(************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) (* Dispose | ReqGlobal _, _ as o -> Substitute o let subst (subst, (_, (r,o as orig))) = ReqLocal, let r' = fst (subst_global subst r) in if r==r' then orig else (r',o) let discharge = function | _,(ReqGlobal (ConstRef c, req), (_, b)) -> let c' = pop_con c in let vars = Lib.section_segment_of_constant c in let extra = List.length vars in let nargs' = if b.b_nargs < 0 then b.b_nargs else b.b_nargs + extra in let recargs' = List.map ((+) extra) b.b_recargs in let b' = { b with b_nargs = nargs'; b_recargs = recargs' } in Some (ReqGlobal (ConstRef c', req), (ConstRef c', b')) | _ -> None let rebuild = function | req, (ConstRef c, _ as x) -> req, x | _ -> assert false let inRedBehaviour = declare_object { (default_object "REDUCTIONBEHAVIOUR") with load_function = load; cache_function = cache; classify_function = classify; subst_function = subst; discharge_function = discharge; rebuild_function = rebuild; } let set local r (recargs, nargs, flags as req) = let nargs = if List.mem `ReductionNeverUnfold flags then max_int else nargs in let behaviour = { b_nargs = nargs; b_recargs = recargs; b_dont_expose_case = List.mem `ReductionDontExposeCase flags } in let req = if local then ReqLocal else ReqGlobal (r, req) in Lib.add_anonymous_leaf (inRedBehaviour (req, (r, behaviour))) ;; let get r = try let b = Refmap.find r !table in let flags = if Int.equal b.b_nargs max_int then [`ReductionNeverUnfold] else if b.b_dont_expose_case then [`ReductionDontExposeCase] else [] in Some (b.b_recargs, (if Int.equal b.b_nargs max_int then -1 else b.b_nargs), flags) with Not_found -> None let print ref = let open Pp in let pr_global = Nametab.pr_global_env Id.Set.empty in match get ref with | None -> mt () | Some (recargs, nargs, flags) -> let never = List.mem `ReductionNeverUnfold flags in let nomatch = List.mem `ReductionDontExposeCase flags in let pp_nomatch = spc() ++ if nomatch then str "avoiding to expose match constructs" else str"" in let pp_recargs = spc() ++ str "when the " ++ pr_enum (fun x -> pr_nth (x+1)) recargs ++ str (String.plural (List.length recargs) " argument") ++ str (String.plural (if List.length recargs >= 2 then 1 else 2) " evaluate") ++ str " to a constructor" in let pp_nargs = spc() ++ str "when applied to " ++ int nargs ++ str (String.plural nargs " argument") in hov 2 (str "The reduction tactics " ++ match recargs, nargs, never with | _,_, true -> str "never unfold " ++ pr_global ref | [], 0, _ -> str "always unfold " ++ pr_global ref | _::_, n, _ when n < 0 -> str "unfold " ++ pr_global ref ++ pp_recargs ++ pp_nomatch | _::_, n, _ when n > List.fold_left max 0 recargs -> str "unfold " ++ pr_global ref ++ pp_recargs ++ str " and" ++ pp_nargs ++ pp_nomatch | _::_, _, _ -> str "unfold " ++ pr_global ref ++ pp_recargs ++ pp_nomatch | [], n, _ when n > 0 -> str "unfold " ++ pr_global ref ++ pp_nargs ++ pp_nomatch | _ -> str "unfold " ++ pr_global ref ++ pp_nomatch ) end (** The type of (machine) stacks (= lambda-bar-calculus' contexts) *) module Stack : sig type 'a app_node val pr_app_node : ('a -> Pp.std_ppcmds) -> 'a app_node -> Pp.std_ppcmds type 'a member = | App of 'a app_node | Case of case_info * 'a * 'a array * ('a * 'a list) option | Fix of fixpoint * 'a t * ('a * 'a list) option | Shift of int | Update of 'a and 'a t = 'a member list val pr : ('a -> Pp.std_ppcmds) -> 'a t -> Pp.std_ppcmds val empty : 'a t val append_app : 'a array -> 'a t -> 'a t val decomp : 'a t -> ('a * 'a t) option val decomp_node_last : 'a app_node -> 'a t -> ('a * 'a t) val equal : ('a * int -> 'a * int -> bool) -> (fixpoint * int -> fixpoint * int -> bool) -> 'a t -> 'a t -> (int * int) option val compare_shape : 'a t -> 'a t -> bool val fold2 : ('a -> constr -> constr -> 'a) -> 'a -> constr t -> constr t -> 'a * int * int val append_app_list : 'a list -> 'a t -> 'a t val strip_app : 'a t -> 'a t * 'a t val strip_n_app : int -> 'a t -> ('a t * 'a * 'a t) option val not_purely_applicative : 'a t -> bool val list_of_app_stack : constr t -> constr list option val assign : 'a t -> int -> 'a -> 'a t val args_size : 'a t -> int val tail : int -> 'a t -> 'a t val nth : 'a t -> int -> 'a val zip : ?refold:bool -> constr * constr t -> constr end = struct type 'a app_node = int * 'a array * int (* first releavnt position, arguments, last