(***********************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) (* MutCase (Rel i) of f1..fk end g1 ..gp) or [xn:An]..[x1:A1](Fix(f|t) (Rel i1) ..(Rel ip)) with i1..ip distinct variables not occuring in t keep relevenant information ([i1,Ai1;..;ip,Aip],n,b) with b = true in case of a fixpoint in order to compute an equivalent of Fix(f|t)[xi<-ai] as [yip:Bip]..[yi1:Bi1](F bn..b1) == [yip:Bip]..[yi1:Bi1](Fix(f|t)[xi<-ai] (Rel 1)..(Rel p)) with bj=aj if j<>ik and bj=(Rel c) and Bic=Aic[xn..xic-1 <- an..aic-1] *) let check_fix_reversibility labs args ((lv,i),(_,tys,bds)) = let n = List.length labs in let nargs = List.length args in if nargs > n then raise Elimconst; let nbfix = Array.length bds in let li = List.map (function d -> match kind_of_term d with | IsRel k -> if array_for_all (noccurn k) tys && array_for_all (noccurn (k+nbfix)) bds then (k, List.nth labs (k-1)) else raise Elimconst | _ -> raise Elimconst) args in if list_distinct (List.map fst li) then let k = lv.(i) in if k < nargs then (* Such an optimisation would need eta-expansion let p = destRel (List.nth args k) in EliminationFix (n-p+1,(nbfix,li,n)) *) EliminationFix (n,(nbfix,li,n)) else EliminationFix (n-nargs+lv.(i)+1,(nbfix,li,n)) else raise Elimconst (* Heuristic to look if global names are associated to other components of a mutual fixpoint *) let invert_name labs l na0 env sigma ref = function | Name id -> if na0 <> Name id then let refi = match ref with | EvalRel _ | EvalEvar _ -> None | EvalVar id' -> Some (EvalVar id) | EvalConst (sp,args) -> Some (EvalConst (make_path (dirpath sp) id CCI, args)) in match refi with | None -> None | Some ref -> match reference_opt_value sigma env ref with | None -> None | Some c -> let labs',ccl = decompose_lam c in let _, l' = whd_betaetalet_stack ccl in let labs' = List.map snd labs' in if labs' = labs & l = l' then Some ref else None else Some ref | Anonymous -> None (* Actually, should not occur *) (* [compute_consteval_direct] expand all constant in a whole, but [compute_consteval_mutual_fix] only one by one, until finding the last one before the Fix if the latter is mutually defined *) let compute_consteval_direct sigma env ref = let rec srec env n labs c = let c',l = whd_betadeltaeta_stack env sigma c in match kind_of_term c' with | IsLambda (id,t,g) when l=[] -> srec (push_rel_assum (id,t) env) (n+1) (t::labs) g | IsFix fix -> (try check_fix_reversibility labs l fix with Elimconst -> NotAnElimination) | IsMutCase (_,_,d,_) when isRel d -> EliminationCases n | _ -> NotAnElimination in match reference_opt_value sigma env ref with | None -> NotAnElimination | Some c -> srec env 0 [] c let compute_consteval_mutual_fix sigma env ref = let rec srec env minarg labs ref c = let c',l = whd_betaetalet_stack c in let nargs = List.length l in match kind_of_term c' with | IsLambda (na,t,g) when l=[] -> srec (push_rel_assum (na,t) env) (minarg+1) (t::labs) ref g | IsFix ((lv,i),(names,_,_) as fix) -> (* Last known constant wrapping Fix is ref = [labs](Fix l) *) (match compute_consteval_direct sigma env ref with | NotAnElimination -> (*Above const was eliminable but this not!*) NotAnElimination | EliminationFix (minarg',infos) -> let refs = Array.map (invert_name labs l names.