(************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) (* evar_map -> constr -> constr type reduction_function = contextual_reduction_function type local_reduction_function = constr -> constr type contextual_stack_reduction_function = env -> evar_map -> constr -> constr * constr list type stack_reduction_function = contextual_stack_reduction_function type local_stack_reduction_function = constr -> constr * constr list type contextual_state_reduction_function = env -> evar_map -> state -> state type state_reduction_function = contextual_state_reduction_function type local_state_reduction_function = state -> state (*************************************) (*** Reduction Functions Operators ***) (*************************************) let rec whd_app_state (x, stack as s) = match kind_of_term x with | App (f,cl) -> whd_app_state (f, append_stack cl stack) | Cast (c,_,_) -> whd_app_state (c, stack) | _ -> s let appterm_of_stack (f,s) = (f,list_of_stack s) let whd_stack x = appterm_of_stack (whd_app_state (x, empty_stack)) let whd_castapp_stack = whd_stack let stack_reduction_of_reduction red_fun env sigma s = let t = red_fun env sigma (app_stack s) in whd_stack t let strong whdfun env sigma t = let rec strongrec env t = map_constr_with_full_binders push_rel strongrec env (whdfun env sigma t) in strongrec env t let local_strong whdfun = let rec strongrec t = map_constr strongrec (whdfun t) in strongrec let rec strong_prodspine redfun c = let x = redfun c in match kind_of_term x with | Prod (na,a,b) -> mkProd (na,a,strong_prodspine redfun b) | _ -> x (*************************************) (*** Reduction using bindingss ***) (*************************************) (* This signature is very similar to Closure.RedFlagsSig except there is eta but no per-constant unfolding *) module type RedFlagsSig = sig type flags type flag val fbeta : flag val fevar : flag val fdelta : flag val feta : flag val fiota : flag val fzeta : flag val mkflags : flag list -> flags val red_beta : flags -> bool val red_delta : flags -> bool val red_evar : flags -> bool val red_eta : flags -> bool val red_iota : flags -> bool val red_zeta : flags -> bool end (* Compact Implementation *) module RedFlags = (struct type flag = int type flags = int let fbeta = 1 let fdelta = 2 let fevar = 4 let feta = 8 let fiota = 16 let fzeta = 32 let mkflags = List.fold_left (lor) 0 let red_beta f = f land fbeta <> 0 let red_delta f = f land fdelta <> 0 let red_evar f = f land fevar <> 0 let red_eta f = f land feta <> 0 let red_iota f = f land fiota <> 0 let red_zeta f = f land fzeta <> 0 end : RedFlagsSig) open RedFlags (* Local *) let beta = mkflags [fbeta] let eta = mkflags [feta] let evar = mkflags [fevar] let betaevar = mkflags [fevar; fbeta] let betaiota = mkflags [fiota; fbeta] let betaiotazeta = mkflags [fiota; fbeta;fzeta] let betaiotazetaevar = mkflags [fiota; fbeta;fzeta;fevar] (* Contextual *) let delta = mkflags [fdelta;fevar] let betadelta = mkflags [fbeta;fdelta;fzeta;fevar] let betadeltaeta = mkflags [fbeta;fdelta;fzeta;fevar;feta] let betadeltaiota = mkflags [fbeta;fdelta;fzeta;fevar;fiota] let betadeltaiota_nolet = mkflags [fbeta;fdelta;fevar;fiota] let betadeltaiotaeta = mkflags [fbeta;fdelta;fzeta;fevar;fiota;feta] let betaiotaevar = mkflags [fbeta;fiota;fevar] let betaetalet = mkflags [fbeta;feta;fzeta] let betalet = mkflags [fbeta;fzeta] (* Beta Reduction tools *) let rec stacklam recfun env t stack = match (decomp_stack stack,kind_of_term t) with | Some (h,stacktl), Lambda (_,_,c) -> stacklam recfun (h::env) c stacktl | _ -> recfun (substl env t, stack) let beta_applist (c,l) = stacklam app_stack [] c (append_stack_list l empty_stack) (* Iota