relevant position *) (* Invariant that this module must ensure : (behare of direct access to app_node by the rest of Reductionops) - in app_node (i,_,j) i <= j - There is no array realocation (outside of debug printing) *) let pr_app_node pr (i,a,j) = let open Pp in surround ( prvect_with_sep pr_comma pr (Array.sub a i (j - i + 1)) ) type 'a member = | App of 'a app_node | Case of Term.case_info * 'a * 'a array * ('a * 'a list) option | Fix of fixpoint * 'a t * ('a * 'a list) option | Shift of int | Update of 'a and 'a t = 'a member list let rec pr_member pr_c member = let open Pp in let pr_c x = hov 1 (pr_c x) in match member with | App app -> str "ZApp" ++ pr_app_node pr_c app | Case (_,_,br,cst) -> str "ZCase(" ++ prvect_with_sep (pr_bar) pr_c br ++ str ")" | Fix (f,args,cst) -> str "ZFix(" ++ Termops.pr_fix Termops.print_constr f ++ pr_comma () ++ pr pr_c args ++ str ")" | Shift i -> str "ZShift(" ++ int i ++ str ")" | Update t -> str "ZUpdate(" ++ pr_c t ++ str ")" and pr pr_c l = let open Pp in prlist_with_sep pr_semicolon (fun x -> hov 1 (pr_member pr_c x)) l let empty = [] let append_app v s = let le = Array.length v in if Int.equal le 0 then s else App (0,v,pred le) :: s let decomp_node (i,l,j) sk = if i < j then (l.(i), App (succ i,l,j) :: sk) else (l.(i), sk) let decomp = function | App node::s -> Some (decomp_node node s) | _ -> None let decomp_node_last (i,l,j) sk = if i < j then (l.(j), App (i,l,pred j) :: sk) else (l.(j), sk) let equal f f_fix sk1 sk2 = let rec equal_rec sk1 lft1 sk2 lft2 = match sk1,sk2 with | [],[] -> Some (lft1,lft2) | (Update _ :: _, _ | _, Update _ :: _) -> assert false | Shift k :: s1, _ -> equal_rec s1 (lft1+k) sk2 lft2 | _, Shift k :: s2 -> equal_rec sk1 lft1 s2 (lft2+k) | App a1 :: s1, App a2 :: s2 -> let t1,s1' = decomp_node_last a1 s1 in let t2,s2' = decomp_node_last a2 s2 in if f (t1,lft1) (t2,lft2) then equal_rec s1' lft1 s2' lft2 else None | Case (_,t1,a1,_) :: s1, Case (_,t2,a2,_) :: s2 -> if f (t1,lft1) (t2,lft2) && CArray.equal (fun x y -> f (x,lft1) (y,lft2)) a1 a2 then equal_rec s1 lft1 s2 lft2 else None | Fix (f1,s1,_) :: s1', Fix (f2,s2,_) :: s2' -> if f_fix (f1,lft1) (f2,lft2) then match equal_rec (List.rev s1) lft1 (List.rev s2) lft2 with | None -> None | Some _ -> equal_rec s1' lft1 s2' lft2 else None | _, _ -> None in equal_rec (List.rev sk1) 0 (List.rev sk2) 0 let compare_shape stk1 stk2 = let rec compare_rec bal stk1 stk2 = match (stk1,stk2) with ([],[]) -> Int.equal bal 0 | ((Update _|Shift _)::s1, _) -> compare_rec bal s1 stk2 | (_, (Update _|Shift _)::s2) -> compare_rec bal stk1 s2 | (App (i,_,j)::s1, _) -> compare_rec (bal + j + 1 - i) s1 stk2 | (_, App (i,_,j)::s2) -> compare_rec (bal - j - 1 + i) stk1 s2 | (Case(c1,_,_,_)::s1, Case(c2,_,_,_)::s2) -> Int.equal bal 0 (* && c1.ci_ind = c2.ci_ind *) && compare_rec 0 s1 s2 | (Fix(_,a1,_)::s1, Fix(_,a2,_)::s2) -> Int.equal bal 0 && compare_rec 0 a1 a2 && compare_rec 0 s1 s2 | (_,_) -> false in compare_rec 0 stk1 stk2 let fold2 f o sk1 sk2 = let rec aux o lft1 sk1 lft2 sk2 = let fold_array = Array.fold_left2 (fun a x y -> f a (Vars.lift lft1 x) (Vars.lift lft2 y)) in match sk1,sk2 with | [], [] -> o,lft1,lft2 | Shift n :: q1, _ -> aux o (lft1+n) q1 lft2 sk2 | _, Shift n :: q2 -> aux o lft1 sk1 (lft2+n) q2 | App n1 :: q1, App n2 :: q2 -> let t1,l1 = decomp_node_last n1 q1 in let t2,l2 = decomp_node_last n2 q2 in aux (f o (Vars.lift lft1 t1) (Vars.lift lft2 t2)) lft1 l1 lft2 l2 | Case (_,t1,a1,_) :: q1, Case (_,t2,a2,_) :: q2 -> aux (fold_array (f o (Vars.lift lft1 t1) (Vars.lift lft2 t2)) a1 a2) lft1 q1 lft2 q2 | Fix ((_,(_,a1,b1)),s1,_) :: q1, Fix ((_,(_,a2,b2)),s2,_) :: q2 -> let (o',_,_) = aux (fold_array (fold_array o b1 b2) a1 a2) lft1 s1 lft2 s2 in aux o' lft1 q1 lft2 q2 | _, _ -> raise (Invalid_argument "Reductionops.Stack.fold2") in aux o 0 (List.rev sk1) 0 (List.rev sk2) let append_app_list l s = let a = Array.of_list l in append_app a s let rec args_size = function | App (i,_,j)::s -> j + 1 - i + args_size s | Shift(_)::s -> args_size s | Update(_)::s -> args_size s | _ -> 0 let strip_app s = let rec aux out = function | ( App _ | Shift _ as e) :: s -> aux (e :: out) s | s -> List.rev out,s in aux [] s let strip_n_app n s = let rec aux n out = function | Shift k as e :: s -> aux n (e :: out) s | App (i,a,j) as e :: s -> let nb = j - i + 1 in if n >= nb then aux (n - nb) (e::out) s else let p = i+n in Some (CList.rev (if Int.equal n 0 then out else App (i,a,p-1) :: out), a.