(***********************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) (* (str "Set") | Prop Null -> (str "Prop") | Type u -> (str "Type(" ++ Univ.pr_uni u ++ str ")") let print_sort_family = function | InSet -> (str "Set") | InProp -> (str "Prop") | InType -> (str "Type") (*let current_module = ref empty_dirpath let set_module m = current_module := m*) let new_univ = let univ_gen = ref 0 in (fun sp -> incr univ_gen; Univ.make_univ (Lib.library_dp(),!univ_gen)) let new_sort_in_family = function | InProp -> mk_Prop | InSet -> mk_Set | InType -> Type (new_univ ()) (* prod_it b [xn:Tn;..;x1:T1] = (x1:T1)..(xn:Tn)b *) let prod_it ~init = List.fold_left (fun c (n,t) -> mkProd (n, t, c)) init (* lam_it b [xn:Tn;..;x1:T1] = [x1:T1]..[xn:Tn]b *) let lam_it ~init = List.fold_left (fun c (n,t) -> mkLambda (n, t, c)) init (* [Rel (n+m);...;Rel(n+1)] *) let rel_vect n m = Array.init m (fun i -> mkRel(n+m-i)) let rel_list n m = let rec reln l p = if p>m then l else reln (mkRel(n+p)::l) (p+1) in reln [] 1 (* Same as [rel_list] but takes a context as argument and skips let-ins *) let extended_rel_list n hyps = let rec reln l p = function | (_,None,_) :: hyps -> reln (mkRel (n+p) :: l) (p+1) hyps | (_,Some _,_) :: hyps -> reln l (p+1) hyps | [] -> l in reln [] 1 hyps let extended_rel_vect n hyps = Array.of_list (extended_rel_list n hyps) let push_rel_assum (x,t) env = push_rel (x,None,t) env let push_rels_assum assums = push_rel_context (List.map (fun (x,t) -> (x,None,t)) assums) let push_named_rec_types (lna,typarray,_) env = let ctxt = array_map2_i (fun i na t -> match na with | Name id -> (id, None, type_app (lift i) t) | Anonymous -> anomaly "Fix declarations must be named") lna typarray in Array.fold_left (fun e assum -> push_named assum e) env ctxt let rec lookup_rel_id id sign = let rec lookrec = function | (n, (Anonymous,_,_)::l) -> lookrec (n+1,l) | (n, (Name id',_,t)::l) -> if id' = id then (n,t) else lookrec (n+1,l) | (_, []) -> raise Not_found in lookrec (1,sign) (* Constructs either [(x:t)c] or [[x=b:t]c] *) let mkProd_or_LetIn (na,body,t) c = match body with | None -> mkProd (na, t, c) | Some b -> mkLetIn (na, b, t, c) (* Constructs either [(x:t)c] or [c] where [x] is replaced by [b] *) let mkProd_wo_LetIn (na,body,t) c = match body with | None -> mkProd (na, t, c) | Some b -> subst1 b c let it_mkProd_wo_LetIn ~init = List.fold_left (fun c d -> mkProd_wo_LetIn d c) init let it_mkProd_or_LetIn ~init = List.fold_left (fun c d -> mkProd_or_LetIn d c) init let it_mkLambda_or_LetIn ~init = List.fold_left (fun c d -> mkLambda_or_LetIn d c) init let it_named_context_quantifier f ~init = List.fold_left (fun c d -> f d c) init let it_mkNamedProd_or_LetIn = it_named_context_quantifier mkNamedProd_or_LetIn let it_mkNamedLambda_or_LetIn = it_named_context_quantifier mkNamedLambda_or_LetIn (* *) (* strips head casts and flattens head applications *) let rec strip_head_cast c = match kind_of_term c with | App (f,cl) -> let rec collapse_rec f cl2 = match kind_of_term f with | App (g,cl1) -> collapse_rec g (Array.append cl1 cl2) | Cast (c,_) -> collapse_rec c cl2 | _ -> if cl2 = [||] then f else mkApp (f,cl2) in collapse_rec f cl | Cast (c,t) -> strip_head_cast c | _ -> c (* [map_constr_with_named_binders g f l c] maps [f l] on the immediate subterms of [c]; it carries an extra data [l] (typically a name list) which is processed by [g na] (which typically cons [na] to [l]) at each