(************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) (* is_transparent (ConstKey kn) && let cb = Environ.lookup_constant kn env in cb.const_body <> None & not cb.const_opaque | EvalVarRef id -> is_transparent (VarKey id) && let (_,value,_) = Environ.lookup_named id env in value <> None let value_of_evaluable_ref env = function | EvalConstRef con -> constant_value env con | EvalVarRef id -> Option.get (pi2 (lookup_named id env)) let constr_of_evaluable_ref = function | EvalConstRef con -> mkConst con | EvalVarRef id -> mkVar id type evaluable_reference = | EvalConst of constant | EvalVar of identifier | EvalRel of int | EvalEvar of existential let mkEvalRef = function | EvalConst cst -> mkConst cst | EvalVar id -> mkVar id | EvalRel n -> mkRel n | EvalEvar ev -> mkEvar ev let isEvalRef env c = match kind_of_term c with | Const sp -> is_evaluable env (EvalConstRef sp) | Var id -> is_evaluable env (EvalVarRef id) | Rel _ | Evar _ -> true | _ -> false let destEvalRef c = match kind_of_term c with | Const cst -> EvalConst cst | Var id -> EvalVar id | Rel n -> EvalRel n | Evar ev -> EvalEvar ev | _ -> anomaly "Not an unfoldable reference" let reference_opt_value sigma env = function | EvalConst cst -> constant_opt_value env cst | EvalVar id -> let (_,v,_) = lookup_named id env in v | EvalRel n -> let (_,v,_) = lookup_rel n env in Option.map (lift n) v | EvalEvar ev -> Evd.existential_opt_value sigma ev exception NotEvaluable let reference_value sigma env c = match reference_opt_value sigma env c with | None -> raise NotEvaluable | Some d -> d (************************************************************************) (* Reduction of constants hiding a fixpoint (e.g. for "simpl" tactic). *) (* One reuses the name of the function after reduction of the fixpoint *) type constant_evaluation = | EliminationFix of int * int * (int * (int * constr) list * int) | EliminationMutualFix of int * evaluable_reference * ((int*evaluable_reference) option array * (int * (int * constr) list * int)) | EliminationCases of int | NotAnElimination (* We use a cache registered as a global table *) module CstOrdered = struct type t = constant let compare = Pervasives.compare end module Cstmap = Map.Make(CstOrdered) let eval_table = ref Cstmap.empty type frozen = (int * constant_evaluation) Cstmap.t let init () = eval_table := Cstmap.empty let freeze () = !eval_table let unfreeze ct = eval_table := ct let _ = Summary.declare_summary "evaluation" { Summary.freeze_function = freeze; Summary.unfreeze_function = unfreeze; Summary.init_function = init; Summary.survive_module = false; Summary.survive_section = false } (* Check that c is an "elimination constant" either [xn:An]..[x1:A1](

Case (Rel i) of f1..fk end g1 ..gp) or [xn:An]..[x1:A1](Fix(f|t) (Rel i1) ..(Rel ip)) with i1..ip distinct variables not occuring in t In the second case, keep relevenant information ([i1,Ai1;..;ip,Aip],n) in order to compute an equivalent of Fix(f|t)[xi<-ai] as [yip:Bip]..[yi1:Bi1](F bn..b1) == [yip:Bip]..[yi1:Bi1](Fix(f|t)[xi<-ai] (Rel p)..(Rel 1)) with bj=aj if j<>ik and bj=(Rel c) and Bic=Aic[xn..xic-1 <- an..aic-1] *) let check_fix_reversibility labs args ((lv,i),(_,tys,bds)) = let n = List.length labs in let nargs = List.length args in if nargs > n then raise Elimconst; let nbfix = Array.length bds in let li = List.map (function d -> match kind_of_term d with | Rel k -> if array_for_all (noccurn k) tys && array_for_all (noccurn (k+nbfix)) bds then (k, List.nth labs (k-1)) else raise Elimconst | _ -> raise Elimconst) args in if not (list_distinct (List.map fst li)) then raise Elimconst; let k = lv.