(************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) (* let na = match kind_of_term a with Var id -> Name id | _ -> na in (* [occur_meta ta] test removed for support of eelim/ecase but consequences are unclear... if occur_meta ta then error "cannot find a type for the generalisation" else *) if occur_meta a then lambda_name env (na,ta,t) else lambda_name env (na,ta,subst_term_occ locc a t)) c (List.rev l) lname_typ let abstract_list_all env evd typ c l = let ctxt,_ = splay_prod_n env evd (List.length l) typ in let l_with_all_occs = List.map (function a -> (all_occurrences,a)) l in let p = abstract_scheme env c l_with_all_occs ctxt in try if is_conv_leq env evd (Typing.mtype_of env evd p) typ then p else error "abstract_list_all" with UserError _ | Type_errors.TypeError _ -> error_cannot_find_well_typed_abstraction env evd p l (**) (* A refinement of [conv_pb]: the integers tells how many arguments were applied in the context of the conversion problem; if the number is non zero, steps of eta-expansion will be allowed *) type conv_pb_up_to_eta = Cumul | ConvUnderApp of int * int let topconv = ConvUnderApp (0,0) let of_conv_pb = function CONV -> topconv | CUMUL -> Cumul let conv_pb_of = function ConvUnderApp _ -> CONV | Cumul -> CUMUL let prod_pb = function ConvUnderApp _ -> topconv | pb -> pb let opp_status = function | IsSuperType -> IsSubType | IsSubType -> IsSuperType | ConvUpToEta _ | UserGiven as x -> x let add_type_status (x,y) = ((x,TypeNotProcessed),(y,TypeNotProcessed)) let extract_instance_status = function | Cumul -> add_type_status (IsSubType, IsSuperType) | ConvUnderApp (n1,n2) -> add_type_status (ConvUpToEta n1, ConvUpToEta n2) let rec assoc_pair x = function [] -> raise Not_found | (a,b,_)::l -> if compare a x = 0 then b else assoc_pair x l let rec subst_meta_instances bl c = match kind_of_term c with | Meta i -> (try assoc_pair i bl with Not_found -> c) | _ -> map_constr (subst_meta_instances bl) c let solve_pattern_eqn_array (env,nb) f l c (sigma,metasubst,evarsubst) = match kind_of_term f with | Meta k -> let c = solve_pattern_eqn env (Array.to_list l) c in let n = Array.length l - List.length (fst (decompose_lam c)) in let pb = (ConvUpToEta n,TypeNotProcessed) in if noccur_between 1 nb c then sigma,(k,lift (-nb) c,pb)::metasubst,evarsubst else error_cannot_unify_local env sigma (mkApp (f, l),c,c) | Evar ev -> sigma,metasubst,(ev,solve_pattern_eqn env (Array.to_list l) c)::evarsubst | _ -> assert false let push d (env,n) = (push_rel_assum d env,n+1) (*******************************) (* Unification à l'ordre 0 de m et n: [unify_0 env sigma cv_pb m n] renvoie deux listes: metasubst:(int*constr)list récolte les instances des (Meta k) evarsubst:(constr*constr)list récolte les instances des (Const "?k") Attention : pas d'unification entre les différences instances d'une même meta ou evar, il peut rester des doublons *) (* Unification order: *) (* Left to right: unifies first argument and then the other arguments *) (*let unify_l2r x = List.rev x (* Right to left: unifies last argument and then the other arguments *) let unify_r2l x = x let sort_eqns = unify_r2l *) (* Option introduced and activated in Coq 8.3 *) let global_evars_pattern_unification_flag = ref true open Goptions let _ = declare_bool_option { optsync = true; optname = "pattern-unification for existential variables in tactics"; optkey = ["Tactic";"Evars";"Pattern";"Unification"]; optread = (fun () -> !global_evars_pattern_unification_flag); optwrite = (:=) global_evars_pattern_unification_flag } type unify_flags = { modulo_conv_on_closed_terms : Names.transparent_state option; use_metas_eagerly : bool; modulo_delta : Names.transparent_state; resolve_evars : bool; use_evars_pattern_unification : bool } let default_unify_flags = { modulo_conv_on_closed_terms = Some full_transparent_state; use_metas_eagerly = true; modulo_delta = full_transparent_state; resolve_evars = false; use_evars_pattern_unification = true; } let default_no_delta_unify_flags = { modulo_conv_on_closed_terms = Some full_transparent_state; use_metas_eagerly = true; modulo_delta = empty_transparent_state; resolve_evars = false; use_evars_pattern_unification = true; } let use_evars_pattern_unification flags = !global_evars_pattern_unification_flag && flags.use_evars_pattern_unification let expand_key env = function | Some (ConstKey cst) -> constant_opt_value env cst | Some (VarKey id) -> named_body id env | Some (RelKey _) -> None | None -> None let key_of flags f = match kind_of_term f with | Const cst when is_transparent (ConstKey cst) && Cpred.mem cst (snd flags.modulo_delta) -> Some (ConstKey cst) | Var id when is_transparent (VarKey id) && Idpred.mem id (fst flags.modulo_delta) -> Some (VarKey id) | _ -> None let oracle_order env cf1 cf2 = match cf1 with | None -> (match cf2 with | None -> None | Some k2 -> Some false) | Some k1 -> match cf2 with | None -> Some true | Some k2 -> Some (Conv_oracle.oracle_order k1 k2) let unify_0_with_initial_metas (sigma,ms,es as subst) conv_at_top env cv_pb flags m n = let trivial_unify curenv pb (sigma,metasubst,_) m n = let subst = if flags.use_metas_eagerly then metasubst else ms in match subst_defined_metas subst m with | Some m1 -> if (match flags.modulo_conv_on_closed_terms with Some flags -> is_trans_fconv (conv_pb_of pb) flags env sigma m1 n | None -> false) then true else if (not (is_ground_term (create_evar_defs sigma) m1)) || occur_meta_or_existential n then false else error_cannot_unify curenv sigma (m, n) | _ -> false in let rec unirec_rec (curenv,nb as curenvnb) pb b ((sigma,metasubst,evarsubst) as substn) curm curn = let cM = Evarutil.whd_castappevar sigma curm and cN = Evarutil.whd_castappevar sigma curn in match (kind_of_term cM,kind_of_term cN) with | Meta k1, Meta k2 -> let stM,stN = extract_instance_status pb in if k1 < k2 then sigma,(k1,cN,stN)::metasubst,evarsubst else if k1 = k2 then substn else sigma,(k2,cM,stM)::metasubst,evarsubst | Meta k, _ when not (dependent cM cN) -> (* Here we check that [cN] does not contain any local variables *) if nb = 0 then sigma,(k,cN,snd (extract_instance_status pb))::metasubst,evarsubst else if noccur_between 1 nb cN then (sigma, (k,lift (-nb) cN,snd (extract_instance_status pb))::metasubst, evarsubst) else error_cannot_unify_local curenv sigma (m,n,cN) | _, Meta k when not (dependent cN cM) -> (* Here we check that [cM] does not contain any local variables *) if nb = 0 then (sigma,(k,cM,fst (extract_instance_status pb))::metasubst,evarsubst) else if noccur_between 1 nb cM then (sigma,(k,lift (-nb) cM,fst (extract_instance_status pb))::metasubst, evarsubst) else error_cannot_unify_local curenv sigma (m,n,cM) | Evar ev, _ -> sigma,metasubst,((ev,cN)::evarsubst) | _, Evar ev -> sigma,metasubst,((ev,cM)::evarsubst) | Lambda (na,t1,c1), Lambda (_,t2,c2) -> unirec_rec (push (na,t1) curenvnb) topconv true (unirec_rec curenvnb topconv true substn t1 t2) c1 c2 | Prod (na,t1,c1), Prod (_,t2,c2) -> unirec_rec (push (na,t1) curenvnb) (prod_pb pb) true (unirec_rec curenvnb topconv true substn t1 t2) c1 c2 | LetIn (_,a,_,c), _ -> unirec_rec curenvnb pb b substn (subst1 a c) cN | _, LetIn (_,a,_,c) -> unirec_rec curenvnb pb b substn cM (subst1 a c) | Case (_,p1,c1,cl1), Case (_,p2,c2,cl2) -> array_fold_left2 (unirec_rec curenvnb topconv true) (unirec_rec curenvnb topconv true (unirec_rec curenvnb topconv true substn p1 p2) c1 c2) cl1 cl2 | App (f1,l1), _ when (isMeta f1 || use_evars_pattern_unification flags && isEvar f1) & is_unification_pattern curenvnb f1 l1 cN & not (dependent f1 cN) -> solve_pattern_eqn_array curenvnb f1 l1 cN substn | _, App (f2,l2) when (isMeta f2 || use_evars_pattern_unification flags && isEvar f2) & is_unification_pattern curenvnb f2 l2 cM & not (dependent f2 