binder traversal (with name [na]); it is not recursive and the order with which subterms are processed is not specified *) let map_constr_with_named_binders g f l c = match kind_of_term c with | (Rel _ | Meta _ | Var _ | Sort _ | Const _ | Ind _ | Construct _) -> c | Cast (c,t) -> mkCast (f l c, f l t) | Prod (na,t,c) -> mkProd (na, f l t, f (g na l) c) | Lambda (na,t,c) -> mkLambda (na, f l t, f (g na l) c) | LetIn (na,b,t,c) -> mkLetIn (na, f l b, f l t, f (g na l) c) | App (c,al) -> mkApp (f l c, Array.map (f l) al) | Evar (e,al) -> mkEvar (e, Array.map (f l) al) | Case (ci,p,c,bl) -> mkCase (ci, f l p, f l c, Array.map (f l) bl) | Fix (ln,(lna,tl,bl)) -> let l' = Array.fold_left (fun l na -> g na l) l lna in mkFix (ln,(lna,Array.map (f l) tl,Array.map (f l') bl)) | CoFix(ln,(lna,tl,bl)) -> let l' = Array.fold_left (fun l na -> g na l) l lna in mkCoFix (ln,(lna,Array.map (f l) tl,Array.map (f l') bl)) (* [map_constr_with_binders_left_to_right g f n c] maps [f n] on the immediate subterms of [c]; it carries an extra data [n] (typically a lift index) which is processed by [g] (which typically add 1 to [n]) at each binder traversal; the subterms are processed from left to right according to the usual representation of the constructions (this may matter if [f] does a side-effect); it is not recursive; in fact, the usual representation of the constructions is at the time being almost those of the ML representation (except for (co-)fixpoint) *) let array_map_left f a = (* Ocaml does not guarantee Array.map is LR *) let l = Array.length a in (* (even if so), then we rewrite it *) if l = 0 then [||] else begin let r = Array.create l (f a.(0)) in for i = 1 to l - 1 do r.(i) <- f a.(i) done; r end let array_map_left_pair f a g b = let l = Array.length a in if l = 0 then [||],[||] else begin let r = Array.create l (f a.(0)) in let s = Array.create l (g b.(0)) in for i = 1 to l - 1 do r.(i) <- f a.(i); s.(i) <- g b.(i) done; r, s end let fold_rec_types g (lna,typarray,_) e = let ctxt = array_map2_i (fun i na t -> (na, None, type_app (lift i) t)) lna typarray in Array.fold_left (fun e assum -> g assum e) e ctxt let map_constr_with_binders_left_to_right g f l c = match kind_of_term c with | (Rel _ | Meta _ | Var _ | Sort _ | Const _ | Ind _ | Construct _) -> c | Cast (c,t) -> let c' = f l c in mkCast (c', f l t) | Prod (na,t,c) -> let t' = f l t in mkProd (na, t', f (g (na,None,t) l) c) | Lambda (na,t,c) -> let t' = f l t in mkLambda (na, t', f (g (na,None,t) l) c) | LetIn (na,b,t,c) -> let b' = f l b in let t' = f l t in let c' = f (g (na,Some b,t) l) c in mkLetIn (na, b', t', c') | App (c,[||]) -> assert false | App (c,al) -> (*Special treatment to be able to recognize partially applied subterms*) let a = al.(Array.length al - 1) in let hd = f l (mkApp (c, Array.sub al 0 (Array.length al - 1))) in mkApp (hd, [| f l a |]) | Evar (e,al) -> mkEvar (e, array_map_left (f l) al) | Case (ci,p,c,bl) -> let p' = f l p in let c' = f l c in mkCase (ci, p', c', array_map_left (f l) bl) | Fix (ln,(lna,tl,bl as fx)) -> let l' = fold_rec_types g fx l in let (tl',bl') = array_map_left_pair (f l) tl (f l') bl in mkFix (ln,(lna,tl',bl')) | CoFix(ln,(lna,tl,bl as fx)) -> let l' = fold_rec_types g fx l in let (tl',bl') = array_map_left_pair (f l) tl (f l') bl in mkCoFix (ln,(lna,tl',bl')) (* strong *) let map_constr_with_full_binders g f l cstr = match kind_of_term cstr with | (Rel _ | Meta _ | Var _ | Sort _ | Const _ | Ind _ | Construct _) -> cstr | Cast (c,t) -> let c' = f l c in let t' = f l t in if c==c' && t==t' then cstr else mkCast (c', t') | Prod (na,t,c) -> let t' = f l t in let c' = f (g (na,None,t) l) c in if t==t' && c==c' then cstr else mkProd (na, t', c') | Lambda (na,t,c) -> let t' = f l t in let c' = f (g (na,None,t) l) c in if t==t' && c==c' then cstr else mkLambda (na, t', c') | LetIn (na,b,t,c) -> let b' = f l b in let t' = f l t in let c' = f (g (na,Some b,t) l) c in if b==b' && t==t' && c==c' then cstr else mkLetIn (na, b', t', c') | App (c,al) -> let c' = f l c in let al' = Array.map (f l) al in if c==c' && array_for_all2 (==) al al' then cstr else mkApp (c', al') | Evar (e,al) -> let al' = Array.map (f l) al in if array_for_all2 (==) al al' then cstr else mkEvar (e, al') | Case (ci,p,c,bl) -> let p' = f l p in let c' = f l c in let bl' = Array.map (f l) bl in if p==p' && c==c' && array_for_all2 (==) bl bl' then cstr else mkCase (ci, p', c', bl') | Fix (ln,(lna,tl,bl)) -> let tl' = Array.map (f l) tl in let l' = array_fold_left2 (fun l na t -> g (na,None,t) l) l lna tl in let bl' = Array.map (f l') bl in if array_for_all2 (==) tl tl' && array_for_all2 (==) bl bl' then cstr else mkFix (ln,(lna,tl',bl')) | CoFix(ln,(lna,tl,bl)) -> let tl' = Array.map (f l) tl in let l' = array_fold_left2 (fun l na t -> g (na,None,t) l) l lna tl in let bl' = Array.map (f l') bl in if array_for_all2 (==) tl tl' && array_for_all2 (==) bl bl' then cstr else mkCoFix (ln,(lna,tl',bl')) (* [fold_constr_with_binders g f n acc c] folds [f n] on the immediate subterms of [c] starting from [acc] and proceeding from left to right according to the usual representation of the constructions as [fold_constr] but it carries an extra data [n] (typically a lift index) which is processed by [g] (which typically add 1 to [n]) at each binder traversal; it is not recursive *) let fold_constr_with_binders g f n acc c = match kind_of_term c with | (Rel _ | Meta _ | Var _ | Sort _ | Const _ | Ind _ | Construct _) -> acc | Cast (c,t) -> f n (f n acc c) t | Prod (_,t,c) -> f (g n) (f n acc t) c | Lambda (_,t,c) -> f (g n) (f n acc t) c | LetIn (_,b,t,c) -> f (g n) (f n (f n acc b) t) c | App (c,l) -> Array.fold_left (f n) (f n acc c) l | Evar (_,l) -> Array.fold_left (f n) acc l | Case (_,p,c,bl) -> Array.fold_left (f n) (f n (f n acc p) c) bl | Fix (_,(lna,tl,bl)) -> let n' = iterate g (Array.length tl) n in let fd = array_map2 (fun t b -> (t,b)) tl bl in Array.fold_left (fun acc (t,b) -> f n (f n' acc t) b) acc fd | CoFix (_,(lna,tl,bl)) -> let n' = iterate g (Array.length tl) n in let fd = array_map2 (fun t b -> (t,b)) tl bl in Array.fold_left (fun acc (t,b) -> f n (f n' acc t) b) acc fd (***************************) (* occurs check functions *) (***************************) exception Occur let occur_meta c = let rec occrec c = match kind_of_term c with | Meta _ -> raise Occur | _ -> iter_constr occrec c in try occrec c; false with Occur -> true let occur_existential c = let rec occrec c = match kind_of_term c with | Evar _ -> raise Occur | _ -> iter_constr occrec c in try occrec c; false with Occur -> true let occur_const s c = let rec occur_rec c = match kind_of_term c with | Const sp when sp=s -> raise Occur | _ -> iter_constr occur_rec c in try occur_rec c; false with Occur -> true let occur_evar n c = let rec occur_rec c = match kind_of_term c with | Evar (sp,_) when sp=n -> raise