(i) in if k < nargs then (* Such an optimisation would need eta-expansion let p = destRel (List.nth args k) in EliminationFix (n-p+1,(nbfix,li,n)) *) EliminationFix (n,nargs,(nbfix,li,n)) else EliminationFix (n-nargs+k+1,nargs,(nbfix,li,n)) (* Heuristic to look if global names are associated to other components of a mutual fixpoint *) let invert_name labs l na0 env sigma ref = function | Name id -> let minfxargs = List.length l in if na0 <> Name id then let refi = match ref with | EvalRel _ | EvalEvar _ -> None | EvalVar id' -> Some (EvalVar id) | EvalConst kn -> let (mp,dp,_) = repr_con kn in Some (EvalConst (make_con mp dp (label_of_id id))) in match refi with | None -> None | Some ref -> try match reference_opt_value sigma env ref with | None -> None | Some c -> let labs',ccl = decompose_lam c in let _, l' = whd_betalet_stack ccl in let labs' = List.map snd labs' in if labs' = labs & l = l' then Some (minfxargs,ref) else None with Not_found (* Undefined ref *) -> None else Some (minfxargs,ref) | Anonymous -> None (* Actually, should not occur *) (* [compute_consteval_direct] expand all constant in a whole, but [compute_consteval_mutual_fix] only one by one, until finding the last one before the Fix if the latter is mutually defined *) let compute_consteval_direct sigma env ref = let rec srec env n labs c = let c',l = whd_betadelta_stack env sigma c in match kind_of_term c' with | Lambda (id,t,g) when l=[] -> srec (push_rel (id,None,t) env) (n+1) (t::labs) g | Fix fix -> (try check_fix_reversibility labs l fix with Elimconst -> NotAnElimination) | Case (_,_,d,_) when isRel d -> EliminationCases n | _ -> NotAnElimination in match reference_opt_value sigma env ref with | None -> NotAnElimination | Some c -> srec env 0 [] c let compute_consteval_mutual_fix sigma env ref = let rec srec env minarg labs ref c = let c',l = whd_betalet_stack c in let nargs = List.length l in match kind_of_term c' with | Lambda (na,t,g) when l=[] -> srec (push_rel (na,None,t) env) (minarg+1) (t::labs) ref g | Fix ((lv,i),(names,_,_)) -> (* Last known constant wrapping Fix is ref = [labs](Fix l) *) (match compute_consteval_direct sigma env ref with | NotAnElimination -> (*Above const was eliminable but this not!*) NotAnElimination | EliminationFix (minarg',minfxargs,infos) -> let refs = Array.map (invert_name labs l names.(i) env sigma ref) names in let new_minarg = max (minarg'+minarg-nargs) minarg' in EliminationMutualFix (new_minarg,ref,(refs,infos)) | _ -> assert false) | _ when isEvalRef env c' -> (* Forget all \'s and args and do as if we had started with c' *) let ref = destEvalRef c' in (match reference_opt_value sigma env ref with | None -> anomaly "Should have been trapped by compute_direct" | Some c -> srec env (minarg-nargs) [] ref c) | _ -> (* Should not occur *) NotAnElimination in match reference_opt_value sigma env ref with | None -> (* Should not occur *) NotAnElimination | Some c -> srec env 0 [] ref c let compute_consteval sigma env ref = match compute_consteval_direct sigma env ref with | EliminationFix (_,_,(nbfix,_,_)) when nbfix <> 1 -> compute_consteval_mutual_fix sigma env ref | elim -> elim let reference_eval sigma env = function | EvalConst cst as ref -> (try Cstmap.find cst !eval_table with Not_found -> begin let v = compute_consteval sigma env ref in eval_table := Cstmap.add cst v !eval_table; v end) | ref -> compute_consteval sigma