reduction tools *) type 'a miota_args = { mP : constr; (* the result type *) mconstr : constr; (* the constructor *) mci : case_info; (* special info to re-build pattern *) mcargs : 'a list; (* the constructor's arguments *) mlf : 'a array } (* the branch code vector *) let reducible_mind_case c = match kind_of_term c with | Construct _ | CoFix _ -> true | _ -> false let contract_cofix (bodynum,(types,names,bodies as typedbodies)) = let nbodies = Array.length bodies in let make_Fi j = mkCoFix (nbodies-j-1,typedbodies) in substl (list_tabulate make_Fi nbodies) bodies.(bodynum) let reduce_mind_case mia = match kind_of_term mia.mconstr with | Construct (ind_sp,i) -> (* let ncargs = (fst mia.mci).(i-1) in*) let real_cargs = list_skipn mia.mci.ci_npar mia.mcargs in applist (mia.mlf.(i-1),real_cargs) | CoFix cofix -> let cofix_def = contract_cofix cofix in mkCase (mia.mci, mia.mP, applist(cofix_def,mia.mcargs), mia.mlf) | _ -> assert false (* contracts fix==FIX[nl;i](A1...Ak;[F1...Fk]{B1....Bk}) to produce Bi[Fj --> FIX[nl;j](A1...Ak;[F1...Fk]{B1...Bk})] *) let contract_fix ((recindices,bodynum),(types,names,bodies as typedbodies)) = let nbodies = Array.length recindices in let make_Fi j = mkFix ((recindices,nbodies-j-1),typedbodies) in substl (list_tabulate make_Fi nbodies) bodies.(bodynum) let fix_recarg ((recindices,bodynum),_) stack = assert (0 <= bodynum & bodynum < Array.length recindices); let recargnum = Array.get recindices bodynum in try Some (recargnum, stack_nth stack recargnum) with Not_found -> None type fix_reduction_result = NotReducible | Reduced of state let reduce_fix whdfun fix stack = match fix_recarg fix stack with | None -> NotReducible | Some (recargnum,recarg) -> let (recarg'hd,_ as recarg') = whdfun (recarg, empty_stack) in let stack' = stack_assign stack recargnum (app_stack recarg') in (match kind_of_term recarg'hd with | Construct _ -> Reduced (contract_fix fix, stack') | _ -> NotReducible) (* Generic reduction function *) (* Y avait un commentaire pour whd_betadeltaiota : NB : Cette fonction alloue peu c'est l'appel ``let (c,cargs) = whfun (recarg, empty_stack)'' ------------------- qui coute cher *) let rec whd_state_gen flags env sigma = let rec whrec (x, stack as s) = match kind_of_term x with | Rel n when red_delta flags -> (match lookup_rel n env with | (_,Some body,_) -> whrec (lift n body, stack) | _ -> s) | Var id when red_delta flags -> (match lookup_named id env with | (_,Some body,_) -> whrec (body, stack) | _ -> s) | Evar ev when red_evar flags -> (match existential_opt_value sigma ev with | Some body -> whrec (body, stack) | None -> s) | Const const when red_delta flags -> (match constant_opt_value env const with | Some body -> whrec (body, stack) | None -> s) | LetIn (_,b,_,c) when red_zeta flags -> stacklam whrec [b] c stack | Cast (c,_,_) -> whrec (c, stack) | App (f,cl) -> whrec (f, append_stack cl stack) | Lambda (na,t,c) -> (match decomp_stack stack with | Some (a,m) when red_beta flags -> stacklam whrec [a] c m | None when red_eta flags -> let env' = push_rel (na,None,t) env in let whrec' = whd_state_gen flags env' sigma in (match kind_of_term (app_stack (whrec' (c, empty_stack))) with | App (f,cl) -> let napp = Array.length cl in if napp > 0 then let x', l' = whrec' (array_last cl, empty_stack) in match kind_of_term x', decomp_stack l' with | Rel 1, None -> let lc = Array.sub cl 0 (napp-1) in let u = if napp=1 then f else appvect (f,lc) in if noccurn 1 u then (pop u,empty_stack) else s | _ -> s else s | _ -> s) | _ -> s) | Case (ci,p,d,lf) when red_iota flags -> let (c,cargs) = whrec (d, empty_stack) in if reducible_mind_case c then whrec (reduce_mind_case {mP=p; mconstr=c; mcargs=list_of_stack