Occur | _ -> iter_constr occur_rec c in try occur_rec c; false with Occur -> true let occur_in_global env id constr = let vars = vars_of_global env constr in if List.mem id vars then raise Occur let occur_var env s c = let rec occur_rec c = occur_in_global env s c; iter_constr occur_rec c in try occur_rec c; false with Occur -> true let occur_var_in_decl env hyp (_,c,typ) = match c with | None -> occur_var env hyp typ | Some body -> occur_var env hyp typ || occur_var env hyp body (* Tests that t is a subterm of c *) let occur_term t c = let eq_constr_fail c = if eq_constr t c then raise Occur in let rec occur_rec c = eq_constr_fail c; iter_constr occur_rec c in try occur_rec c; false with Occur -> true (* returns the list of free debruijn indices in a term *) let free_rels m = let rec frec depth acc c = match kind_of_term c with | Rel n -> if n >= depth then Intset.add (n-depth+1) acc else acc | _ -> fold_constr_with_binders succ frec depth acc c in frec 1 Intset.empty m (* (dependent M N) is true iff M is eq_term with a subterm of N M is appropriately lifted through abstractions of N *) let dependent m t = let rec deprec m t = if eq_constr m t then raise Occur else match kind_of_term m, kind_of_term t with | App (fm,lm), App (ft,lt) when Array.length lm < Array.length lt -> deprec m (mkApp (ft,Array.sub lt 0 (Array.length lm))); Array.iter (deprec m) (Array.sub lt (Array.length lm) ((Array.length lt) - (Array.length lm))) | _ -> iter_constr_with_binders (lift 1) deprec m t in try deprec m t; false with Occur -> true let pop t = lift (-1) t (***************************) (* substitution functions *) (***************************) let rec subst_meta bl c = match kind_of_term c with | Meta i -> (try List.assoc i bl with Not_found -> c) | _ -> map_constr (subst_meta bl) c (* First utilities for avoiding telescope computation for subst_term *) let prefix_application eq_fun (k,c) (t : constr) = let c' = collapse_appl c and t' = collapse_appl t in match kind_of_term c', kind_of_term t' with | App (f1,cl1), App (f2,cl2) -> let l1 = Array.length cl1 and l2 = Array.length cl2 in if l1 <= l2 && eq_fun c' (mkApp (f2, Array.sub cl2 0 l1)) then Some (mkApp (mkRel k, Array.sub cl2 l1 (l2 - l1))) else None | _ -> None let my_prefix_application eq_fun (k,c) (by_c : constr) (t : constr) = let c' = collapse_appl c and t' = collapse_appl t in match kind_of_term c', kind_of_term t' with | App (f1,cl1), App (f2,cl2) -> let l1 = Array.length cl1 and l2 = Array.length cl2 in if l1 <= l2 && eq_fun c' (mkApp (f2, Array.sub cl2 0 l1)) then Some (mkApp ((lift k by_c), Array.sub cl2 l1 (l2 - l1))) else None | _ -> None (* Recognizing occurrences of a given (closed) subterm in a term for Pattern : [subst_term c t] substitutes [(Rel 1)] for all occurrences of (closed) term [c] in a term [t] *) (*i Bizarre : si on cherche un sous terme clos, pourquoi le lifter ? i*) let subst_term_gen eq_fun c t = let rec substrec (k,c as kc) t = match prefix_application eq_fun kc t with | Some x -> x | None -> if eq_fun c t then mkRel k else map_constr_with_binders (fun (k,c) -> (k+1,lift 1 c)) substrec kc t in substrec (1,c) t (* Recognizing occurrences of a given (closed) subterm in a term : [replace_term c1 c2 t] substitutes [c2] for all occurrences of (closed) term [c1] in a term [t] *) (*i Meme remarque : a priori [c] n'est pas forcement clos i*) let replace_term_gen eq_fun c by_c in_t = let rec substrec (k,c as