meta_defined evd mv then let (metas',evars') = unify_0 env (evars_of evd) CONV mod_delta (meta_fvalue evd mv).rebus n in w_merge_rec evd (metas'@t) evars' else begin if with_types (* or occur_meta mvty *) then (let mvty = Typing.meta_type evd mv in try let sigma = evars_of evd in (* why not typing with the metamap ? *) let nty = Typing.type_of env sigma (nf_meta evd n) in let (mc,ec) = unify_0 env sigma CUMUL mod_delta nty mvty in ty_metas := mc @ !ty_metas; ty_evars := ec @ !ty_evars with e when precatchable_exception e -> ()); let evd' = meta_assign mv n evd in w_merge_rec evd' t [] end and mimick_evar evd mod_delta hdc nargs sp = let ev = Evd.find (evars_of evd) sp in let sp_env = Global.env_of_context ev.evar_hyps in let (evd', c) = applyHead sp_env evd nargs hdc in let (mc,ec) = unify_0 sp_env (evars_of evd') CUMUL mod_delta (Retyping.get_type_of sp_env (evars_of evd') c) ev.evar_concl in let evd'' = w_merge_rec evd' mc ec in if (evars_of evd') == (evars_of evd'') then Evd.evar_define sp c evd'' else Evd.evar_define sp (Evarutil.nf_evar (evars_of evd'') c) evd'' in (* merge constraints *) let evd' = w_merge_rec evd metas evars in if with_types then (* merge constraints about types: if they fail, don't worry *) try w_merge_rec evd' !ty_metas !ty_evars with e when precatchable_exception e -> evd' else evd' (* [w_unify env evd M N] performs a unification of M and N, generating a bunch of unification constraints in the process. These constraints are processed, one-by-one - they may either generate new bindings, or, if there is already a binding, new unifications, which themselves generate new constraints. This continues until we get failure, or we run out of constraints. [clenv_typed_unify M N clenv] expects in addition that expected types of metavars are unifiable with the types of their instances *) let w_unify_core_0 env with_types cv_pb mod_delta m n evd = let (mc,ec) = unify_0 env (evars_of evd) cv_pb mod_delta m n in w_merge env with_types mod_delta mc ec evd let w_unify_0 env = w_unify_core_0 env false let w_typed_unify env = w_unify_core_0 env true (* takes a substitution s, an open term op and a closed term cl try to find a subterm of cl which matches op, if op is just a Meta FAIL because we cannot find a binding *) let iter_fail f a = let n = Array.length a in let rec ffail i = if i = n then error "iter_fail" else try f a.(i) with ex when precatchable_exception ex -> ffail (i+1) in ffail 0 (* Tries to find an instance of term [cl] in term [op]. Unifies [cl] to every subterm of [op] until it finds a match. Fails if no match is found *) let w_unify_to_subterm env ?(mod_delta=true) (op,cl) evd = let rec matchrec cl = let cl = strip_outer_cast cl in (try if closed0 cl then w_unify_0 env CONV mod_delta op cl evd,cl else error "Bound 1" with ex when precatchable_exception ex -> (match kind_of_term cl with | App (f,args) -> let n = Array.length args in assert (n>0); let c1 = mkApp (f,Array.sub args 0 (n-1)) in let c2 = args.(n-1) in (try matchrec c1 with ex when precatchable_exception ex -> matchrec c2) | Case(_,_,c,lf) -> (* does not search in the predicate *) (try matchrec c with ex when precatchable_exception ex -> iter_fail matchrec lf) | LetIn(_,c1,_,c2) -> (try matchrec c1 with ex when precatchable_exception ex -> matchrec c2) | Fix(_,(_,types,terms)) -> (try iter_fail matchrec types with ex when precatchable_exception ex -> iter_fail matchrec terms) | CoFix(_,(_,types,terms)) -> (try iter_fail matchrec types with ex when precatchable_exception ex -> iter_fail matchrec terms) | Prod (_,t,c) -> (try matchrec t with ex when precatchable_exception ex -> matchrec c) | Lambda (_,t,c) -> (try matchrec t with ex when