cargs; mci=ci; mlf=lf}, stack) else (mkCase (ci, p, app_stack (c,cargs), lf), stack) | Fix fix when red_iota flags -> (match reduce_fix whrec fix stack with | Reduced s' -> whrec s' | NotReducible -> s) | x -> s in whrec let local_whd_state_gen flags = let rec whrec (x, stack as s) = match kind_of_term x with | LetIn (_,b,_,c) when red_zeta flags -> stacklam whrec [b] c stack | Cast (c,_,_) -> whrec (c, stack) | App (f,cl) -> whrec (f, append_stack cl stack) | Lambda (_,_,c) -> (match decomp_stack stack with | Some (a,m) when red_beta flags -> stacklam whrec [a] c m | None when red_eta flags -> (match kind_of_term (app_stack (whrec (c, empty_stack))) with | App (f,cl) -> let napp = Array.length cl in if napp > 0 then let x', l' = whrec (array_last cl, empty_stack) in match kind_of_term x', decomp_stack l' with | Rel 1, None -> let lc = Array.sub cl 0 (napp-1) in let u = if napp=1 then f else appvect (f,lc) in if noccurn 1 u then (pop u,empty_stack) else s | _ -> s else s | _ -> s) | _ -> s) | Case (ci,p,d,lf) when red_iota flags -> let (c,cargs) = whrec (d, empty_stack) in if reducible_mind_case c then whrec (reduce_mind_case {mP=p; mconstr=c; mcargs=list_of_stack cargs; mci=ci; mlf=lf}, stack) else (mkCase (ci, p, app_stack (c,cargs), lf), stack) | Fix fix when red_iota flags -> (match reduce_fix whrec fix stack with | Reduced s' -> whrec s' | NotReducible -> s) | x -> s in whrec (* 1. Beta Reduction Functions *) let whd_beta_state = local_whd_state_gen beta let whd_beta_stack x = appterm_of_stack (whd_beta_state (x, empty_stack)) let whd_beta x = app_stack (whd_beta_state (x,empty_stack)) (* Nouveau ! *) let whd_betaetalet_state = local_whd_state_gen betaetalet let whd_betaetalet_stack x = appterm_of_stack (whd_betaetalet_state (x, empty_stack)) let whd_betaetalet x = app_stack (whd_betaetalet_state (x,empty_stack)) let whd_betalet_state = local_whd_state_gen betalet let whd_betalet_stack x = appterm_of_stack (whd_betalet_state (x, empty_stack)) let whd_betalet x = app_stack (whd_betalet_state (x,empty_stack)) (* 2. Delta Reduction Functions *) let whd_delta_state e = whd_state_gen delta e let whd_delta_stack env sigma x = appterm_of_stack (whd_delta_state env sigma (x, empty_stack)) let whd_delta env sigma c = app_stack (whd_delta_state env sigma (c, empty_stack)) let whd_betadelta_state e = whd_state_gen betadelta e let whd_betadelta_stack env sigma x = appterm_of_stack (whd_betadelta_state env sigma (x, empty_stack)) let whd_betadelta env sigma c = app_stack (whd_betadelta_state env sigma (c, empty_stack)) let whd_betaevar_state e = whd_state_gen betaevar e let whd_betaevar_stack env sigma c = appterm_of_stack (whd_betaevar_state env sigma (c, empty_stack)) let whd_betaevar env sigma c = app_stack (whd_betaevar_state env sigma (c, empty_stack)) let whd_betadeltaeta_state e = whd_state_gen betadeltaeta e let whd_betadeltaeta_stack env sigma x = appterm_of_stack (whd_betadeltaeta_state env sigma (x, empty_stack)) let whd_betadeltaeta env sigma x = app_stack (whd_betadeltaeta_state env sigma (x, empty_stack)) (* 3. Iota reduction Functions *) let whd_betaiota_state = local_whd_state_gen betaiota let whd_betaiota_stack x = appterm_of_stack (whd_betaiota_state (x, empty_stack)) let whd_betaiota x = app_stack (whd_betaiota_state (x, empty_stack)) let whd_betaiotazeta_state = local_whd_state_gen betaiotazeta let whd_betaiotazeta_stack x = appterm_of_stack (whd_betaiotazeta_state (x, empty_stack)) let whd_betaiotazeta x = app_stack (whd_betaiotazeta_state (x, empty_stack)) let whd_betaiotazetaevar_state = whd_state_gen betaiotazetaevar let whd_betaiotazetaevar_stack env sigma x = appterm_of_stack (whd_betaiotazetaevar_state