env ref let rev_firstn_liftn fn ln = let rec rfprec p res l = if p = 0 then res else match l with | [] -> invalid_arg "Reduction.rev_firstn_liftn" | a::rest -> rfprec (p-1) ((lift ln a)::res) rest in rfprec fn [] (* If f is bound to EliminationFix (n',infos), then n' is the minimal number of args for starting the reduction and infos is (nbfix,[(yi1,Ti1);...;(yip,Tip)],n) indicating that f converts to some [y1:T1,...,yn:Tn](Fix(..) yip .. yi1) where we can remark that yij = Rel(n+1-j) f is applied to largs and we need for recursive calls to build the function g := [xp:Tip',...,x1:Ti1'](f a1 ... an) s.t. (g u1 ... up) reduces to (Fix(..) u1 ... up) This is made possible by setting a_k:=z_j if k=i_j a_k:=y_k otherwise The type Tij' is Tij[yn..yi(j-1)..y1 <- ai(j-1)..a1] *) let x = Name (id_of_string "x") let make_elim_fun (names,(nbfix,lv,n)) largs = let lu = list_firstn n (list_of_stack largs) in let p = List.length lv in let lyi = List.map fst lv in let la = list_map_i (fun q aq -> (* k from the comment is q+1 *) try mkRel (p+1-(list_index (n-q) lyi)) with Not_found -> aq) 0 (List.map (lift p) lu) in fun i -> match names.(i) with | None -> None | Some (minargs,ref) -> let body = applistc (mkEvalRef ref) la in let g = list_fold_left_i (fun q (* j from comment is n+1-q *) c (ij,tij) -> let subst = List.map (lift (-q)) (list_firstn (n-ij) la) in let tij' = substl (List.rev subst) tij in mkLambda (x,tij',c)) 1 body (List.rev lv) in Some (minargs,g) (* [f] is convertible to [Fix(recindices,bodynum),bodyvect)]: do so that the reduction uses this extra information *) let dummy = mkProp let vfx = id_of_string"_expanded_fix_" let vfun = id_of_string"_elimminator_function_" (* Mark every occurrence of substituted vars (associated to a function) as a problem variable: an evar that can be instantiated either by vfx (expanded fixpoint) or vfun (named function). *) let substl_with_function subst constr = let cnt = ref 0 in let evd = ref Evd.empty in let minargs = ref Intmap.empty in let v = Array.of_list subst in let rec subst_total k c = match kind_of_term c with Rel i when k if i <= k + Array.length v then match v.(i-k-1) with | (fx,Some(min,ref)) -> decr cnt; evd := Evd.add !evd !cnt (Evd.make_evar (val_of_named_context [(vfx,None,dummy);(vfun,None,dummy)]) dummy); minargs := Intmap.add !cnt min !minargs; lift k (mkEvar(!cnt,[|fx;ref|])) | (fx,None) -> lift k fx else mkRel (i - Array.length v) | _ -> map_constr_with_binders succ subst_total k c in let c = subst_total 0 constr in (c,!evd,!minargs) exception Partial (* each problem variable that cannot be made totally applied even by reduction is solved by the expanded fix term. *) let solve_arity_problem env sigma fxminargs c = let evm = ref sigma in let set_fix i = evm := Evd.define !evm i (mkVar vfx) in let rec check strict c = let c' = whd_betaiotazeta c in let (h,rcargs) = decompose_app c' in match kind_of_term h with Evar(i,_) when Intmap.mem i fxminargs && not (Evd.is_defined !evm i) -> let minargs = Intmap.find i fxminargs in if List.length rcargs < minargs then if strict then set_fix i else raise Partial; List.iter (check strict) rcargs | (Var _|Const _) when isEvalRef env h -> (match reference_opt_value sigma env (destEvalRef h) with Some h' -> let bak = !evm in (try List.iter (check false) rcargs with Partial -> evm := bak; check strict (applist(h',rcargs))) | None -> List.iter (check strict) rcargs) | _ -> iter_constr (check strict) c' in check true c; !evm let substl_checking_arity env subst c = (* we