(i) env sigma ref) names in let new_minarg = max (minarg'+minarg-nargs) minarg' in EliminationMutualFix (new_minarg,ref,(refs,infos)) | _ -> assert false) | _ when isEvalRef c' -> (* Forget all \'s and args and do as if we had started with c' *) let ref = destEvalRef c' in (match reference_opt_value sigma env ref with | None -> anomaly "Should have been trapped by compute_direct" | Some c -> srec env (minarg-nargs) [] ref c) | _ -> (* Should not occur *) NotAnElimination in match reference_opt_value sigma env ref with | None -> (* Should not occur *) NotAnElimination | Some c -> srec env 0 [] ref c let compute_consteval sigma env ref = match compute_consteval_direct sigma env ref with | EliminationFix (_,(nbfix,_,_)) when nbfix <> 1 -> compute_consteval_mutual_fix sigma env ref | elim -> elim let reference_eval sigma env = function | EvalConst cst as ref -> (try Cstmap.find cst !eval_table with Not_found -> begin let v = compute_consteval sigma env ref in eval_table := Cstmap.add cst v !eval_table; v end) | ref -> compute_consteval sigma env ref let rev_firstn_liftn fn ln = let rec rfprec p res l = if p = 0 then res else match l with | [] -> invalid_arg "Reduction.rev_firstn_liftn" | a::rest -> rfprec (p-1) ((lift ln a)::res) rest in rfprec fn [] (* EliminationFix ([(yi1,Ti1);...;(yip,Tip)],n) means f is some [y1:T1,...,yn:Tn](Fix(..) yi1 ... yip); f is applied to largs and we need for recursive calls to build [x1:Ti1',...,xp:Tip'](f a1..a(n-p) yi1 ... yip) where a1...an are the n first arguments of largs and Tik' is Tik[yil=al] To check ... *) let make_elim_fun (names,(nbfix,lv,n)) largs = let labs,_ = list_chop n (list_of_stack largs) in let p = List.length lv in let ylv = List.map fst lv in let la' = list_map_i (fun q aq -> try (mkRel (p+1-(list_index (n-q) ylv))) with Not_found -> aq) 0 (List.map (lift p) labs) in fun i -> match names.(i) with | None -> None | Some ref -> Some ( (* let fi = if nbfix = 1 then mkEvalRef ref else match ref with | EvalConst (sp,args) -> mkConst (make_path (dirpath sp) id (kind_of_path sp),args) | _ -> anomaly "elimination of local fixpoints not implemented" in *) list_fold_left_i (fun i c (k,a) -> mkLambda (Name(id_of_string"x"), substl (rev_firstn_liftn (n-k) (-i) la') a, c)) 0 (applistc (mkEvalRef ref) la') lv) (* [f] is convertible to [Fix(recindices,bodynum),bodyvect)] make the reduction using this extra information *) let contract_fix_use_function f ((recindices,bodynum),(types,names,bodies as typedbodies)) = let nbodies = Array.length recindices in let make_Fi j = match f j with | None -> mkFix((recindices,j),typedbodies) | Some c -> c in (* match List.nth names j with Name id -> f id | _ -> assert false in*) let lbodies = list_tabulate make_Fi nbodies in substl (List.rev lbodies) bodies.(bodynum) let reduce_fix_use_function f whfun fix stack = match fix_recarg fix stack with | None -> NotReducible | Some (recargnum,recarg) -> let (recarg'hd,_ as recarg') = if isRel recarg then (* The recarg cannot be a local def, no worry about the right env *) (recarg, empty_stack) else whfun (recarg, empty_stack) in let stack' = stack_assign stack recargnum (app_stack recarg') in (match kind_of_term recarg'hd with | IsMutConstruct _ -> Reduced (contract_fix_use_function f fix,stack') | _ -> NotReducible) let contract_cofix_use_function f (bodynum,(_,names,bodies as typedbodies)) = let nbodies = Array.length bodies in let make_Fi j = match f j with | None -> mkCoFix(j,typedbodies) | Some c -> c in (* match List.nth names j with Name id -> f id | _ -> assert false in*) let subbodies = list_tabulate make_Fi nbodies in substl subbodies bodies.