kc) t = match my_prefix_application eq_fun kc by_c t with | Some x -> x | None -> (if eq_fun c t then (lift k by_c) else map_constr_with_binders (fun (k,c) -> (k+1,lift 1 c)) substrec kc t) in substrec (0,c) in_t let subst_term = subst_term_gen eq_constr let replace_term = replace_term_gen eq_constr (* Substitute only a list of locations locs, the empty list is interpreted as substitute all, if 0 is in the list then no substitution is done. The list may contain only negative occurrences that will not be substituted. *) let subst_term_occ_gen locs occ c t = let maxocc = List.fold_right max locs 0 in let pos = ref occ in let check = ref true in let except = List.exists (fun n -> n<0) locs in if except & (List.exists (fun n -> n>=0) locs) then error "mixing of positive and negative occurences" else let rec substrec (k,c as kc) t = if (not except) & (!pos > maxocc) then t else if eq_constr c t then let r = if except then if List.mem (- !pos) locs then t else (mkRel k) else if List.mem !pos locs then (mkRel k) else t in incr pos; r else map_constr_with_binders_left_to_right (fun d (k,c) -> (k+1,lift 1 c)) substrec kc t in let t' = substrec (1,c) t in (!pos, t') let subst_term_occ locs c t = if locs = [] then subst_term c t else if List.mem 0 locs then t else let (nbocc,t') = subst_term_occ_gen locs 1 c t in if List.exists (fun o -> o >= nbocc or o <= -nbocc) locs then errorlabstrm "subst_term_occ" (str "Too few occurences"); t' let subst_term_occ_decl locs c (id,bodyopt,typ as d) = match bodyopt with | None -> (id,None,subst_term_occ locs c typ) | Some body -> if locs = [] then (id,Some (subst_term c body),type_app (subst_term c) typ) else if List.mem 0 locs then d else let (nbocc,body') = subst_term_occ_gen locs 1 c body in let (nbocc',t') = subst_term_occ_gen locs nbocc c typ in if List.exists (fun o -> o >= nbocc' or o <= -nbocc') locs then errorlabstrm "subst_term_occ_decl" (str "Too few occurences"); (id,Some body',t') (* First character of a constr *) let first_char id = let id = string_of_id id in assert (id <> ""); String.make 1 id.[0] let lowercase_first_char id = String.lowercase (first_char id) let vars_of_env env = let s = Sign.fold_named_context (fun (id,_,_) s -> Idset.add id s) (named_context env) ~init:Idset.empty in Sign.fold_rel_context (fun (na,_,_) s -> match na with Name id -> Idset.add id s | _ -> s) (rel_context env) ~init:s let add_vname vars = function Name id -> Idset.add id vars | _ -> vars let id_of_global = Nametab.id_of_global let sort_hdchar = function | Prop(_) -> "P" | Type(_) -> "T" let hdchar env c = let rec hdrec k c = match kind_of_term c with | Prod (_,_,c) -> hdrec (k+1) c | Lambda (_,_,c) -> hdrec (k+1) c | LetIn (_,_,_,c) -> hdrec (k+1) c | Cast (c,_) -> hdrec k c | App (f,l) -> hdrec k f | Const kn -> let c = lowercase_first_char (id_of_label (label kn)) in if c = "?" then "y" else c | Ind ((kn,i) as x) -> if i=0 then lowercase_first_char (id_of_label (label kn)) else lowercase_first_char (id_of_global (IndRef x)) | Construct ((sp,i) as x) -> lowercase_first_char (id_of_global (ConstructRef x)) | Var id -> lowercase_first_char id | Sort s -> sort_hdchar s | Rel n -> (if n<=k then "p" (* the initial term is flexible product/function *) else try match Environ.lookup_rel (n-k) env with | (Name id,_,_) -> lowercase_first_char id | (Anonymous,_,t) -> hdrec 0 (lift (n-k) t) with Not_found -> "y") | Fix ((_,i),(lna,_,_)) -> let id = match lna.