precatchable_exception ex -> matchrec c) | _ -> error "Match_subterm")) in try matchrec cl with ex when precatchable_exception ex -> raise (PretypeError (env,NoOccurrenceFound op)) let w_unify_to_subterm_list env mod_delta allow_K oplist t evd = List.fold_right (fun op (evd,l) -> if isMeta op then if allow_K then (evd,op::l) else error "Match_subterm" else if occur_meta op then let (evd',cl) = try (* This is up to delta for subterms w/o metas ... *) w_unify_to_subterm env ~mod_delta (strip_outer_cast op,t) evd with PretypeError (env,NoOccurrenceFound _) when allow_K -> (evd,op) in (evd',cl::l) else if allow_K or dependent op t then (evd,op::l) else (* This is not up to delta ... *) raise (PretypeError (env,NoOccurrenceFound op))) oplist (evd,[]) let secondOrderAbstraction env mod_delta allow_K typ (p, oplist) evd = let sigma = evars_of evd in let (evd',cllist) = w_unify_to_subterm_list env mod_delta allow_K oplist typ evd in let typp = Typing.meta_type evd' p in let pred = abstract_list_all env sigma typp typ cllist in w_unify_0 env CONV mod_delta (mkMeta p) pred evd' let w_unify2 env mod_delta allow_K cv_pb ty1 ty2 evd = let c1, oplist1 = whd_stack ty1 in let c2, oplist2 = whd_stack ty2 in match kind_of_term c1, kind_of_term c2 with | Meta p1, _ -> (* Find the predicate *) let evd' = secondOrderAbstraction env mod_delta allow_K ty2 (p1,oplist1) evd in (* Resume first order unification *) w_unify_0 env cv_pb mod_delta (nf_meta evd' ty1) ty2 evd' | _, Meta p2 -> (* Find the predicate *) let evd' = secondOrderAbstraction env mod_delta allow_K ty1 (p2, oplist2) evd in (* Resume first order unification *) w_unify_0 env cv_pb mod_delta ty1 (nf_meta evd' ty2) evd' | _ -> error "w_unify2" (* The unique unification algorithm works like this: If the pattern is flexible, and the goal has a lambda-abstraction at the head, then we do a first-order unification. If the pattern is not flexible, then we do a first-order unification, too. If the pattern is flexible, and the goal doesn't have a lambda-abstraction head, then we second-order unification. *) (* We decide here if first-order or second-order unif is used for Apply *) (* We apply a term of type (ai:Ai)C and try to solve a goal C' *) (* The type C is in clenv.templtyp.rebus with a lot of Meta to solve *) (* 3-4-99 [HH] New fo/so choice heuristic : In case we have to unify (Meta(1) args) with ([x:A]t args') we first try second-order unification and if it fails first-order. Before, second-order was used if the type of Meta(1) and [x:A]t was convertible and first-order otherwise. But if failed if e.g. the type of Meta(1) had meta-variables in it. *) let w_unify allow_K env cv_pb ?(mod_delta=true) ty1 ty2 evd = let hd1,l1 = whd_stack ty1 in let hd2,l2 = whd_stack ty2 in match kind_of_term hd1, l1<>[], kind_of_term hd2, l2<>[] with (* Pattern case *) | (Meta _, true, Lambda _, _ | Lambda _, _, Meta _, true) when List.length l1 = List.length l2 -> (try w_typed_unify env cv_pb mod_delta ty1 ty2 evd with ex when precatchable_exception ex -> try w_unify2 env mod_delta allow_K cv_pb ty1 ty2 evd with PretypeError (env,NoOccurrenceFound c) as e -> raise e | ex when precatchable_exception ex -> error "Cannot solve a second-order unification problem") (* Second order case *) | (Meta _, true, _, _ | _, _, Meta _, true) -> (try w_unify2 env mod_delta allow_K cv_pb ty1 ty2 evd with PretypeError (env,NoOccurrenceFound c) as e -> raise e | ex when precatchable_exception ex -> try w_typed_unify env cv_pb mod_delta ty1 ty2 evd with ex when precatchable_exception ex -> error "Cannot solve a second-order unification problem") (* General case: try first order *) | _ -> w_unify_0 env cv_pb mod_delta ty1 ty2 evd