(bodynum) let reduce_mind_case_use_function (sp,args) env mia = match kind_of_term mia.mconstr with | IsMutConstruct(ind_sp,i as cstr_sp, args) -> let real_cargs = snd (list_chop (fst mia.mci) mia.mcargs) in applist (mia.mlf.(i-1), real_cargs) | IsCoFix (_,(names,_,_) as cofix) -> let build_fix_name i = match names.(i) with | Name id -> let sp = make_path (dirpath sp) id (kind_of_path sp) in (match constant_opt_value env (sp,args) with | None -> None | Some _ -> Some (mkConst (sp,args))) | Anonymous -> None in let cofix_def = contract_cofix_use_function build_fix_name cofix in mkMutCase (mia.mci, mia.mP, applist(cofix_def,mia.mcargs), mia.mlf) | _ -> assert false let special_red_case env whfun (ci, p, c, lf) = let rec redrec s = let (constr, cargs) = whfun s in match kind_of_term constr with | IsConst (sp,args as cst) -> (match constant_opt_value env cst with | Some gvalue -> if reducible_mind_case gvalue then reduce_mind_case_use_function cst env {mP=p; mconstr=gvalue; mcargs=list_of_stack cargs; mci=ci; mlf=lf} else redrec (gvalue, cargs) | None -> raise Redelimination) | _ -> if reducible_mind_case constr then reduce_mind_case {mP=p; mconstr=constr; mcargs=list_of_stack cargs; mci=ci; mlf=lf} else raise Redelimination in redrec (c, empty_stack) let rec red_elim_const env sigma ref largs = if not (evaluable_reference sigma env ref) then raise Redelimination; match reference_eval sigma env ref with | EliminationCases n when stack_args_size largs >= n -> let c = reference_value sigma env ref in let c', lrest = whd_betadeltaeta_state env sigma (c,largs) in (special_red_case env (construct_const env sigma) (destCase c'), lrest) | EliminationFix (min,infos) when stack_args_size largs >=min -> let c = reference_value sigma env ref in let d, lrest = whd_betadeltaeta_state env sigma (c,largs) in let f = make_elim_fun ([|Some ref|],infos) largs in let co = construct_const env sigma in (match reduce_fix_use_function f co (destFix d) lrest with | NotReducible -> raise Redelimination | Reduced (c,rest) -> (nf_beta c, rest)) | EliminationMutualFix (min,refgoal,refinfos) when stack_args_size largs >= min -> let rec descend ref args = let c = reference_value sigma env ref in if ref = refgoal then (c,args) else let c', lrest = whd_betaetalet_state (c,args) in descend (destEvalRef c') lrest in let (_, midargs as s) = descend ref largs in let d, lrest = whd_betadeltaeta_state env sigma s in let f = make_elim_fun refinfos midargs in let co = construct_const env sigma in (match reduce_fix_use_function f co (destFix d) lrest with | NotReducible -> raise Redelimination | Reduced (c,rest) -> (nf_beta c, rest)) | _ -> raise Redelimination and construct_const env sigma = let rec hnfstack (x, stack as s) = match kind_of_term x with | IsCast (c,_) -> hnfstack (c, stack) | IsApp (f,cl) -> hnfstack (f, append_stack cl stack) | IsLambda (id,t,c) -> (match decomp_stack stack with | None -> assert false | Some (c',rest) -> stacklam hnfstack [c'] c rest) | IsLetIn (n,b,t,c) -> stacklam hnfstack [b] c stack | IsMutCase (ci,p,c,lf) -> hnfstack (special_red_case env (construct_const env sigma) (ci,p,c,lf), stack) | IsMutConstruct _ -> s | IsCoFix _ -> s | IsFix fix -> (match reduce_fix hnfstack fix stack with | Reduced s' -> hnfstack s' | NotReducible -> raise Redelimination) | _ when isEvalRef x -> let ref = destEvalRef x in (try hnfstack (red_elim_const env sigma ref stack) with Redelimination -> (match reference_opt_value sigma env ref with | Some cval -> (match kind_of_term cval with | IsCoFix _ -> s | _ -> hnfstack (cval, stack)) | None -> raise