(p), if j > p then App(succ p,a,j)::s else s) | s -> None in aux n [] s let not_purely_applicative args = List.exists (function (Fix _ | Case _) -> true | _ -> false) args let list_of_app_stack s = let rec aux = function | App (i,a,j) :: s -> let (k,(args',s')) = aux s in let a' = Array.map (Vars.lift k) (Array.sub a i (j - i + 1)) in k,(Array.fold_right (fun x y -> x::y) a' args', s') | Shift n :: s -> let (k,(args',s')) = aux s in (k+n,(args', s')) | s -> (0,([],s)) in let (lft,(out,s')) = aux s in let init = match s' with [] when Int.equal lft 0 -> true | _ -> false in Option.init init out let assign s p c = match strip_n_app p s with | Some (pre,_,sk) -> pre @ (App (0,[|c|],0)::sk) | None -> assert false let tail n0 s0 = let rec aux lft n s = let out s = if Int.equal lft 0 then s else Shift lft :: s in if Int.equal n 0 then out s else match s with | App (i,a,j) :: s -> let nb = j - i + 1 in if n >= nb then aux lft (n - nb) s else let p = i+n in if j >= p then App(p,a,j)::s else s | Shift k :: s' -> aux (lft+k) n s' | _ -> raise (Invalid_argument "Reductionops.Stack.tail") in aux 0 n0 s0 let nth s p = match strip_n_app p s with | Some (_,el,_) -> el | None -> raise Not_found let rec zip ?(refold=false) = function | f, [] -> f | f, (App (i,a,j) :: s) -> let a' = if Int.equal i 0 && Int.equal j (Array.length a - 1) then a else Array.sub a i (j - i + 1) in zip ~refold (mkApp (f, a'), s) | f, (Case (ci,rt,br,Some(cst, params))::s) when refold -> zip ~refold (cst, append_app_list (List.rev params) s) | f, (Case (ci,rt,br,_)::s) -> zip ~refold (mkCase (ci,rt,f,br), s) | f, (Fix (fix,st,Some(cst, params))::s) when refold -> zip ~refold (cst, append_app_list (List.rev params) (st @ (append_app [|f|] s))) | f, (Fix (fix,st,_)::s) -> zip ~refold (mkFix fix, st @ (append_app [|f|] s)) | f, (Shift n::s) -> zip ~refold (lift n f, s) | _ -> assert false end (** The type of (machine) states (= lambda-bar-calculus' cuts) *) type state = constr * constr Stack.t type contextual_reduction_function = env -> evar_map -> constr -> constr type reduction_function = contextual_reduction_function type local_reduction_function = evar_map -> constr -> constr type contextual_stack_reduction_function = env -> evar_map -> constr -> constr * constr list type stack_reduction_function = contextual_stack_reduction_function type local_stack_reduction_function = evar_map -> constr -> constr * constr list type contextual_state_reduction_function = env -> evar_map -> state -> state type state_reduction_function = contextual_state_reduction_function type local_state_reduction_function = evar_map -> state -> state let pr_state (tm,sk) = let open Pp in h 0 (Termops.print_constr tm ++ str "|" ++ cut () ++ Stack.pr Termops.print_constr sk) (*************************************) (*** Reduction Functions Operators ***) (*************************************) let safe_evar_value sigma ev = try Some (Evd.existential_value sigma ev) with NotInstantiatedEvar | Not_found -> None let safe_meta_value sigma ev = try Some (Evd.meta_value sigma ev) with Not_found -> None let strong whdfun env sigma t = let rec strongrec env t = map_constr_with_full_binders push_rel strongrec env (whdfun env sigma t) in strongrec env t let local_strong whdfun sigma = let rec strongrec t = map_constr strongrec (whdfun sigma t) in strongrec let rec strong_prodspine redfun sigma c = let x = redfun sigma c in match kind_of_term x with | Prod (na,a,b) -> mkProd (na,a,strong_prodspine redfun sigma b) | _ -> x (*************************************) (*** Reduction using bindingss ***) (*************************************) (* Local *) let nored = Closure.RedFlags.no_red let beta = Closure.beta let eta = Closure.RedFlags.mkflags [Closure.RedFlags.fETA] let zeta = Closure.RedFlags.mkflags [Closure.RedFlags.fZETA] let betaiota = Closure.betaiota let betaiotazeta = Closure.betaiotazeta (* Contextual *) let delta = Closure.RedFlags.mkflags [Closure.RedFlags.fDELTA] let betalet = Closure.RedFlags.mkflags [Closure.RedFlags.fBETA;Closure.RedFlags.fZETA] let betaetalet = Closure.RedFlags.red_add betalet Closure.RedFlags.fETA let betadelta = Closure.RedFlags.red_add betalet Closure.RedFlags.fDELTA let betadeltaeta = Closure.RedFlags.red_add