cM) -> solve_pattern_eqn_array curenvnb f2 l2 cM substn | App (f1,l1), App (f2,l2) -> let len1 = Array.length l1 and len2 = Array.length l2 in (try let (f1,l1,f2,l2) = if len1 = len2 then (f1,l1,f2,l2) else if len1 < len2 then let extras,restl2 = array_chop (len2-len1) l2 in (f1, l1, appvect (f2,extras), restl2) else let extras,restl1 = array_chop (len1-len2) l1 in (appvect (f1,extras), restl1, f2, l2) in let pb = ConvUnderApp (len1,len2) in array_fold_left2 (unirec_rec curenvnb topconv true) (unirec_rec curenvnb pb true substn f1 f2) l1 l2 with ex when precatchable_exception ex -> try expand curenvnb pb b substn cM f1 l1 cN f2 l2 with ex when precatchable_exception ex -> canonical_projections curenvnb pb b cM cN substn) | _ -> try canonical_projections curenvnb pb b cM cN substn with ex when precatchable_exception ex -> if constr_cmp (conv_pb_of cv_pb) cM cN then substn else let (f1,l1) = match kind_of_term cM with App (f,l) -> (f,l) | _ -> (cM,[||]) in let (f2,l2) = match kind_of_term cN with App (f,l) -> (f,l) | _ -> (cN,[||]) in expand curenvnb pb b substn cM f1 l1 cN f2 l2 and expand (curenv,_ as curenvnb) pb b (sigma, _, _ as substn) cM f1 l1 cN f2 l2 = if trivial_unify curenv pb substn cM cN then substn else if b then let cf1 = key_of flags f1 and cf2 = key_of flags f2 in match oracle_order curenv cf1 cf2 with | None -> error_cannot_unify curenv sigma (cM,cN) | Some true -> (match expand_key curenv cf1 with | Some c -> unirec_rec curenvnb pb b substn (whd_betaiotazeta sigma (mkApp(c,l1))) cN | None -> (match expand_key curenv cf2 with | Some c -> unirec_rec curenvnb pb b substn cM (whd_betaiotazeta sigma (mkApp(c,l2))) | None -> error_cannot_unify curenv sigma (cM,cN))) | Some false -> (match expand_key curenv cf2 with | Some c -> unirec_rec curenvnb pb b substn cM (whd_betaiotazeta sigma (mkApp(c,l2))) | None -> (match expand_key curenv cf1 with | Some c -> unirec_rec curenvnb pb b substn (whd_betaiotazeta sigma (mkApp(c,l1))) cN | None -> error_cannot_unify curenv sigma (cM,cN))) else error_cannot_unify curenv sigma (cM,cN) and canonical_projections curenvnb pb b cM cN (sigma,_,_ as substn) = let f1 () = if isApp cM then let f1l1 = decompose_app cM in if is_open_canonical_projection sigma f1l1 then let f2l2 = decompose_app cN in solve_canonical_projection curenvnb pb b cM f1l1 cN f2l2 substn else error_cannot_unify (fst curenvnb) sigma (cM,cN) else error_cannot_unify (fst curenvnb) sigma (cM,cN) in if flags.modulo_conv_on_closed_terms = None then error_cannot_unify (fst curenvnb) sigma (cM,cN) else try f1 () with e when precatchable_exception e -> if isApp cN then let f2l2 = decompose_app cN in if is_open_canonical_projection sigma f2l2 then let f1l1 = decompose_app cM in solve_canonical_projection curenvnb pb b cN f2l2 cM f1l1 substn else error_cannot_unify (fst curenvnb) sigma (cM,cN) else error_cannot_unify (fst curenvnb) sigma (cM,cN) and solve_canonical_projection curenvnb pb b cM f1l1 cN f2l2 (sigma,ms,es) = let (c,bs,(params,params1),(us,us2),(ts,ts1),c1,(n,t2)) = try Evarconv.check_conv_record f1l1 f2l2 with Not_found -> error_cannot_unify (fst curenvnb) sigma (cM,cN) in let (evd,ks,_) = List.fold_left (fun (evd,ks,m) b -> if m=n then (evd,t2::ks, m-1) else let mv = new_meta () in let evd' = meta_declare mv (substl ks b) evd in (evd', mkMeta mv :: ks, m - 1)) (sigma,[],List.length bs - 1) bs in let unilist2 f substn l l' = try List.fold_left2 f substn l l' with Invalid_argument "List.fold_left2" -> error_cannot_unify (fst curenvnb) sigma (cM,cN) in let substn = unilist2 (fun s u1 u -> unirec_rec curenvnb pb b s u1 (substl ks u)) (evd,ms,es) us2 us in let substn = unilist2 (fun s u1 u -> unirec_rec curenvnb pb b s u1 (substl ks u)) substn params1 params in let substn = unilist2 (unirec_rec curenvnb pb b) substn ts ts1 in unirec_rec curenvnb pb b substn c1 (applist (c,(List.rev ks))) in if (if occur_meta m then false