Redelimination)) | _ -> raise Redelimination in hnfstack (***********************************************************************) (* Special Purpose Reduction Strategies *) (* Red reduction tactic: reduction to a product *) let internal_red_product env sigma c = let simpfun = clos_norm_flags (UNIFORM,betaiotazeta_red) env sigma in let rec redrec env x = match kind_of_term x with | IsApp (f,l) -> (match kind_of_term f with | IsFix fix -> let stack = append_stack l empty_stack in (match fix_recarg fix stack with | None -> raise Redelimination | Some (recargnum,recarg) -> let recarg' = redrec env recarg in let stack' = stack_assign stack recargnum recarg' in simpfun (app_stack (f,stack'))) | _ -> simpfun (appvect (redrec env f, l))) | IsCast (c,_) -> redrec env c | IsProd (x,a,b) -> mkProd (x, a, redrec (push_rel_assum (x,a) env) b) | IsLetIn (x,a,b,t) -> redrec env (subst1 a t) | IsMutCase (ci,p,d,lf) -> simpfun (mkMutCase (ci,p,redrec env d,lf)) | _ when isEvalRef x -> (* TO DO: re-fold fixpoints after expansion *) (* to get true one-step reductions *) (match reference_opt_value sigma env (destEvalRef x) with | None -> raise Redelimination | Some c -> c) | _ -> raise Redelimination in redrec env c let red_product env sigma c = try internal_red_product env sigma c with Redelimination -> error "Not reducible" (* Hnf reduction tactic: *) let hnf_constr env sigma c = let rec redrec (x, largs as s) = match kind_of_term x with | IsLambda (n,t,c) -> (match decomp_stack largs with | None -> app_stack s | Some (a,rest) -> stacklam redrec [a] c rest) | IsLetIn (n,b,t,c) -> stacklam redrec [b] c largs | IsApp (f,cl) -> redrec (f, append_stack cl largs) | IsCast (c,_) -> redrec (c, largs) | IsMutCase (ci,p,c,lf) -> (try redrec (special_red_case env (whd_betadeltaiota_state env sigma) (ci, p, c, lf), largs) with Redelimination -> app_stack s) | IsFix fix -> (match reduce_fix (whd_betadeltaiota_state env sigma) fix largs with | Reduced s' -> redrec s' | NotReducible -> app_stack s) | _ when isEvalRef x -> let ref = destEvalRef x in (try let (c',lrest) = red_elim_const env sigma ref largs in redrec (c', lrest) with Redelimination -> match reference_opt_value sigma env ref with | Some c -> (match kind_of_term c with | IsCoFix _ -> app_stack (x,largs) | _ -> redrec (c, largs)) | None -> app_stack s) | _ -> app_stack s in redrec (c, empty_stack) (* Simpl reduction tactic: same as simplify, but also reduces elimination constants *) let whd_nf env sigma c = let rec nf_app (c, stack as s) = match kind_of_term c with | IsLambda (name,c1,c2) -> (match decomp_stack stack with | None -> (c,empty_stack) | Some (a1,rest) -> stacklam nf_app [a1] c2 rest) | IsLetIn (n,b,t,c) -> stacklam nf_app [b] c stack | IsApp (f,cl) -> nf_app (f, append_stack cl stack) | IsCast (c,_) -> nf_app (c, stack) | IsMutCase (ci,p,d,lf) -> (try nf_app (special_red_case env nf_app (ci,p,d,lf), stack) with Redelimination -> s) | IsFix fix -> (match reduce_fix nf_app fix stack with | Reduced s' -> nf_app s' | NotReducible -> s) | _ when isEvalRef c -> (try nf_app (red_elim_const env sigma (destEvalRef c) stack) with Redelimination -> s) | _ -> s in app_stack (nf_app (c, empty_stack)) let nf env sigma c = strong whd_nf env sigma c (* linear substitution (following pretty-printer) of the value of name in c. * n is the number of the next occurence of name. * ol is the occurence list to find. *) let rec substlin env name n ol c = match kind_of_term c with | IsConst (sp,_ as const) when