betadelta Closure.RedFlags.fETA let betadeltaiota = Closure.RedFlags.red_add betadelta Closure.RedFlags.fIOTA let betadeltaiota_nolet = Closure.betadeltaiotanolet let betadeltaiotaeta = Closure.RedFlags.red_add betadeltaiota Closure.RedFlags.fETA (** Machinery about stack of unfolded constants *) module Cst_stack = struct type t = (Term.constr * Term.constr list * int) list let empty = [] let drop_useless = function | _ :: ((_,_,0)::_ as q) -> q | l -> l let add_param h cst_l = let append2cst (c,params,nb_skip) = if nb_skip <= 0 then (c, h::params, nb_skip) else (c, params, pred nb_skip) in drop_useless (List.map append2cst cst_l) let add_args cl = List.map (fun (a,b,nb_skip) -> (a,b,nb_skip+Array.length cl)) let add_cst cst = function | (_,_,0) :: q as l -> l | l -> (cst,[],0)::l let best_cst = function | (cst,params,0)::_ -> Some(cst,params) | _ -> None end (* Beta Reduction tools *) let apply_subst recfun env cst_l t stack = let rec aux env cst_l t stack = match (Stack.decomp stack,kind_of_term t) with | Some (h,stacktl), Lambda (_,_,c) -> aux (h::env) (Cst_stack.add_param h cst_l) c stacktl | _ -> recfun cst_l (substl env t, stack) in aux env cst_l t stack let stacklam recfun env t stack = apply_subst (fun _ -> recfun) env [] t stack let beta_applist (c,l) = stacklam Stack.zip [] c (Stack.append_app_list l Stack.empty) (* Iota reduction tools *) type 'a miota_args = { mP : constr; (* the result type *) mconstr : constr; (* the constructor *) mci : case_info; (* special info to re-build pattern *) mcargs : 'a list; (* the constructor's arguments *) mlf : 'a array } (* the branch code vector *) let reducible_mind_case c = match kind_of_term c with | Construct _ | CoFix _ -> true | _ -> false (** @return c if there is a constant c whose body is bd @return bd else. It has only a meaning because internal representation of "Fixpoint f x := t" is Definition f := fix f x => t Even more fragile that we could hope because do Module M. Fixpoint f x := t. End M. Definition f := u. and say goodbye to any hope of refolding M.f this way ... *) let magicaly_constant_of_fixbody env bd = function | Name.Anonymous -> bd | Name.Name id -> try let cst = Nametab.locate_constant (Libnames.make_qualid DirPath.empty id) in match constant_opt_value env cst with | None -> bd | Some t -> if eq_constr t bd then mkConst cst else bd with | Not_found -> bd let contract_cofix ?env (bodynum,(names,types,bodies as typedbodies)) cst = let nbodies = Array.length bodies in let make_Fi j = let ind = nbodies-j-1 in if Int.equal bodynum ind && not (Option.is_empty cst) then let (c,params) = Option.get cst in applist(c, List.rev params) else let bd = mkCoFix (ind,typedbodies) in match env with | None -> bd | Some e -> magicaly_constant_of_fixbody e bd names.(ind) in let closure = List.init nbodies make_Fi in substl closure bodies.(bodynum) let reduce_mind_case mia = match kind_of_term mia.mconstr with | Construct (ind_sp,i) -> (* let ncargs = (fst mia.mci).(i-1) in*) let real_cargs = List.skipn mia.mci.ci_npar mia.mcargs in applist (mia.mlf.(i-1),real_cargs) | CoFix cofix -> let cofix_def = contract_cofix cofix None in mkCase (mia.mci, mia.mP, applist(cofix_def,mia.mcargs), mia.mlf) | _ -> assert false (* contracts fix==FIX[nl;i](A1...Ak;[F1...Fk]{B1....Bk}) to produce Bi[Fj --> FIX[nl;j](A1...Ak;[F1...Fk]{B1...Bk})] *) let contract_fix ?env ((recindices,bodynum),(names,types,bodies as typedbodies)) cst = let nbodies = Array.length recindices in let make_Fi j = let ind = nbodies-j-1 in if Int.equal bodynum ind && not (Option.is_empty cst) then let (c,params) = Option.get cst in applist(c, List.rev params) else let bd = mkFix ((recindices,ind),typedbodies) in match env with | None -> bd | Some e -> magicaly_constant_of_fixbody e bd names.(ind) in let closure = List.init nbodies make_Fi in substl closure bodies.