env sigma (x, empty_stack)) let whd_betaiotazetaevar env sigma x = app_stack (whd_betaiotazetaevar_state env sigma (x, empty_stack)) let whd_betaiotaevar_state e = whd_state_gen betaiotaevar e let whd_betaiotaevar_stack env sigma x = appterm_of_stack (whd_betaiotaevar_state env sigma (x, empty_stack)) let whd_betaiotaevar env sigma x = app_stack (whd_betaiotaevar_state env sigma (x, empty_stack)) let whd_betadeltaiota_state e = whd_state_gen betadeltaiota e let whd_betadeltaiota_stack env sigma x = appterm_of_stack (whd_betadeltaiota_state env sigma (x, empty_stack)) let whd_betadeltaiota env sigma x = app_stack (whd_betadeltaiota_state env sigma (x, empty_stack)) let whd_betadeltaiotaeta_state e = whd_state_gen betadeltaiotaeta e let whd_betadeltaiotaeta_stack env sigma x = appterm_of_stack (whd_betadeltaiotaeta_state env sigma (x, empty_stack)) let whd_betadeltaiotaeta env sigma x = app_stack (whd_betadeltaiotaeta_state env sigma (x, empty_stack)) let whd_betadeltaiota_nolet_state e = whd_state_gen betadeltaiota_nolet e let whd_betadeltaiota_nolet_stack env sigma x = appterm_of_stack (whd_betadeltaiota_nolet_state env sigma (x, empty_stack)) let whd_betadeltaiota_nolet env sigma x = app_stack (whd_betadeltaiota_nolet_state env sigma (x, empty_stack)) (* 3. Eta reduction Functions *) let whd_eta c = app_stack (local_whd_state_gen eta (c,empty_stack)) (****************************************************************************) (* Reduction Functions *) (****************************************************************************) (* Replacing defined evars for error messages *) let rec whd_evar sigma c = match kind_of_term c with | Evar ev -> let d = try Some (Evd.existential_value sigma ev) with NotInstantiatedEvar | Not_found -> None in (match d with Some c -> whd_evar sigma c | None -> c) | Sort s when is_sort_variable sigma s -> whd_sort_variable sigma c | _ -> c let nf_evar sigma = local_strong (whd_evar sigma) (* lazy reduction functions. The infos must be created for each term *) (* Note by HH [oct 08] : why would it be the job of clos_norm_flags to add a [nf_evar] here *) let clos_norm_flags flgs env sigma t = norm_val (create_clos_infos flgs env) (inject (nf_evar sigma t)) let nf_beta = clos_norm_flags Closure.beta empty_env Evd.empty let nf_betaiota = clos_norm_flags Closure.betaiota empty_env Evd.empty let nf_betadeltaiota env sigma = clos_norm_flags Closure.betadeltaiota env sigma (* Attention reduire un beta-redexe avec un argument qui n'est pas une variable, peut changer enormement le temps de conversion lors du type checking : (fun x => x + x) M *) let rec whd_betaiotaevar_preserving_vm_cast env sigma t = let rec stacklam_var subst t stack = match (decomp_stack stack,kind_of_term t) with | Some (h,stacktl), Lambda (_,_,c) -> begin match kind_of_term h with | Rel i when not (evaluable_rel i env) -> stacklam_var (h::subst) c stacktl | Var id when not (evaluable_named id env)-> stacklam_var (h::subst) c stacktl | _ -> whrec (substl subst t, stack) end | _ -> whrec (substl subst t, stack) and whrec (x, stack as s) = match kind_of_term x with | Evar ev -> (match existential_opt_value sigma ev with | Some body -> whrec (body, stack) | None -> s) | Cast (c,VMcast,t) -> let c = app_stack (whrec (c,empty_stack)) in let t = app_stack (whrec (t,empty_stack)) in (mkCast(c,VMcast,t),stack) | Cast (c,DEFAULTcast,_) -> whrec (c, stack) | App (f,cl) -> whrec (f, append_stack cl stack) | Lambda (na,t,c) -> (match decomp_stack stack with | Some (a,m) -> stacklam_var [a] c m | _ -> s) | Case (ci,p,d,lf) -> let (c,cargs) = whrec (d, empty_stack) in if reducible_mind_case c then whrec (reduce_mind_case {mP=p; mconstr=c; mcargs=list_of_stack cargs; mci=ci; mlf=lf}, stack) else (mkCase (ci, p, app_stack (c,cargs), lf), stack) | x -> s in app_stack (whrec (t,empty_stack)) let nf_betaiotaevar_preserving_vm_cast = strong whd_betaiotaevar_preserving_vm_cast (* lazy weak head reduction functions *) let whd_flags flgs env sigma t = whd_val (create_clos_infos flgs env) (inject (nf_evar sigma t)) (********************************************************************) (* Conversion *) (********************************************************************) (* let fkey = Profile.declare_profile "fhnf";; let fhnf info v = Profile.profile2 fkey fhnf info v;; let fakey = Profile.declare_profile "fhnf_apply";; let fhnf_apply info k h a = Profile.profile4 fakey fhnf_apply info k h a;; *) let is_transparent k = Conv_oracle.get_strategy k <> Conv_oracle.Opaque (* Conversion utility functions *) type conversion_test = constraints -> constraints let pb_is_equal pb = pb = CONV let pb_equal = function | CUMUL -> CONV | CONV -> CONV let sort_cmp = sort_cmp let test_conversion f env sigma x y = try let _ = f env (nf_evar sigma x) (nf_evar sigma y) in true with NotConvertible -> false let is_conv env sigma = test_conversion Reduction.conv env sigma let is_conv_leq env sigma = test_conversion Reduction.conv_leq env sigma let is_fconv = function | CONV -> is_conv | CUMUL -> is_conv_leq let test_trans_conversion f reds env sigma x y = try let _ = f reds env (nf_evar sigma x) (nf_evar sigma y) in true with NotConvertible -> false let is_trans_conv env sigma = test_trans_conversion Reduction.trans_conv env sigma let is_trans_conv_leq env sigma = test_trans_conversion Reduction.trans_conv_leq env sigma let is_trans_fconv = function | CONV -> is_trans_conv | CUMUL -> is_trans_conv_leq (********************************************************************) (* Special-Purpose Reduction *) (********************************************************************) let whd_meta metasubst c = match kind_of_term c with | Meta p -> (try List.assoc p metasubst with Not_found -> c) | _ -> c (* Try to replace all metas. Does not replace metas in the metas' values * Differs from (strong whd_meta). *) let plain_instance s c = let rec irec u = match kind_of_term u with | Meta p -> (try List.assoc p s with Not_found -> u) | App (f,l) when isCast f -> let (f,_,t) = destCast f in let l' = Array.map irec l in (match kind_of_term f with | Meta p -> (* Don't flatten application nodes: this is used to extract a proof-term from a proof-tree and we want to keep the structure of the proof-tree *) (try let g = List.assoc p s in match kind_of_term g with | App _ -> let h = id_of_string "H" in mkLetIn (Name h,g,t,mkApp(mkRel 1,Array.map (lift 1) l')) | _ -> mkApp (g,l') with Not_found -> mkApp (f,l')) | _ -> mkApp (irec f,l')) | Cast (m,_,_) when isMeta m -> (try List.assoc (destMeta m) s with Not_found -> u) | _ -> map_constr irec u in if s = [] then c else irec c (* [instance] is used for [res_pf]; the call to [local_strong whd_betaiota] has (unfortunately) different subtle side effects: - ** Order of subgoals ** If the lemma is a case analysis with parameters, it will move the parameters as first subgoals (e.g. "case H" applied on "H:D->A/\B|-C" will present the subgoal |-D first while w/o betaiota the subgoal |-D would have come last). - ** Betaiota-contraction in statement ** If the lemma has a parameter which is a function and this function is applied in the lemma, then the _strong_ betaiota will contract the application of the function to its argument (e.g. "apply (H (fun x => x))" in "H:forall f, f 0 = 0 |- 0=0" will result in applying the lemma 0=0 in which "(fun x => x) 0" has been contracted). A