else if (match flags.modulo_conv_on_closed_terms with Some flags -> is_trans_fconv (conv_pb_of cv_pb) flags env sigma m n | None -> constr_cmp (conv_pb_of cv_pb) m n) then true else if (not (is_ground_term (create_evar_defs sigma) m)) || occur_meta_or_existential n then false else if (match flags.modulo_conv_on_closed_terms, flags.modulo_delta with | Some (cv_id, cv_k), (dl_id, dl_k) -> Idpred.subset dl_id cv_id && Cpred.subset dl_k cv_k | None,(dl_id, dl_k) -> Idpred.is_empty dl_id && Cpred.is_empty dl_k) then error_cannot_unify env sigma (m, n) else false) then subst else unirec_rec (env,0) cv_pb conv_at_top subst m n let unify_0 env sigma = unify_0_with_initial_metas (sigma,[],[]) true env let left = true let right = false let pop k = if k=0 then 0 else k-1 let rec unify_with_eta keptside flags env sigma k1 k2 c1 c2 = (* Reason up to limited eta-expansion: ci is allowed to start with ki lam *) (* Question: try whd_betadeltaiota on ci if ki>0 ? *) match kind_of_term c1, kind_of_term c2 with | (Lambda (na,t1,c1'), Lambda (_,t2,c2')) -> let env' = push_rel_assum (na,t1) env in let sigma,metas,evars = unify_0 env sigma topconv flags t1 t2 in let side,status,(sigma,metas',evars') = unify_with_eta keptside flags env' sigma (pop k1) (pop k2) c1' c2' in (side,status,(sigma,metas@metas',evars@evars')) | (Lambda (na,t,c1'),_) when k2 > 0 -> let env' = push_rel_assum (na,t) env in let side = left in (* expansion on the right: we keep the left side *) unify_with_eta side flags env' sigma (pop k1) (k2-1) c1' (mkApp (lift 1 c2,[|mkRel 1|])) | (_,Lambda (na,t,c2')) when k1 > 0 -> let env' = push_rel_assum (na,t) env in let side = right in (* expansion on the left: we keep the right side *) unify_with_eta side flags env' sigma (k1-1) (pop k2) (mkApp (lift 1 c1,[|mkRel 1|])) c2' | _ -> (keptside,ConvUpToEta(min k1 k2), unify_0 env sigma topconv flags c1 c2) (* We solved problems [?n =_pb u] (i.e. [u =_(opp pb) ?n]) and [?n =_pb' u'], we now compute the problem on [u =? u'] and decide which of u or u' is kept Rem: the upper constraint is lost in case u <= ?n <= u' (and symmetrically in the case u' <= ?n <= u) *) let merge_instances env sigma flags st1 st2 c1 c2 = match (opp_status st1, st2) with | (UserGiven, ConvUpToEta n2) -> unify_with_eta left flags env sigma 0 n2 c1 c2 | (ConvUpToEta n1, UserGiven) -> unify_with_eta right flags env sigma n1 0 c1 c2 | (ConvUpToEta n1, ConvUpToEta n2) -> let side = left (* arbitrary choice, but agrees with compatibility *) in unify_with_eta side flags env sigma n1 n2 c1 c2 | ((IsSubType | ConvUpToEta _ | UserGiven as oppst1), (IsSubType | ConvUpToEta _ | UserGiven)) -> let res = unify_0 env sigma Cumul flags c2 c1 in if oppst1=st2 then (* arbitrary choice *) (left, st1, res) else if st2=IsSubType or st1=UserGiven then (left, st1, res) else (right, st2, res) | ((IsSuperType | ConvUpToEta _ | UserGiven as oppst1), (IsSuperType | ConvUpToEta _ | UserGiven)) -> let res = unify_0 env sigma Cumul flags c1 c2 in if oppst1=st2 then (* arbitrary choice *) (left, st1, res) else if st2=IsSuperType or st1=UserGiven then (left, st1, res) else (right, st2, res) | (IsSuperType,IsSubType) -> (try (left, IsSubType, unify_0 env sigma Cumul flags c2 c1) with _ -> (right, IsSubType, unify_0 env sigma Cumul flags c1 c2)) | (IsSubType,IsSuperType) -> (try (left, IsSuperType, unify_0 env sigma Cumul flags c1 c2) with _ -> (right, IsSuperType, unify_0 env sigma Cumul flags c2 c1)) (* Unification * * Procedure: * (1) The function [unify mc wc M N] produces two lists: * (a) a list of bindings Meta->RHS * (b) a list of bindings EVAR->RHS * * The Meta->RHS bindings cannot themselves contain * meta-vars, so they get applied eagerly to the other * bindings. This may or may not close off all RHSs of * the EVARs. For each EVAR whose RHS is closed off, * we can just apply it, and go on. For each which * is not closed off, we