initialize the problem: *) let body,sigma,minargs = substl_with_function subst c in (* we collect arity constraints *) let sigma' = solve_arity_problem env sigma minargs body in (* we propagate the constraints: solved problems are substituted; the other ones are replaced by the function symbol *) let rec nf_fix c = match kind_of_term c with Evar(i,[|fx;f|] as ev) when Intmap.mem i minargs -> (match Evd.existential_opt_value sigma' ev with Some c' -> c' | None -> f) | _ -> map_constr nf_fix c in nf_fix body let contract_fix_use_function env f ((recindices,bodynum),(_names,_types,bodies as typedbodies)) = let nbodies = Array.length recindices in let make_Fi j = (mkFix((recindices,j),typedbodies), f j) in let lbodies = list_tabulate make_Fi nbodies in substl_checking_arity env (List.rev lbodies) (nf_beta bodies.(bodynum)) let reduce_fix_use_function env f whfun fix stack = match fix_recarg fix stack with | None -> NotReducible | Some (recargnum,recarg) -> let (recarg'hd,_ as recarg') = if isRel recarg then (* The recarg cannot be a local def, no worry about the right env *) (recarg, empty_stack) else whfun (recarg, empty_stack) in let stack' = stack_assign stack recargnum (app_stack recarg') in (match kind_of_term recarg'hd with | Construct _ -> Reduced (contract_fix_use_function env f fix,stack') | _ -> NotReducible) let contract_cofix_use_function env f (bodynum,(_names,_,bodies as typedbodies)) = let nbodies = Array.length bodies in let make_Fi j = (mkCoFix(j,typedbodies), f j) in let subbodies = list_tabulate make_Fi nbodies in substl_checking_arity env (List.rev subbodies) (nf_beta bodies.(bodynum)) let reduce_mind_case_use_function func env mia = match kind_of_term mia.mconstr with | Construct(ind_sp,i) -> let real_cargs = list_skipn mia.mci.ci_npar mia.mcargs in applist (mia.mlf.(i-1), real_cargs) | CoFix (bodynum,(names,_,_) as cofix) -> let build_cofix_name = if isConst func then let (mp,dp,_) = repr_con (destConst func) in let minargs = List.length mia.mcargs in fun i -> if i = bodynum then Some (minargs,func) else match names.(i) with | Anonymous -> None | Name id -> (* In case of a call to another component of a block of mutual inductive, try to reuse the global name if the block was indeed initially built as a global definition *) let kn = make_con mp dp (label_of_id id) in try match constant_opt_value env kn with | None -> None (* TODO: check kn is correct *) | Some _ -> Some (minargs,mkConst kn) with Not_found -> None else fun _ -> None in let cofix_def = contract_cofix_use_function env build_cofix_name cofix in mkCase (mia.mci, mia.mP, applist(cofix_def,mia.mcargs), mia.mlf) | _ -> assert false let special_red_case sigma env whfun (ci, p, c, lf) = let rec redrec s = let (constr, cargs) = whfun s in if isEvalRef env constr then let ref = destEvalRef constr in match reference_opt_value sigma env ref with | None -> raise Redelimination | Some gvalue -> if reducible_mind_case gvalue then reduce_mind_case_use_function constr env {mP=p; mconstr=gvalue; mcargs=list_of_stack cargs; mci=ci; mlf=lf} else redrec (gvalue, cargs) else if reducible_mind_case constr then reduce_mind_case {mP=p; mconstr=constr; mcargs=list_of_stack cargs; mci=ci; mlf=lf} else raise Redelimination in redrec (c, empty_stack) (* [red_elim_const] contracts iota/fix/cofix redexes hidden behind constants by keeping the name of the constants in the recursive calls; it fails if no redex is around *) let rec red_elim_const env sigma ref largs = match reference_eval sigma env