goal to rewrite may then fail or succeed differently. - ** Naming of hypotheses ** If a lemma is a function of the form "fun H:(forall a:A, P a) => .. F H .." where the expected type of H is "forall b:A, P b", then, without reduction, the application of the lemma will generate a subgoal "forall a:A, P a" (and intro will use name "a"), while with reduction, it will generate a subgoal "forall b:A, P b" (and intro will use name "b"). - ** First-order pattern-matching ** If a lemma has the type "(fun x => p) t" then rewriting t may fail if the type of the lemma is first beta-reduced (this typically happens when rewriting a single variable and the type of the lemma is obtained by meta_instance (with empty map) which itself call instance with this empty map. *) let instance s c = (* if s = [] then c else *) local_strong whd_betaiota (plain_instance s c) (* pseudo-reduction rule: * [hnf_prod_app env s (Prod(_,B)) N --> B[N] * with an HNF on the first argument to produce a product. * if this does not work, then we use the string S as part of our * error message. *) let hnf_prod_app env sigma t n = match kind_of_term (whd_betadeltaiota env sigma t) with | Prod (_,_,b) -> subst1 n b | _ -> anomaly "hnf_prod_app: Need a product" let hnf_prod_appvect env sigma t nl = Array.fold_left (hnf_prod_app env sigma) t nl let hnf_prod_applist env sigma t nl = List.fold_left (hnf_prod_app env sigma) t nl let hnf_lam_app env sigma t n = match kind_of_term (whd_betadeltaiota env sigma t) with | Lambda (_,_,b) -> subst1 n b | _ -> anomaly "hnf_lam_app: Need an abstraction" let hnf_lam_appvect env sigma t nl = Array.fold_left (hnf_lam_app env sigma) t nl let hnf_lam_applist env sigma t nl = List.fold_left (hnf_lam_app env sigma) t nl let splay_prod env sigma = let rec decrec env m c = let t = whd_betadeltaiota env sigma c in match kind_of_term t with | Prod (n,a,c0) -> decrec (push_rel (n,None,a) env) ((n,a)::m) c0 | _ -> m,t in decrec env [] let splay_lambda env sigma = let rec decrec env m c = let t = whd_betadeltaiota env sigma c in match kind_of_term t with | Lambda (n,a,c0) -> decrec (push_rel (n,None,a) env) ((n,a)::m) c0 | _ -> m,t in decrec env [] let splay_prod_assum env sigma = let rec prodec_rec env l c = let t = whd_betadeltaiota_nolet env sigma c in match kind_of_term t with | Prod (x,t,c) -> prodec_rec (push_rel (x,None,t) env) (Sign.add_rel_decl (x, None, t) l) c | LetIn (x,b,t,c) -> prodec_rec (push_rel (x, Some b, t) env) (Sign.add_rel_decl (x, Some b, t) l) c | Cast (c,_,_) -> prodec_rec env l c | _ -> l,t in prodec_rec env Sign.empty_rel_context let splay_arity env sigma c = let l, c = splay_prod env sigma c in match kind_of_term c with | Sort s -> l,s | _ -> invalid_arg "splay_arity" let sort_of_arity env c = snd (splay_arity env Evd.empty c) let decomp_n_prod env sigma n = let rec decrec env m ln c = if m = 0 then (ln,c) else match kind_of_term (whd_betadeltaiota env sigma c) with | Prod (n,a,c0) -> decrec (push_rel (n,None,a) env) (m-1) (Sign.add_rel_decl (n,None,a) ln) c0 | _ -> invalid_arg "decomp_n_prod" in decrec env n Sign.empty_rel_context exception NotASort let decomp_sort env sigma t = match kind_of_term (whd_betadeltaiota env sigma t) with | Sort s -> s | _ -> raise NotASort let is_sort env sigma arity = try let _ = decomp_sort env sigma arity in true with NotASort -> false (* reduction to head-normal-form allowing delta/zeta only in argument of case/fix (heuristic used by evar_conv) *) let whd_betaiota_deltazeta_for_iota_state env sigma s = let rec whrec s = let (t, stack as s) = whd_betaiota_state s in match kind_of_term t with | Case (ci,p,d,lf) -> let (cr,crargs) = whd_betadeltaiota_stack env sigma d in let