need to do a mimick step - * in general, we have something like: * * ?X == (c e1 e2 ... ei[Meta(k)] ... en) * * so we need to do a mimick step, converting ?X * into * * ?X -> (c ?z1 ... ?zn) * * of the proper types. Then, we can decompose the * equation into * * ?z1 --> e1 * ... * ?zi --> ei[Meta(k)] * ... * ?zn --> en * * and keep on going. Whenever we find that a R.H.S. * is closed, we can, as before, apply the constraint * directly. Whenever we find an equation of the form: * * ?z -> Meta(n) * * we can reverse the equation, put it into our metavar * substitution, and keep going. * * The most efficient mimick possible is, for each * Meta-var remaining in the term, to declare a * new EVAR of the same type. This is supposedly * determinable from the clausale form context - * we look up the metavar, take its type there, * and apply the metavar substitution to it, to * close it off. But this might not always work, * since other metavars might also need to be resolved. *) let applyHead env evd n c = let rec apprec n c cty evd = if n = 0 then (evd, c) else match kind_of_term (whd_betadeltaiota env evd cty) with | Prod (_,c1,c2) -> let (evd',evar) = Evarutil.new_evar evd env ~src:(dummy_loc,GoalEvar) c1 in apprec (n-1) (mkApp(c,[|evar|])) (subst1 evar c2) evd' | _ -> error "Apply_Head_Then" in apprec n c (Typing.type_of env evd c) evd let is_mimick_head f = match kind_of_term f with (Const _|Var _|Rel _|Construct _|Ind _) -> true | _ -> false let pose_all_metas_as_evars env evd t = let evdref = ref evd in let rec aux t = match kind_of_term t with | Meta mv -> (match Evd.meta_opt_fvalue !evdref mv with | Some ({rebus=c},_) -> c | None -> let {rebus=ty;freemetas=mvs} = Evd.meta_ftype evd mv in let ty = if mvs = Evd.Metaset.empty then ty else aux ty in let ev = Evarutil.e_new_evar evdref env ~src:(dummy_loc,GoalEvar) ty in evdref := meta_assign mv (ev,(ConvUpToEta 0,TypeNotProcessed)) !evdref; ev) | _ -> map_constr aux t in let c = aux t in (* side-effect *) (!evdref, c) let try_to_coerce env evd c cty tycon = let j = make_judge c cty in let (evd',j') = inh_conv_coerce_rigid_to dummy_loc env evd j tycon in let (evd',b) = Evarconv.consider_remaining_unif_problems env evd' in if b then let evd' = Evd.map_metas_fvalue (nf_evar evd') evd' in (evd',j'.uj_val) else error "Cannot solve unification constraints" let w_coerce_to_type env evd c cty mvty = let evd,mvty = pose_all_metas_as_evars env evd mvty in let tycon = mk_tycon_type mvty in try try_to_coerce env evd c cty tycon with e when precatchable_exception e -> (* inh_conv_coerce_rigid_to should have reasoned modulo reduction but there are cases where it though it was not rigid (like in fst (nat,nat)) and stops while it could have seen that it is rigid *) let cty = Tacred.hnf_constr env evd cty in try_to_coerce env evd c cty tycon let w_coerce env evd mv c = let cty = get_type_of env evd c in let mvty = Typing.meta_type evd mv in w_coerce_to_type env evd c cty mvty let unify_to_type env sigma flags c status u = let c = refresh_universes c in let t = get_type_of env sigma c in let t = Tacred.hnf_constr env sigma (nf_betaiota sigma (nf_meta sigma t)) in let u = Tacred.hnf_constr env sigma u in try if status = IsSuperType then unify_0 env sigma Cumul flags u t else if status = IsSubType then unify_0 env sigma Cumul flags t u else try unify_0 env sigma Cumul flags t u with e when precatchable_exception e -> unify_0 env sigma Cumul flags u t with e when precatchable_exception e -> (sigma,[],[]) let unify_type env sigma flags mv status c = let mvty = Typing.meta_type sigma mv in if occur_meta_or_existential mvty or is_arity env sigma mvty then unify_to_type env sigma flags c status mvty else (sigma,[],[]) (* Move metas that may need coercion at the end of the list of instances *) let order_metas metas = let rec order latemetas = function | [] -> List.rev latemetas | (_,_,(status,to_type) as