(bodynum) let fix_recarg ((recindices,bodynum),_) stack = assert (0 <= bodynum && bodynum < Array.length recindices); let recargnum = Array.get recindices bodynum in try Some (recargnum, Stack.nth stack recargnum) with Not_found -> None (** Generic reduction function with environment Here is where unfolded constant are stored in order to be eventualy refolded. If tactic_mode is true, it uses ReductionBehaviour, prefers refold constant instead of value and tries to infer constants fix and cofix came from. It substitutes fix and cofix by the constant they come from in contract_* in any case . *) let rec whd_state_gen ?csts tactic_mode flags env sigma = let noth = [] in let rec whrec cst_l (x, stack as s) = let best_state def (cst,params,nb_skip) = try let s' = Stack.tail nb_skip stack in (cst, Stack.append_app_list (List.rev params) s') with Failure _ -> def in let fold () = if tactic_mode then (List.fold_left best_state s cst_l,noth) else (s,cst_l) in match kind_of_term x with | Rel n when Closure.RedFlags.red_set flags Closure.RedFlags.fDELTA -> (match lookup_rel n env with | (_,Some body,_) -> whrec noth (lift n body, stack) | _ -> fold ()) | Var id when Closure.RedFlags.red_set flags (Closure.RedFlags.fVAR id) -> (match lookup_named id env with | (_,Some body,_) -> whrec (Cst_stack.add_cst (mkVar id) cst_l) (body, stack) | _ -> fold ()) | Evar ev -> (match safe_evar_value sigma ev with | Some body -> whrec cst_l (body, stack) | None -> fold ()) | Meta ev -> (match safe_meta_value sigma ev with | Some body -> whrec cst_l (body, stack) | None -> fold ()) | Const const when Closure.RedFlags.red_set flags (Closure.RedFlags.fCONST const) -> (match constant_opt_value env const with | None -> fold () | Some body -> if not tactic_mode then whrec (Cst_stack.add_cst (mkConst const) cst_l) (body, stack) else (* Looks for ReductionBehaviour *) match ReductionBehaviour.get (Globnames.ConstRef const) with | None -> whrec (Cst_stack.add_cst (mkConst const) cst_l) (body, stack) | Some (recargs, nargs, flags) -> if (List.mem `ReductionNeverUnfold flags || (nargs > 0 && Stack.args_size stack < nargs)) then fold () else (* maybe unfolds *) if List.mem `ReductionDontExposeCase flags then let app_sk,sk = Stack.strip_app stack in let (tm',sk'),cst_l' = whrec (Cst_stack.add_cst (mkConst const) cst_l) (body, app_sk) in let f_equal (x,lft1) (y,lft2) = Constr.equal (Vars.lift lft1 x) (Vars.lift lft2 y) in if (match Stack.equal f_equal (fun (a,b) (c,d) -> f_equal (Constr.mkFix a, b) (Constr.mkFix c, d)) app_sk sk' with | None -> false | Some (lft1,lft2) -> f_equal (x, lft1) (tm', lft2) ) || Stack.not_purely_applicative sk' then fold () else whrec cst_l' (tm', sk' @ sk) else match recargs with |[] -> (* if nargs has been specified *) (* CAUTION : the constant is NEVER refold (even when it hides a (co)fix) *) whrec cst_l (body, stack) |l -> failwith "TODO recargs in cbn" ) | LetIn (_,b,_,c) when Closure.RedFlags.red_set flags Closure.RedFlags.fZETA -> apply_subst whrec [b] cst_l c stack | Cast (c,_,_) -> whrec cst_l (c, stack) | App (f,cl) -> whrec (Cst_stack.add_args cl cst_l) (f, Stack.append_app cl stack) | Lambda (na,t,c) -> (match Stack.decomp stack with | Some _ when Closure.RedFlags.red_set flags Closure.RedFlags.fBETA -> apply_subst whrec [] cst_l x stack | None when Closure.RedFlags.red_set flags Closure.RedFlags.fETA -> let env' = push_rel (na,None,t) env in let whrec' = whd_state_gen tactic_mode flags env' sigma in (match kind_of_term (Stack.zip ~refold:true (fst (whrec' (c, Stack.empty)))) with | App (f,cl) -> let napp = Array.length cl in if napp > 0 then let (x', l'),_ = whrec' (Array.last cl, Stack.empty) in match kind_of_term x', l' with | Rel 1, [] -> let lc = Array.sub cl 0 (napp-1) in let u = if Int.equal napp 1 then f else appvect (f,lc) in if noccurn 1 u then (pop u,Stack.empty),noth else fold () | _ -> fold () else fold () | _ -> fold ()) | _ -> fold ()) | Case (ci,p,d,lf) -> whrec noth (d, Stack.Case (ci,p,lf,Cst_stack.best_cst cst_l) :: stack) | Fix ((ri,n),_ as f) -> (match Stack.strip_n_app ri.(n) stack with |None -> fold () |Some (bef,arg,s') -> whrec noth (arg, Stack.Fix(f,bef,Cst_stack.best_cst cst_l)::s')) | Construct (ind,c) -> if Closure.RedFlags.red_set flags Closure.RedFlags.fIOTA then match Stack.strip_app stack with |args, (Stack.Case(ci, _, lf,_)::s') -> whrec noth (lf.