rslt = mkCase (ci, p, applist (cr,crargs), lf) in if reducible_mind_case cr then whrec (rslt, stack) else s | Fix fix -> (match reduce_fix (whd_betadeltaiota_state env sigma) fix stack with | Reduced s -> whrec s | NotReducible -> s) | _ -> s in whrec s (* A reduction function like whd_betaiota but which keeps casts * and does not reduce redexes containing existential variables. * Used in Correctness. * Added by JCF, 29/1/98. *) let whd_programs_stack env sigma = let rec whrec (x, stack as s) = match kind_of_term x with | App (f,cl) -> let n = Array.length cl - 1 in let c = cl.(n) in if occur_existential c then s else whrec (mkApp (f, Array.sub cl 0 n), append_stack [|c|] stack) | LetIn (_,b,_,c) -> if occur_existential b then s else stacklam whrec [b] c stack | Lambda (_,_,c) -> (match decomp_stack stack with | None -> s | Some (a,m) -> stacklam whrec [a] c m) | Case (ci,p,d,lf) -> if occur_existential d then s else let (c,cargs) = whrec (d, empty_stack) in if reducible_mind_case c then whrec (reduce_mind_case {mP=p; mconstr=c; mcargs=list_of_stack cargs; mci=ci; mlf=lf}, stack) else (mkCase (ci, p, app_stack(c,cargs), lf), stack) | Fix fix -> (match reduce_fix whrec fix stack with | Reduced s' -> whrec s' | NotReducible -> s) | _ -> s in whrec let whd_programs env sigma x = app_stack (whd_programs_stack env sigma (x, empty_stack)) exception IsType let find_conclusion env sigma = let rec decrec env c = let t = whd_betadeltaiota env sigma c in match kind_of_term t with | Prod (x,t,c0) -> decrec (push_rel (x,None,t) env) c0 | Lambda (x,t,c0) -> decrec (push_rel (x,None,t) env) c0 | t -> t in decrec env let is_arity env sigma c = match find_conclusion env sigma c with | Sort _ -> true | _ -> false (*************************************) (* Metas *) let meta_value evd mv = let rec valrec mv = match meta_opt_fvalue evd mv with | Some (b,_) -> instance (List.map (fun mv' -> (mv',valrec mv')) (Metaset.elements b.freemetas)) b.rebus | None -> mkMeta mv in valrec mv let meta_instance env b = let c_sigma = List.map (fun mv -> (mv,meta_value env mv)) (Metaset.elements b.freemetas) in if c_sigma = [] then b.rebus else instance c_sigma b.rebus let nf_meta env c = meta_instance env (mk_freelisted c) (* Instantiate metas that create beta/iota redexes *) let meta_value evd mv = let rec valrec mv = match meta_opt_fvalue evd mv with | Some (b,_) -> instance (List.map (fun mv' -> (mv',valrec mv')) (Metaset.elements b.freemetas)) b.rebus | None -> mkMeta mv in valrec mv let meta_reducible_instance evd b = let fm = Metaset.elements b.freemetas in let metas = List.fold_left (fun l mv -> match (try meta_opt_fvalue evd mv with Not_found -> None) with | Some (g,(_,s)) -> (mv,(g.rebus,s))::l | None -> l) [] fm in let rec irec u = let u = whd_betaiota u in match kind_of_term u with | Case (ci,p,c,bl) when isMeta c or isCast c & isMeta (pi1 (destCast c)) -> let m = try destMeta c with _ -> destMeta (pi1 (destCast c)) in (match try let g,s = List.assoc m metas in if isConstruct g or s <> CoerceToType then Some g else None with Not_found -> None with | Some g -> irec (mkCase (ci,p,g,bl)) | None -> mkCase (ci,irec p,c,Array.map irec bl)) | App (f,l) when isMeta f or isCast f & isMeta (pi1 (destCast f)) -> let m = try destMeta f with _ -> destMeta (pi1 (destCast f)) in (match try let g,s = List.assoc m metas in if isLambda g or s <> CoerceToType then Some g else None with Not_found -> None with | Some g -> irec (mkApp (g,l)) | None -> mkApp (f,Array.map irec l)) | Meta m -> (try let g,s = List.assoc m metas in if s<>CoerceToType then irec g else u with Not_found -> u) | _ -> map_constr irec u in if fm = [] then (* nf_betaiota? *) b.rebus else irec b.rebus