meta)::metas -> if to_type = CoerceToType then order (meta::latemetas) metas else meta :: order latemetas metas in order [] metas (* Solve an equation ?n[x1=u1..xn=un] = t where ?n is an evar *) let solve_simple_evar_eqn env evd ev rhs = let evd,b = solve_simple_eqn Evarconv.evar_conv_x env evd (None,ev,rhs) in if not b then error_cannot_unify env evd (mkEvar ev,rhs); let (evd,b) = Evarconv.consider_remaining_unif_problems env evd in if not b then error "Cannot solve unification constraints"; evd (* [w_merge env sigma b metas evars] merges common instances in metas or in evars, possibly generating new unification problems; if [b] is true, unification of types of metas is required *) let w_merge env with_types flags (evd,metas,evars) = let rec w_merge_rec evd metas evars eqns = (* Process evars *) match evars with | ((evn,_ as ev),rhs)::evars' -> if is_defined_evar evd ev then let v = Evd.existential_value evd ev in let (evd,metas',evars'') = unify_0 env evd topconv flags rhs v in w_merge_rec evd (metas'@metas) (evars''@evars') eqns else begin let rhs' = subst_meta_instances metas rhs in match kind_of_term rhs with | App (f,cl) when is_mimick_head f & occur_meta rhs' -> if occur_evar evn rhs' then error_occur_check env evd evn rhs'; let evd' = mimick_evar evd flags f (Array.length cl) evn in w_merge_rec evd' metas evars eqns | _ -> w_merge_rec (solve_simple_evar_eqn env evd ev rhs') metas evars' eqns end | [] -> (* Process metas *) match metas with | (mv,c,(status,to_type))::metas -> let ((evd,c),(metas'',evars'')),eqns = if with_types & to_type <> TypeProcessed then if to_type = CoerceToType then (* Some coercion may have to be inserted *) (w_coerce env evd mv c,([],[])),eqns else (* No coercion needed: delay the unification of types *) ((evd,c),([],[])),(mv,status,c)::eqns else ((evd,c),([],[])),eqns in if meta_defined evd mv then let {rebus=c'},(status',_) = meta_fvalue evd mv in let (take_left,st,(evd,metas',evars')) = merge_instances env evd flags status' status c' c in let evd' = if take_left then evd else meta_reassign mv (c,(st,TypeProcessed)) evd in w_merge_rec evd' (metas'@metas@metas'') (evars'@evars'') eqns else let evd' = meta_assign mv (c,(status,TypeProcessed)) evd in w_merge_rec evd' (metas@metas'') evars'' eqns | [] -> (* Process type eqns *) match eqns with | (mv,status,c)::eqns -> let (evd,metas,evars) = unify_type env evd flags mv status c in w_merge_rec evd metas evars eqns | [] -> evd and mimick_evar evd flags hdc nargs sp = let ev = Evd.find evd sp in let sp_env = Global.env_of_context ev.evar_hyps in let (evd', c) = applyHead sp_env evd nargs hdc in let (evd'',mc,ec) = unify_0 sp_env evd' Cumul flags (Retyping.get_type_of sp_env evd' c) ev.evar_concl in let evd''' = w_merge_rec evd'' mc ec [] in if evd' == evd''' then Evd.define sp c evd''' else Evd.define sp (Evarutil.nf_evar evd''' c) evd''' in (* merge constraints *) w_merge_rec evd (order_metas metas) evars [] let w_unify_meta_types env ?(flags=default_unify_flags) evd = let metas,evd = retract_coercible_metas evd in w_merge env true flags (evd,metas,[]) (* [w_unify env evd M N] performs a unification of M and N, generating a bunch of unification constraints in the process. These constraints are processed, one-by-one - they may either generate new bindings, or, if there is already a binding, new unifications, which themselves generate new constraints. This continues until we get failure, or we run out of constraints. [clenv_typed_unify M N clenv] expects in addition that expected types of metavars are unifiable with the types of their instances *) let check_types env flags (sigma,_,_ as subst) m n = if isEvar_or_Meta (fst (whd_stack sigma m)) then unify_0_with_initial_metas subst true env Cumul flags (Retyping.get_type_of env sigma n) (Retyping.get_type_of env sigma m) else if isEvar_or_Meta (fst (whd_stack sigma n)) then unify_0_with_initial_metas