EvalConstRef sp = name -> if List.hd ol = n then try (n+1, List.tl ol, constant_value env const) with NotEvaluableConst _ -> errorlabstrm "substlin" [< pr_sp sp; 'sTR " is not a defined constant" >] else ((n+1), ol, c) | IsVar id when EvalVarRef id = name -> if List.hd ol = n then match lookup_named_value id env with | Some c -> (n+1, List.tl ol, c) | None -> errorlabstrm "substlin" [< pr_id id; 'sTR " is not a defined constant" >] else ((n+1), ol, c) (* INEFFICIENT: OPTIMIZE *) | IsApp (c1,cl) -> Array.fold_left (fun (n1,ol1,c1') c2 -> (match ol1 with | [] -> (n1,[],applist(c1',[c2])) | _ -> let (n2,ol2,c2') = substlin env name n1 ol1 c2 in (n2,ol2,applist(c1',[c2'])))) (substlin env name n ol c1) cl | IsLambda (na,c1,c2) -> let (n1,ol1,c1') = substlin env name n ol c1 in (match ol1 with | [] -> (n1,[],mkLambda (na,c1',c2)) | _ -> let (n2,ol2,c2') = substlin env name n1 ol1 c2 in (n2,ol2,mkLambda (na,c1',c2'))) | IsLetIn (na,c1,t,c2) -> let (n1,ol1,c1') = substlin env name n ol c1 in (match ol1 with | [] -> (n1,[],mkLetIn (na,c1',t,c2)) | _ -> let (n2,ol2,c2') = substlin env name n1 ol1 c2 in (n2,ol2,mkLetIn (na,c1',t,c2'))) | IsProd (na,c1,c2) -> let (n1,ol1,c1') = substlin env name n ol c1 in (match ol1 with | [] -> (n1,[],mkProd (na,c1',c2)) | _ -> let (n2,ol2,c2') = substlin env name n1 ol1 c2 in (n2,ol2,mkProd (na,c1',c2'))) | IsMutCase (ci,p,d,llf) -> let rec substlist nn oll = function | [] -> (nn,oll,[]) | f::lfe -> let (nn1,oll1,f') = substlin env name nn oll f in (match oll1 with | [] -> (nn1,[],f'::lfe) | _ -> let (nn2,oll2,lfe') = substlist nn1 oll1 lfe in (nn2,oll2,f'::lfe')) in let (n1,ol1,p') = substlin env name n ol p in (* ATTENTION ERREUR *) (match ol1 with (* si P pas affiche *) | [] -> (n1,[],mkMutCase (ci, p', d, llf)) | _ -> let (n2,ol2,d') = substlin env name n1 ol1 d in (match ol2 with | [] -> (n2,[],mkMutCase (ci, p', d', llf)) | _ -> let (n3,ol3,lf') = substlist n2 ol2 (Array.to_list llf) in (n3,ol3,mkMutCaseL (ci, p', d', lf')))) | IsCast (c1,c2) -> let (n1,ol1,c1') = substlin env name n ol c1 in (match ol1 with | [] -> (n1,[],mkCast (c1',c2)) | _ -> let (n2,ol2,c2') = substlin env name n1 ol1 c2 in (n2,ol2,mkCast (c1',c2'))) | IsFix _ -> (warning "do not consider occurrences inside fixpoints"; (n,ol,c)) | IsCoFix _ -> (warning "do not consider occurrences inside cofixpoints"; (n,ol,c)) | (IsRel _|IsMeta _|IsVar _|IsSort _ |IsEvar _|IsConst _|IsMutInd _|IsMutConstruct _) -> (n,ol,c) let unfold env sigma name = clos_norm_flags (unfold_flags name) env sigma let string_of_evaluable_ref = function | EvalVarRef id -> string_of_id id | EvalConstRef sp -> string_of_path sp (* [unfoldoccs : (readable_constraints -> (int list * section_path) -> constr -> constr)] * Unfolds the constant name in a term c following a list of occurrences occl. * at the occurrences of occ_list. If occ_list is empty, unfold all occurences. * Performs a betaiota reduction after unfolding. *) let unfoldoccs env sigma (occl,name) c = match occl with | [] -> unfold env sigma name c | l -> match substlin env name 1 (Sort.list (<) l) c with | (_,[],uc) -> nf_betaiota uc | (1,_,_) -> error ((string_of_evaluable_ref name)^" does not occur") | _ -> error ("bad occurrence numbers of " ^(string_of_evaluable_ref name)) (* Unfold reduction tactic: *) let unfoldn loccname env sigma c = List.fold_left (fun c occname -> unfoldoccs env sigma occname c) c loccname (* Re-folding constants tactics: refold com in term c *) let fold_one_com com env sigma