ref with | EliminationCases n when stack_args_size largs >= n -> let c = reference_value sigma env ref in let c', lrest = whd_betadelta_state env sigma (c,largs) in let whfun = whd_simpl_state env sigma in (special_red_case sigma env whfun (destCase c'), lrest) | EliminationFix (min,minfxargs,infos) when stack_args_size largs >=min -> let c = reference_value sigma env ref in let d, lrest = whd_betadelta_state env sigma (c,largs) in let f = make_elim_fun ([|Some (minfxargs,ref)|],infos) largs in let whfun = whd_construct_state env sigma in (match reduce_fix_use_function env f whfun (destFix d) lrest with | NotReducible -> raise Redelimination | Reduced (c,rest) -> (nf_beta c, rest)) | EliminationMutualFix (min,refgoal,refinfos) when stack_args_size largs >= min -> let rec descend ref args = let c = reference_value sigma env ref in if ref = refgoal then (c,args) else let c', lrest = whd_betalet_state (c,args) in descend (destEvalRef c') lrest in let (_, midargs as s) = descend ref largs in let d, lrest = whd_betadelta_state env sigma s in let f = make_elim_fun refinfos midargs in let whfun = whd_construct_state env sigma in (match reduce_fix_use_function env f whfun (destFix d) lrest with | NotReducible -> raise Redelimination | Reduced (c,rest) -> (nf_beta c, rest)) | _ -> raise Redelimination (* reduce to whd normal form or to an applied constant that does not hide a reducible iota/fix/cofix redex (the "simpl" tactic) *) and whd_simpl_state env sigma s = let rec redrec (x, stack as s) = match kind_of_term x with | Lambda (na,t,c) -> (match decomp_stack stack with | None -> s | Some (a,rest) -> stacklam redrec [a] c rest) | LetIn (n,b,t,c) -> stacklam redrec [b] c stack | App (f,cl) -> redrec (f, append_stack cl stack) | Cast (c,_,_) -> redrec (c, stack) | Case (ci,p,c,lf) -> (try redrec (special_red_case sigma env redrec (ci,p,c,lf), stack) with Redelimination -> s) | Fix fix -> (try match reduce_fix (whd_construct_state env sigma) fix stack with | Reduced s' -> redrec s' | NotReducible -> s with Redelimination -> s) | _ when isEvalRef env x -> let ref = destEvalRef x in (try redrec (red_elim_const env sigma ref stack) with Redelimination -> s) | _ -> s in redrec s (* reduce until finding an applied constructor or fail *) and whd_construct_state env sigma s = let (constr, cargs as s') = whd_simpl_state env sigma s in if reducible_mind_case constr then s' else if isEvalRef env constr then let ref = destEvalRef constr in match reference_opt_value sigma env ref with | None -> raise Redelimination | Some gvalue -> whd_construct_state env sigma (gvalue, cargs) else raise Redelimination (************************************************************************) (* Special Purpose Reduction Strategies *) (* Red reduction tactic: one step of delta reduction + full beta-iota-fix-cofix-zeta-cast at the head of the conclusion of a sequence of products; fails if no delta redex is around *) let try_red_product env sigma c = let simpfun = clos_norm_flags betaiotazeta env sigma in let rec redrec env x = match kind_of_term x with | App (f,l) -> (match kind_of_term f with | Fix fix -> let stack = append_stack l empty_stack in (match fix_recarg fix stack with | None -> raise Redelimination | Some (recargnum,recarg) -> let recarg' = redrec env recarg in let stack' = stack_assign stack recargnum recarg' in simpfun (app_stack (f,stack'))) | _ -> simpfun (appvect (redrec env f, l))) | Cast (c,_,_) -> redrec env c | Prod (x,a,b) -> mkProd (x, a, redrec (push_rel (x,None,a) env) b) | LetIn (x,a,b,t) -> redrec env (subst1 a t) | Case (ci,p,d,lf) -> simpfun (mkCase (ci,p,redrec env d,lf)) | _ when isEvalRef env x -> (* TO DO: re-fold fixpoints after expansion *) (* to get true one-step reductions *) let ref = destEvalRef x in (match reference_opt_value sigma env ref with | None -> raise Redelimination | Some c -> c) | _ -> raise Redelimination in redrec env c let red_product env sigma c = try try_red_product env sigma c with Redelimination -> error "Not reducible." (* (* This old version of hnf uses betadeltaiota instead of itself (resp whd_construct_state) to reduce the argument of Case (resp Fix); The new version uses the "simpl" strategy instead. For instance, Variable n:nat. Eval hnf in match (plus (S n) O) with S n => n | _ => O end. returned (fix plus (n m : nat) {struct n} : nat := match n with | O => m | S p => S (plus p m) end) n 0 while the new version returns (plus n O) *) let whd_simpl_orelse_delta_but_fix_old env sigma c = let whd_all = whd_betadeltaiota_state env sigma in let rec redrec (x, stack as s) = match kind_of_term x with | Lambda (na,t,c) -> (match decomp_stack stack with | None -> s | Some (a,rest) -> stacklam redrec [a] c rest) | LetIn (n,b,t,c) -> stacklam redrec [b] c stack | App (f,cl) -> redrec (f, append_stack cl stack) | Cast (c,_,_) -> redrec (c, stack) | Case (ci,p,d,lf) -> (try redrec (special_red_case sigma env whd_all (ci,p,d,lf), stack) with Redelimination -> s) | Fix fix -> (match reduce_fix whd_all fix stack with | Reduced s' -> redrec s' | NotReducible -> s) | _ when isEvalRef env x -> let ref = destEvalRef x in (try redrec (red_elim_const env sigma ref stack) with Redelimination -> match reference_opt_value sigma env ref with | Some c -> (match kind_of_term ((strip_lam c)) with | CoFix _ | Fix _ -> s | _ -> redrec (c, stack)) | None -> s) | _ -> s in app_stack (redrec (c, empty_stack)) *) (* Same as [whd_simpl] but also reduces constants that do not hide a reducible fix, but does this reduction of constants only until it it immediately hides a non reducible fix or a cofix *) let whd_simpl_orelse_delta_but_fix env sigma c = let rec redrec s = let (constr, stack as s') = whd_simpl_state env sigma s in if isEvalRef env constr then match reference_opt_value sigma env (destEvalRef constr) with | Some c -> (match kind_of_term ((strip_lam c)) with | CoFix _ | Fix _ -> s' | _ -> redrec (c, stack)) | None -> s' else s' in app_stack (redrec (c, empty_stack)) let hnf_constr = whd_simpl_orelse_delta_but_fix (* The "simpl" reduction tactic *) let whd_simpl env sigma c = app_stack (whd_simpl_state env sigma (c, empty_stack)) let simpl env sigma c = strong whd_simpl env sigma c let nf = simpl (* Compatibility *) (* Reduction at specific subterms *) let is_head c t = match kind_of_term t with | App (f,_) -> f = c | _ -> false let contextually byhead ((nowhere_except_in,locs),c) f env sigma t = let maxocc = List.fold_right max locs 0 in let pos = ref 1 in let rec traverse (env,c as envc) t = if nowhere_except_in & (!pos > maxocc) then t else if (not byhead & eq_constr c t) or (byhead & is_head c t) then let ok = if nowhere_except_in then List.mem !pos locs else not (List.mem !pos locs) in incr pos; if ok then f env sigma t else if byhead then (* find other occurrences of c in t; TODO: ensure left-to-right *) let (f,l) = destApp t in mkApp (f, array_map_left (traverse envc) l) else t else map_constr_with_binders_left_to_right (fun d (env,c) -> (push_rel d env,lift 1 c)) traverse envc t in let