(c-1), (Stack.tail ci.ci_npar args) @ s') |args, (Stack.Fix (f,s',cst)::s'') -> let x' = Stack.zip(x,args) in whrec noth ((if tactic_mode then contract_fix ~env f else contract_fix f) cst, s' @ (Stack.append_app [|x'|] s'')) |_ -> fold () else fold () | CoFix cofix -> if Closure.RedFlags.red_set flags Closure.RedFlags.fIOTA then match Stack.strip_app stack with |args, (Stack.Case(ci, _, lf,_)::s') -> whrec noth ((if tactic_mode then contract_cofix ~env cofix else contract_cofix cofix) (Cst_stack.best_cst cst_l), stack) |_ -> fold () else fold () | Rel _ | Var _ | Const _ | LetIn _ -> fold () | Sort _ | Ind _ | Prod _ -> fold () in whrec (Option.default noth csts) (** reduction machine without global env and refold machinery *) let local_whd_state_gen flags sigma = let rec whrec (x, stack as s) = match kind_of_term x with | LetIn (_,b,_,c) when Closure.RedFlags.red_set flags Closure.RedFlags.fZETA -> stacklam whrec [b] c stack | Cast (c,_,_) -> whrec (c, stack) | App (f,cl) -> whrec (f, Stack.append_app cl stack) | Lambda (_,_,c) -> (match Stack.decomp stack with | Some (a,m) when Closure.RedFlags.red_set flags Closure.RedFlags.fBETA -> stacklam whrec [a] c m | None when Closure.RedFlags.red_set flags Closure.RedFlags.fETA -> (match kind_of_term (Stack.zip (whrec (c, Stack.empty))) with | App (f,cl) -> let napp = Array.length cl in if napp > 0 then let x', l' = whrec (Array.last cl, Stack.empty) in match kind_of_term x', l' with | Rel 1, [] -> let lc = Array.sub cl 0 (napp-1) in let u = if Int.equal napp 1 then f else appvect (f,lc) in if noccurn 1 u then (pop u,Stack.empty) else s | _ -> s else s | _ -> s) | _ -> s) | Case (ci,p,d,lf) -> whrec (d, Stack.Case (ci,p,lf,None) :: stack) | Fix ((ri,n),_ as f) -> (match Stack.strip_n_app ri.(n) stack with |None -> s |Some (bef,arg,s') -> whrec (arg, Stack.Fix(f,bef,None)::s')) | Evar ev -> (match safe_evar_value sigma ev with Some c -> whrec (c,stack) | None -> s) | Meta ev -> (match safe_meta_value sigma ev with Some c -> whrec (c,stack) | None -> s) | Construct (ind,c) -> if Closure.RedFlags.red_set flags Closure.RedFlags.fIOTA then match Stack.strip_app stack with |args, (Stack.Case(ci, _, lf,_)::s') -> whrec (lf.(c-1), (Stack.tail ci.ci_npar args) @ s') |args, (Stack.Fix (f,s',cst)::s'') -> let x' = Stack.zip(x,args) in whrec (contract_fix f cst, s' @ (Stack.append_app [|x'|] s'')) |_ -> s else s | CoFix cofix -> if Closure.RedFlags.red_set flags Closure.RedFlags.fIOTA then match Stack.strip_app stack with |args, (Stack.Case(ci, _, lf,_)::s') -> whrec (contract_cofix cofix None, stack) |_ -> s else s | x -> s in whrec let raw_whd_state_gen flags env = let f sigma s = fst (whd_state_gen false flags env sigma s) in f let stack_red_of_state_red f = let f sigma x = decompose_app (Stack.zip (f sigma (x, Stack.empty))) in f let red_of_state_red f sigma x = Stack.zip (f sigma (x,Stack.empty)) (* 0. No Reduction Functions *) let whd_nored_state = local_whd_state_gen nored let whd_nored_stack = stack_red_of_state_red whd_nored_state let whd_nored = red_of_state_red whd_nored_state (* 1. Beta Reduction Functions *) let whd_beta_state = local_whd_state_gen beta let whd_beta_stack = stack_red_of_state_red whd_beta_state let whd_beta = red_of_state_red whd_beta_state (* Nouveau ! *) let whd_betaetalet_state = local_whd_state_gen betaetalet let whd_betaetalet_stack = stack_red_of_state_red whd_betaetalet_state let whd_betaetalet = red_of_state_red whd_betaetalet_state let whd_betalet_state = local_whd_state_gen betalet let whd_betalet_stack = stack_red_of_state_red whd_betalet_state let whd_betalet = red_of_state_red whd_betalet_state (* 2. Delta Reduction Functions *) let whd_delta_state e = raw_whd_state_gen delta e let whd_delta_stack env = stack_red_of_state_red (whd_delta_state env) let whd_delta env = red_of_state_red (whd_delta_state env) let whd_betadelta_state e = raw_whd_state_gen betadelta e let whd_betadelta_stack env = stack_red_of_state_red (whd_betadelta_state env) let whd_betadelta env = red_of_state_red (whd_betadelta_state env) let whd_betadeltaeta_state e = raw_whd_state_gen betadeltaeta e let whd_betadeltaeta_stack env = stack_red_of_state_red (whd_betadeltaeta_state env) let whd_betadeltaeta env = red_of_state_red (whd_betadeltaeta_state env) (* 3. Iota reduction Functions *) let whd_betaiota_state = local_whd_state_gen betaiota let whd_betaiota_stack = stack_red_of_state_red whd_betaiota_state let whd_betaiota = red_of_state_red whd_betaiota_state let whd_betaiotazeta_state = local_whd_state_gen betaiotazeta let whd_betaiotazeta_stack = stack_red_of_state_red whd_betaiotazeta_state let whd_betaiotazeta = red_of_state_red whd_betaiotazeta_state let whd_betadeltaiota_state env = raw_whd_state_gen betadeltaiota env let whd_betadeltaiota_stack env = stack_red_of_state_red (whd_betadeltaiota_state env) let whd_betadeltaiota