subst true env Cumul flags (Retyping.get_type_of env sigma m) (Retyping.get_type_of env sigma n) else subst let w_unify_core_0 env with_types cv_pb flags m n evd = let (mc1,evd') = retract_coercible_metas evd in let (sigma,ms,es) = check_types env flags (evd,mc1,[]) m n in let subst2 = unify_0_with_initial_metas (evd',ms,es) true env cv_pb flags m n in let evd = w_merge env with_types flags subst2 in if flags.resolve_evars then try Typeclasses.resolve_typeclasses ~onlyargs:false ~split:false ~fail:true env evd with e when Typeclasses_errors.unsatisfiable_exception e -> error_cannot_unify env evd (m, n) else evd let w_unify_0 env = w_unify_core_0 env false let w_typed_unify env = w_unify_core_0 env true (* takes a substitution s, an open term op and a closed term cl try to find a subterm of cl which matches op, if op is just a Meta FAIL because we cannot find a binding *) let iter_fail f a = let n = Array.length a in let rec ffail i = if i = n then error "iter_fail" else try f a.(i) with ex when precatchable_exception ex -> ffail (i+1) in ffail 0 (* Tries to find an instance of term [cl] in term [op]. Unifies [cl] to every subterm of [op] until it finds a match. Fails if no match is found *) let w_unify_to_subterm env ?(flags=default_unify_flags) (op,cl) evd = let rec matchrec cl = let cl = strip_outer_cast cl in (try if closed0 cl then w_typed_unify env topconv flags op cl evd,cl else error "Bound 1" with ex when precatchable_exception ex -> (match kind_of_term cl with | App (f,args) -> let n = Array.length args in assert (n>0); let c1 = mkApp (f,Array.sub args 0 (n-1)) in let c2 = args.(n-1) in (try matchrec c1 with ex when precatchable_exception ex -> matchrec c2) | Case(_,_,c,lf) -> (* does not search in the predicate *) (try matchrec c with ex when precatchable_exception ex -> iter_fail matchrec lf) | LetIn(_,c1,_,c2) -> (try matchrec c1 with ex when precatchable_exception ex -> matchrec c2) | Fix(_,(_,types,terms)) -> (try iter_fail matchrec types with ex when precatchable_exception ex -> iter_fail matchrec terms) | CoFix(_,(_,types,terms)) -> (try iter_fail matchrec types with ex when precatchable_exception ex -> iter_fail matchrec terms) | Prod (_,t,c) -> (try matchrec t with ex when precatchable_exception ex -> matchrec c) | Lambda (_,t,c) -> (try matchrec t with ex when precatchable_exception ex -> matchrec c) | _ -> error "Match_subterm")) in try matchrec cl with ex when precatchable_exception ex -> raise (PretypeError (env,NoOccurrenceFound (op, None))) (* Tries to find all instances of term [cl] in term [op]. Unifies [cl] to every subterm of [op] and return all the matches. Fails if no match is found *) let w_unify_to_subterm_all env ?(flags=default_unify_flags) (op,cl) evd = let return a b = let (evd,c as a) = a () in if List.exists (fun (evd',c') -> eq_constr c c') b then b else a :: b in let fail str _ = error str in let bind f g a = let a1 = try f a with ex when precatchable_exception ex -> a in try g a1 with ex when precatchable_exception ex -> a1 in let bind_iter f a = let n = Array.length a in let rec ffail i = if i = n then fun a -> a else bind (f a.(i)) (ffail (i+1)) in ffail 0 in let rec matchrec cl = let cl = strip_outer_cast cl in (bind (if closed0 cl then return (fun () -> w_typed_unify env topconv flags op cl evd,cl) else fail "Bound 1") (match kind_of_term cl with | App (f,args) -> let n = Array.length args in assert (n>0); let c1 = mkApp (f,Array.sub args 0 (n-1)) in let c2 = args.