t' = traverse (env,c) t in if List.exists (fun o -> o >= !pos) locs then error_invalid_occurrence locs; t' (* linear bindings (following pretty-printer) of the value of name in c. * n is the number of the next occurence of name. * ol is the occurence list to find. *) let substlin env evalref n (nowhere_except_in,locs) c = let maxocc = List.fold_right max locs 0 in let pos = ref n in assert (List.for_all (fun x -> x >= 0) locs); let value = value_of_evaluable_ref env evalref in let term = constr_of_evaluable_ref evalref in let rec substrec () c = if nowhere_except_in & !pos > maxocc then c else if c = term then let ok = if nowhere_except_in then List.mem !pos locs else not (List.mem !pos locs) in incr pos; if ok then value else c else map_constr_with_binders_left_to_right (fun _ () -> ()) substrec () c in let t' = substrec () c in (!pos, t') let string_of_evaluable_ref env = function | EvalVarRef id -> string_of_id id | EvalConstRef kn -> string_of_qualid (Nametab.shortest_qualid_of_global (vars_of_env env) (ConstRef kn)) let unfold env sigma name = if is_evaluable env name then clos_norm_flags (unfold_red name) env sigma else error (string_of_evaluable_ref env name^" is opaque.") (* [unfoldoccs : (readable_constraints -> (int list * section_path) -> constr -> constr)] * Unfolds the constant name in a term c following a list of occurrences occl. * at the occurrences of occ_list. If occ_list is empty, unfold all occurences. * Performs a betaiota reduction after unfolding. *) let unfoldoccs env sigma ((nowhere_except_in,locs as plocs),name) c = if locs = [] then if nowhere_except_in then c else unfold env sigma name c else let (nbocc,uc) = substlin env name 1 plocs c in if nbocc = 1 then error ((string_of_evaluable_ref env name)^" does not occur."); let rest = List.filter (fun o -> o >= nbocc) locs in if rest <> [] then error_invalid_occurrence rest; nf_betaiota uc (* Unfold reduction tactic: *) let unfoldn loccname env sigma c = List.fold_left (fun c occname -> unfoldoccs env sigma occname c) c loccname (* Re-folding constants tactics: refold com in term c *) let fold_one_com com env sigma c = let rcom = try red_product env sigma com with Redelimination -> error "Not reducible." in (* Reason first on the beta-iota-zeta normal form of the constant as unfold produces it, so that the "unfold f; fold f" configuration works to refold fix expressions *) let a = subst_term (clos_norm_flags unfold_side_red env sigma rcom) c in if not (eq_constr a c) then subst1 com a else (* Then reason on the non beta-iota-zeta form for compatibility - even if it is probably a useless configuration *) let a = subst_term rcom c in subst1 com a let fold_commands cl env sigma c = List.fold_right (fun com -> fold_one_com com env sigma) (List.rev cl) c (* call by value reduction functions *) let cbv_norm_flags flags env sigma t = cbv_norm (create_cbv_infos flags env) (nf_evar sigma t) let cbv_beta = cbv_norm_flags beta empty_env Evd.empty let cbv_betaiota = cbv_norm_flags betaiota empty_env Evd.empty let cbv_betadeltaiota env sigma = cbv_norm_flags betadeltaiota env sigma let compute = cbv_betadeltaiota (* Pattern *) (* gives [na:ta]c' such that c converts to ([na:ta]c' a), abstracting only * the specified occurrences. *) let abstract_scheme env sigma (locc,a) c = let ta = Retyping.get_type_of env sigma a in let na = named_hd env ta Anonymous in if occur_meta ta then error "Cannot find a type for the generalisation."; if occur_meta a then mkLambda (na,ta,c) else mkLambda (na,ta,subst_term_occ locc a c) let pattern_occs loccs_trm env sigma c = let abstr_trm = List.fold_right (abstract_scheme env sigma) loccs_trm c in try let _ = Typing.type_of env sigma abstr_trm in applist(abstr_trm, List.map snd loccs_trm) with Type_errors.TypeError (env',t) -> raise (ReductionTacticError (InvalidAbstraction (env,abstr_trm,(env',t)))) (* Used in several tactics. *) (* put t as t'=(x1:A1)..