c = let rcom = try red_product env sigma com with Redelimination -> error "Not reducible" in subst1 com (subst_term rcom c) let fold_commands cl env sigma c = List.fold_right (fun com -> fold_one_com com env sigma) (List.rev cl) c (* call by value reduction functions *) let cbv_norm_flags flags env sigma t = cbv_norm (create_cbv_infos flags env sigma) t let cbv_beta = cbv_norm_flags beta empty_env Evd.empty let cbv_betaiota = cbv_norm_flags betaiota empty_env Evd.empty let cbv_betadeltaiota env sigma = cbv_norm_flags betadeltaiota env sigma let compute = cbv_betadeltaiota (* Pattern *) (* gives [na:ta]c' such that c converts to ([na:ta]c' a), abstracting only * the specified occurrences. *) let abstract_scheme env (locc,a,ta) t = let na = named_hd env ta Anonymous in if occur_meta ta then error "cannot find a type for the generalisation"; if occur_meta a then mkLambda (na,ta,t) else mkLambda (na, ta,subst_term_occ locc a t) let pattern_occs loccs_trm_typ env sigma c = let abstr_trm = List.fold_right (abstract_scheme env) loccs_trm_typ c in applist(abstr_trm, List.map (fun (_,t,_) -> t) loccs_trm_typ) (* Generic reduction: reduction functions used in reduction tactics *) type red_expr = | Red of bool | Hnf | Simpl | Cbv of Closure.flags | Lazy of Closure.flags | Unfold of (int list * evaluable_global_reference) list | Fold of constr list | Pattern of (int list * constr * constr) list let reduction_of_redexp = function | Red internal -> if internal then internal_red_product else red_product | Hnf -> hnf_constr | Simpl -> nf | Cbv f -> cbv_norm_flags f | Lazy f -> clos_norm_flags f | Unfold ubinds -> unfoldn ubinds | Fold cl -> fold_commands cl | Pattern lp -> pattern_occs lp (* Used in several tactics. *) exception NotStepReducible let one_step_reduce env sigma c = let rec redrec (x, largs as s) = match kind_of_term x with | IsLambda (n,t,c) -> (match decomp_stack largs with | None -> raise NotStepReducible | Some (a,rest) -> (subst1 a c, rest)) | IsApp (f,cl) -> redrec (f, append_stack cl largs) | IsLetIn (_,f,_,cl) -> (subst1 f cl,largs) | IsMutCase (ci,p,c,lf) -> (try (special_red_case env (whd_betadeltaiota_state env sigma) (ci,p,c,lf), largs) with Redelimination -> raise NotStepReducible) | IsFix fix -> (match reduce_fix (whd_betadeltaiota_state env sigma) fix largs with | Reduced s' -> s' | NotReducible -> raise NotStepReducible) | IsCast (c,_) -> redrec (c,largs) | _ when isEvalRef x -> let ref = destEvalRef x in (try red_elim_const env sigma ref largs with Redelimination -> match reference_opt_value sigma env ref with | Some d -> d, largs | None -> raise NotStepReducible) | _ -> raise NotStepReducible in app_stack (redrec (c, empty_stack)) (* put t as t'=(x1:A1)..(xn:An)B with B an inductive definition of name name return name, B and t' *) let reduce_to_ind_gen allow_product env sigma t = let rec elimrec env t l = let c, _ = whd_stack t in match kind_of_term c with | IsMutInd (mind,args) -> ((mind,args),it_mkProd_or_LetIn t l) | IsProd (n,ty,t') -> if allow_product then elimrec (push_rel_assum (n,t) env) t' ((n,None,ty)::l) else errorlabstrm "tactics__reduce_to_mind" [< 'sTR"Not an inductive definition" >] | _ -> (try let t' = nf_betaiota (one_step_reduce env sigma t) in elimrec env t' l with NotStepReducible -> errorlabstrm "tactics__reduce_to_mind" [< 'sTR"Not an inductive product" >]) in elimrec env t [] let reduce_to_quantified_ind x = reduce_to_ind_gen true x let reduce_to_atomic_ind x = reduce_to_ind_gen false x