(i) with Name id -> id | _ -> assert false in lowercase_first_char id | CoFix (i,(lna,_,_)) -> let id = match lna.(i) with Name id -> id | _ -> assert false in lowercase_first_char id | Meta _|Evar _|Case (_, _, _, _) -> "y" in hdrec 0 c let id_of_name_using_hdchar env a = function | Anonymous -> id_of_string (hdchar env a) | Name id -> id let named_hd env a = function | Anonymous -> Name (id_of_string (hdchar env a)) | x -> x let named_hd_type env a = named_hd env (body_of_type a) let prod_name env (n,a,b) = mkProd (named_hd_type env a n, a, b) let lambda_name env (n,a,b) = mkLambda (named_hd_type env a n, a, b) let prod_create env (a,b) = mkProd (named_hd_type env a Anonymous, a, b) let lambda_create env (a,b) = mkLambda (named_hd_type env a Anonymous, a, b) let name_assumption env (na,c,t) = match c with | None -> (named_hd_type env t na, None, t) | Some body -> (named_hd env body na, c, t) let name_context env hyps = snd (List.fold_left (fun (env,hyps) d -> let d' = name_assumption env d in (push_rel d' env, d' :: hyps)) (env,[]) (List.rev hyps)) let mkProd_or_LetIn_name env b d = mkProd_or_LetIn (name_assumption env d) b let mkLambda_or_LetIn_name env b d = mkLambda_or_LetIn (name_assumption env d)b let it_mkProd_or_LetIn_name env b hyps = it_mkProd_or_LetIn b (name_context env hyps) let it_mkLambda_or_LetIn_name env b hyps = it_mkLambda_or_LetIn b (name_context env hyps) (*************************) (* Names environments *) (*************************) type names_context = name list let add_name n nl = n::nl let lookup_name_of_rel p names = try List.nth names (p-1) with Invalid_argument _ | Failure _ -> raise Not_found let rec lookup_rel_of_name id names = let rec lookrec n = function | Anonymous :: l -> lookrec (n+1) l | (Name id') :: l -> if id' = id then n else lookrec (n+1) l | [] -> raise Not_found in lookrec 1 names let empty_names_context = [] let ids_of_rel_context sign = Sign.fold_rel_context (fun (na,_,_) l -> match na with Name id -> id::l | Anonymous -> l) sign ~init:[] let ids_of_named_context sign = Sign.fold_named_context (fun (id,_,_) idl -> id::idl) sign ~init:[] let ids_of_context env = (ids_of_rel_context (rel_context env)) @ (ids_of_named_context (named_context env)) let names_of_rel_context env = List.map (fun (na,_,_) -> na) (rel_context env) (* Nouvelle version de renommage des variables (DEC 98) *) (* This is the algorithm to display distinct bound variables - Règle 1 : un nom non anonyme, même non affiché, contribue à la liste des noms à éviter - Règle 2 : c'est la dépendance qui décide si on affiche ou pas Exemple : si bool_ind = (P:bool->Prop)(f:(P true))(f:(P false))(b:bool)(P b), alors il est affiché (P:bool->Prop)(P true)->(P false)->(b:bool)(P b) mais f et f0 contribue à la liste des variables à éviter (en supposant que les noms f et f0 ne sont pas déjà pris) Intérêt : noms homogènes dans un but avant et après Intro *) type used_idents = identifier list let occur_rel p env id = try lookup_name_of_rel p env = Name id with Not_found -> false (* Unbound indice : may happen in debug *) let occur_id env nenv id0 c = let rec occur n c = match kind_of_term c with | Var id when id=id0 -> raise Occur | Const kn when id_of_global (ConstRef kn) = id0 -> raise Occur | Ind ind_sp when id_of_global (IndRef ind_sp) = id0 -> raise Occur | Construct cstr_sp when id_of_global (ConstructRef cstr_sp) = id0 -> raise Occur | Rel p when p>n & occur_rel (p-n) nenv id0 -> raise Occur | _ -> iter_constr_with_binders succ occur n c in try occur 1 c; false with Occur -> true | Not_found -> false (* Case when a global is not in the env *) let next_name_not_occuring env name l env_names t = let rec next id = if List.mem id l or occur_id env env_names id t then next (lift_ident id) else id in match name with | Name id -> next id | Anonymous -> id_of_string "_" (* On reduit une serie d'eta-redex de tete ou rien du tout *) (* [x1:c1;...;xn:cn]@(f;a1...an;x1;...;xn) --> @(f;a1...an) *) (* Remplace 2 versions précédentes buggées *) let rec eta_reduce_head c = match kind_of_term c with | Lambda (_,c1,c') -> (match kind_of_term (eta_reduce_head c') with | App (f,cl) -> let lastn = (Array.length cl) - 1 in if lastn < 1 then anomaly "application without arguments" else (match kind_of_term cl.(lastn) with | Rel 1 -> let c' = if lastn = 1 then f else mkApp (f, Array.sub cl 0 lastn) in if noccurn 1 c' then lift (-1) c' else c | _ -> c) | _ -> c) | _ -> c (* alpha-eta conversion : ignore print names and casts *) let eta_eq_constr = let rec aux t1 t2 = let t1 = eta_reduce_head (strip_head_cast t1) and t2 = eta_reduce_head (strip_head_cast t2) in t1=t2 or compare_constr aux t1 t2 in aux (* iterator on rel context *) let process_rel_context f env = let sign = named_context env in let rels = rel_context env in let env0 = reset_with_named_context sign env in Sign.fold_rel_context f rels ~init:env0 let assums_of_rel_context sign = Sign.fold_rel_context (fun (na,c,t) l -> match c with Some _ -> l | None -> (na, t)::l) sign ~init:[] let lift_rel_context n sign = let rec liftrec k = function | (na,c,t)::sign -> (na,option_app (liftn n k) c,type_app (liftn n k) t) ::(liftrec (k-1) sign) | [] -> [] in liftrec (rel_context_length sign) sign let fold_named_context_both_sides f l ~init = list_fold_right_and_left f l init let rec mem_named_context id = function | (id',_,_) :: _ when id=id' -> true | _ :: sign -> mem_named_context id sign | [] -> false let make_all_name_different env = let avoid = ref (ids_of_named_context (named_context env)) in process_rel_context (fun (na,c,t) newenv -> let id = next_name_away na !avoid in avoid := id::!avoid; push_rel (Name id,c,t) newenv) env let global_vars env ids = Idset.elements (global_vars_set env ids) let global_vars_set_of_decl env = function | (_,None,t) -> global_vars_set env t | (_,Some c,t) -> Idset.union (global_vars_set env t) (global_vars_set env c) (* Remark: Anonymous var may be dependent in Evar's contexts *) let concrete_name env l env_names n c = if n = Anonymous & noccurn 1 c then (None,l) else let fresh_id = next_name_not_occuring env n l env_names c in let idopt = if noccurn 1 c then None else (Some fresh_id) in (idopt, fresh_id::l) let concrete_let_name env l env_names n c = let fresh_id = next_name_not_occuring env n l env_names c in (Name fresh_id, fresh_id::l) let rec rename_bound_var env l c = match kind_of_term c with | Prod (Name s,c1,c2) -> if noccurn 1 c2 then let env' = push_rel (Name s,None,c1) env in mkProd (Name s, c1, rename_bound_var env' l c2) else let s' = next_ident_away s (global_vars env c2@l) in let env' = push_rel (Name s',None,c1) env in mkProd (Name s', c1, rename_bound_var env' (s'::l) c2) | Prod (Anonymous,c1,c2) -> let env' = push_rel (Anonymous,None,c1) env in mkProd (Anonymous, c1, rename_bound_var env' l c2) | Cast (c,t) -> mkCast (rename_bound_var env l c, t) | x -> c