(xn:An)B with B an inductive definition of name name return name, B and t' *) let reduce_to_ind_gen allow_product env sigma t = let rec elimrec env t l = let t = hnf_constr env sigma t in match kind_of_term (fst (decompose_app t)) with | Ind ind-> (ind, it_mkProd_or_LetIn t l) | Prod (n,ty,t') -> if allow_product then elimrec (push_rel (n,None,ty) env) t' ((n,None,ty)::l) else errorlabstrm "" (str"Not an inductive definition.") | _ -> (* Last chance: we allow to bypass the Opaque flag (as it was partially the case between V5.10 and V8.1 *) let t' = whd_betadeltaiota env sigma t in match kind_of_term (fst (decompose_app t')) with | Ind ind-> (ind, it_mkProd_or_LetIn t' l) | _ -> errorlabstrm "" (str"Not an inductive product.") in elimrec env t [] let reduce_to_quantified_ind x = reduce_to_ind_gen true x let reduce_to_atomic_ind x = reduce_to_ind_gen false x (* Reduce the weak-head redex [beta,iota/fix/cofix[all],cast,zeta,simpl/delta] or raise [NotStepReducible] if not a weak-head redex *) exception NotStepReducible let one_step_reduce env sigma c = let rec redrec (x, stack) = match kind_of_term x with | Lambda (n,t,c) -> (match decomp_stack stack with | None -> raise NotStepReducible | Some (a,rest) -> (subst1 a c, rest)) | App (f,cl) -> redrec (f, append_stack cl stack) | LetIn (_,f,_,cl) -> (subst1 f cl,stack) | Cast (c,_,_) -> redrec (c,stack) | Case (ci,p,c,lf) -> (try (special_red_case sigma env (whd_simpl_state env sigma) (ci,p,c,lf), stack) with Redelimination -> raise NotStepReducible) | Fix fix -> (match reduce_fix (whd_construct_state env sigma) fix stack with | Reduced s' -> s' | NotReducible -> raise NotStepReducible) | _ when isEvalRef env x -> let ref = destEvalRef x in (try red_elim_const env sigma ref stack with Redelimination -> match reference_opt_value sigma env ref with | Some d -> d, stack | None -> raise NotStepReducible) | _ -> raise NotStepReducible in app_stack (redrec (c, empty_stack)) let isIndRef = function IndRef _ -> true | _ -> false let reduce_to_ref_gen allow_product env sigma ref t = if isIndRef ref then let (mind,t) = reduce_to_ind_gen allow_product env sigma t in if IndRef mind <> ref then errorlabstrm "" (str "Cannot recognize a statement based on " ++ Nametab.pr_global_env Idset.empty ref ++ str".") else t else (* lazily reduces to match the head of [t] with the expected [ref] *) let rec elimrec env t l = let c, _ = Reductionops.whd_stack t in match kind_of_term c with | Prod (n,ty,t') -> if allow_product then elimrec (push_rel (n,None,t) env) t' ((n,None,ty)::l) else errorlabstrm "" (str "Cannot recognize an atomic statement based on " ++ Nametab.pr_global_env Idset.empty ref ++ str".") | _ -> try if global_of_constr c = ref then it_mkProd_or_LetIn t l else raise Not_found with Not_found -> try let t' = nf_betaiota (one_step_reduce env sigma t) in elimrec env t' l with NotStepReducible -> errorlabstrm "" (str "Cannot recognize a statement based on " ++ Nametab.pr_global_env Idset.empty ref ++ str".") in elimrec env t [] let reduce_to_quantified_ref = reduce_to_ref_gen true let reduce_to_atomic_ref = reduce_to_ref_gen false