(n-1) in bind (matchrec c1) (matchrec c2) | Case(_,_,c,lf) -> (* does not search in the predicate *) bind (matchrec c) (bind_iter matchrec lf) | LetIn(_,c1,_,c2) -> bind (matchrec c1) (matchrec c2) | Fix(_,(_,types,terms)) -> bind (bind_iter matchrec types) (bind_iter matchrec terms) | CoFix(_,(_,types,terms)) -> bind (bind_iter matchrec types) (bind_iter matchrec terms) | Prod (_,t,c) -> bind (matchrec t) (matchrec c) | Lambda (_,t,c) -> bind (matchrec t) (matchrec c) | _ -> fail "Match_subterm")) in let res = matchrec cl [] in if res = [] then raise (PretypeError (env,NoOccurrenceFound (op, None))) else res let w_unify_to_subterm_list env flags allow_K oplist t evd = List.fold_right (fun op (evd,l) -> if isMeta op then if allow_K then (evd,op::l) else error "Unify_to_subterm_list" else if occur_meta_or_existential op then let (evd',cl) = try (* This is up to delta for subterms w/o metas ... *) w_unify_to_subterm env ~flags (strip_outer_cast op,t) evd with PretypeError (env,NoOccurrenceFound _) when allow_K -> (evd,op) in if not allow_K && (* ensure we found a different instance *) List.exists (fun op -> eq_constr op cl) l then error "Unify_to_subterm_list" else (evd',cl::l) else if allow_K or dependent op t then (evd,op::l) else (* This is not up to delta ... *) raise (PretypeError (env,NoOccurrenceFound (op, None)))) oplist (evd,[]) let secondOrderAbstraction env flags allow_K typ (p, oplist) evd = (* Remove delta when looking for a subterm *) let flags = { flags with modulo_delta = (fst flags.modulo_delta, Cpred.empty) } in let (evd',cllist) = w_unify_to_subterm_list env flags allow_K oplist typ evd in let typp = Typing.meta_type evd' p in let pred = abstract_list_all env evd' typp typ cllist in w_merge env false flags (evd',[p,pred,(ConvUpToEta 0,TypeProcessed)],[]) let w_unify2 env flags allow_K cv_pb ty1 ty2 evd = let c1, oplist1 = whd_stack evd ty1 in let c2, oplist2 = whd_stack evd ty2 in match kind_of_term c1, kind_of_term c2 with | Meta p1, _ -> (* Find the predicate *) let evd' = secondOrderAbstraction env flags allow_K ty2 (p1,oplist1) evd in (* Resume first order unification *) w_unify_0 env cv_pb flags (nf_meta evd' ty1) ty2 evd' | _, Meta p2 -> (* Find the predicate *) let evd' = secondOrderAbstraction env flags allow_K ty1 (p2, oplist2) evd in (* Resume first order unification *) w_unify_0 env cv_pb flags ty1 (nf_meta evd' ty2) evd' | _ -> error "w_unify2" (* The unique unification algorithm works like this: If the pattern is flexible, and the goal has a lambda-abstraction at the head, then we do a first-order unification. If the pattern is not flexible, then we do a first-order unification, too. If the pattern is flexible, and the goal doesn't have a lambda-abstraction head, then we second-order unification. *) (* We decide here if first-order or second-order unif is used for Apply *) (* We apply a term of type (ai:Ai)C and try to solve a goal C' *) (* The type C is in clenv.templtyp.rebus with a lot of Meta to solve *) (* 3-4-99 [HH] New fo/so choice heuristic : In case we have to unify (Meta(1) args) with ([x:A]t args') we first try second-order unification and if it fails first-order. Before, second-order was used if the type of Meta(1) and [x:A]t was convertible and first-order otherwise. But if failed if e.g. the type of Meta(1) had meta-variables in it. *) let w_unify allow_K env cv_pb ?(flags=default_unify_flags) ty1 ty2 evd = let cv_pb = of_conv_pb cv_pb in let hd1,l1 = whd_stack evd ty1 in let hd2,l2 = whd_stack evd ty2 in match kind_of_term hd1, l1<>[], kind_of_term hd2, l2<>[] with (* Pattern case *) | (Meta _, true, Lambda _, _ | Lambda _, _, Meta _, true) when List.length l1 = List.length l2 -> (try w_typed_unify env cv_pb flags ty1 ty2 evd with ex when precatchable_exception ex -> try w_unify2 env flags allow_K cv_pb ty1 ty2 evd with PretypeError (env,NoOccurrenceFound _) as e -> raise e) (* Second order case *) | (Meta _, true, _, _ | _, _, Meta _, true) -> (try w_unify2 env flags allow_K cv_pb ty1 ty2 evd with PretypeError (env,NoOccurrenceFound _) as e -> raise e | ex when precatchable_exception ex -> try w_typed_unify env cv_pb flags ty1 ty2 evd with ex' when precatchable_exception ex' -> raise ex) (* General case: try first order *) | _ -> w_typed_unify env cv_pb flags ty1 ty2 evd