env = red_of_state_red (whd_betadeltaiota_state env) let whd_betadeltaiota_state_using ts env = raw_whd_state_gen (Closure.RedFlags.red_add_transparent betadeltaiota ts) env let whd_betadeltaiota_stack_using ts env = stack_red_of_state_red (whd_betadeltaiota_state_using ts env) let whd_betadeltaiota_using ts env = red_of_state_red (whd_betadeltaiota_state_using ts env) let whd_betadeltaiotaeta_state env = raw_whd_state_gen betadeltaiotaeta env let whd_betadeltaiotaeta_stack env = stack_red_of_state_red (whd_betadeltaiotaeta_state env) let whd_betadeltaiotaeta env = red_of_state_red (whd_betadeltaiotaeta_state env) let whd_betadeltaiota_nolet_state env = raw_whd_state_gen betadeltaiota_nolet env let whd_betadeltaiota_nolet_stack env = stack_red_of_state_red (whd_betadeltaiota_nolet_state env) let whd_betadeltaiota_nolet env = red_of_state_red (whd_betadeltaiota_nolet_state env) (* 4. Eta reduction Functions *) let whd_eta c = Stack.zip (local_whd_state_gen eta Evd.empty (c,Stack.empty)) (* 5. Zeta Reduction Functions *) let whd_zeta c = Stack.zip (local_whd_state_gen zeta Evd.empty (c,Stack.empty)) (****************************************************************************) (* Reduction Functions *) (****************************************************************************) (* Replacing defined evars for error messages *) let rec whd_evar sigma c = match kind_of_term c with | Evar ev -> (match safe_evar_value sigma ev with Some c -> whd_evar sigma c | None -> c) | Sort s -> whd_sort_variable sigma c | _ -> c let nf_evar = local_strong whd_evar (* lazy reduction functions. The infos must be created for each term *) (* Note by HH [oct 08] : why would it be the job of clos_norm_flags to add a [nf_evar] here *) let clos_norm_flags flgs env sigma t = try let evars ev = safe_evar_value sigma ev in Closure.norm_val (Closure.create_clos_infos ~evars flgs env) (Closure.inject t) with e when is_anomaly e -> error "Tried to normalize ill-typed term" let nf_beta = clos_norm_flags Closure.beta empty_env let nf_betaiota = clos_norm_flags Closure.betaiota empty_env let nf_betaiotazeta = clos_norm_flags Closure.betaiotazeta empty_env let nf_betadeltaiota env sigma = clos_norm_flags Closure.betadeltaiota env sigma (********************************************************************) (* Conversion *) (********************************************************************) (* let fkey = Profile.declare_profile "fhnf";; let fhnf info v = Profile.profile2 fkey fhnf info v;; let fakey = Profile.declare_profile "fhnf_apply";; let fhnf_apply info k h a = Profile.profile4 fakey fhnf_apply info k h a;; *) let is_transparent e k = match Conv_oracle.get_strategy (Environ.oracle e) k with | Conv_oracle.Opaque -> false | _ -> true (* Conversion utility functions *) type conversion_test = constraints -> constraints let pb_is_equal pb = pb == Reduction.CONV let pb_equal = function | Reduction.CUMUL -> Reduction.CONV | Reduction.CONV -> Reduction.CONV let sort_cmp = Reduction.sort_cmp let test_conversion (f: ?l2r:bool-> ?evars:'a->'b) env sigma x y = try let evars ev = safe_evar_value sigma ev in let _ = f ~evars env x y in true with Reduction.NotConvertible -> false | e when is_anomaly e -> error "Conversion test raised an anomaly" let is_conv env sigma = test_conversion Reduction.conv env sigma let is_conv_leq env sigma = test_conversion Reduction.conv_leq env sigma let is_fconv = function | Reduction.CONV -> is_conv | Reduction.CUMUL -> is_conv_leq let test_trans_conversion (f: ?l2r:bool-> ?evars:'a->'b) reds env sigma x y = try let evars ev = safe_evar_value sigma ev in let _ = f ~evars reds env x y in true with Reduction.NotConvertible -> false | e when is_anomaly e -> error "Conversion test raised an anomaly" let is_trans_conv reds env sigma = test_trans_conversion Reduction.trans_conv reds env sigma let is_trans_conv_leq reds env sigma = test_trans_conversion Reduction.trans_conv_leq reds env sigma let is_trans_fconv = function | Reduction.CONV -> is_trans_conv | Reduction.CUMUL -> is_trans_conv_leq (********************************************************************) (* Special-Purpose Reduction *) (********************************************************************) let whd_meta sigma c = match kind_of_term c with | Meta p -> (try meta_value sigma p with Not_found -> c) | _ -> c let hid = Id.of_string "H" (* Try to replace all metas. Does not replace metas in the metas' values * Differs from (strong whd_meta). *) let plain_instance s c = let rec irec n u = match kind_of_term u with | Meta p -> (try lift n (Metamap.find p s) with Not_found -> u) | App (f,l) when isCast f -> let (f,_,t) = destCast f in let l' = CArray.Fun1.smartmap irec n l in (match kind_of_term f with | Meta p -> (* Don't flatten application nodes: this is used to extract a proof-term from a proof-tree and we want to keep the structure of the proof-tree *) (try let g = Metamap.find p s in match kind_of_term g with | App _ -> let l' = CArray.Fun1.smartmap lift 1 l' in mkLetIn (Name hid,g,t,mkApp(mkRel 1, l')) | _ -> mkApp (g,l') with Not_found -> mkApp (f,l')) | _ -> mkApp (irec n f,l')) | Cast (m,_,_) when isMeta m -> (try lift n (Metamap.find (destMeta m) s) with Not_found -> u) | _ -> map_constr_with_binders succ irec n u in if Metamap.is_empty s then c else irec 0 c (* [instance] is used for [res_pf]; the call to [local_strong whd_betaiota] has (unfortunately) different subtle side effects: - ** Order of subgoals ** If the lemma is a case analysis with parameters, it will move the parameters as first subgoals (e.g. "case H" applied on "H:D->A/\B|-C" will present the subgoal |-D first while w/o betaiota the subgoal |-D would have come last). - ** Betaiota-contraction in statement ** If the lemma has a parameter which is a function and this function is applied in the lemma, then the _strong_ betaiota will contract the application of the function to its argument (e.g. "apply (H (fun x => x))" in "H:forall f, f 0 = 0 |- 0=0" will result in applying the lemma 0=0 in which "(fun x => x) 0" has been contracted). A goal to rewrite may then fail or succeed differently. - ** Naming of hypotheses ** If a lemma is a function of the form "fun H:(forall a:A, P a) => .. F H .." where the expected type of H is "forall b:A, P b", then, without reduction, the application of the lemma will generate a subgoal "forall a:A, P a" (and intro will use name "a"), while with reduction, it will generate a subgoal "forall b:A, P b" (and intro will use name "b"). - ** First-order pattern-matching ** If a lemma has the type "(fun x => p) t" then rewriting t may fail if the type of the lemma is first beta-reduced (this typically happens when rewriting a single variable and the type of the lemma is obtained by meta_instance (with empty map) which itself calls instance with this empty map). *) let instance sigma s c = (* if s = [] then c else *) local_strong whd_betaiota sigma (plain_instance s c) (* pseudo-reduction rule: * [hnf_prod_app env s (Prod(_,B)) N --> B[N] * with an HNF on the first argument to produce a product. * if this does not work, then we use the string S as part of our * error message. *) let hnf_prod_app env sigma t n = match kind_of_term (whd_betadeltaiota env sigma t) with | Prod (_,_,b) -> subst1 n b | _ -> anomaly ~label:"hnf_prod_app" (Pp.str "Need a product") let hnf_prod_appvect env sigma t nl = Array.fold_left (hnf_prod_app env sigma) t nl let hnf_prod_applist env sigma t nl = List.fold_left (hnf_prod_app env sigma) t nl let hnf_lam_app env sigma t n = match kind_of_term (whd_betadeltaiota env sigma t) with | Lambda (_,_,b) -> subst1 n b | _ -> anomaly ~label:"hnf_lam_app" (Pp.str "Need an abstraction") let hnf_lam_appvect env sigma t nl = Array.fold_left (hnf_lam_app env sigma) t nl let hnf_lam_applist env sigma t nl = List.fold_left (hnf_lam_app env sigma) t nl let splay_prod env sigma = let rec decrec env m c = let t = whd_betadeltaiota env sigma c in match kind_of_term t with | Prod (n,a,c0) -> decrec (push_rel (n,None,a) env) ((n,a)::m) c0 | _ -> m,t in decrec env [] let splay_lam env sigma = let rec decrec env m c = let t = whd_betadeltaiota env sigma c in match kind_of_term t with | Lambda (n,a,c0) -> decrec (push_rel (n,None,a) env) ((n,a)::m) c0 | _ -> m,t in decrec env [] let splay_prod_assum env sigma = let rec prodec_rec env l c = let t = whd_betadeltaiota_nolet env sigma c in match kind_of_term t with | Prod (x,t,c) -> prodec_rec (push_rel (x,None,t) env) (add_rel_decl (x, None, t) l) c | LetIn (x,b,t,c) -> prodec_rec (push_rel (x, Some b, t) env) (add_rel_decl (x, Some b, t) l) c | Cast (c,_,_) -> prodec_rec env l c | _ -> l,t in prodec_rec env empty_rel_context let splay_arity env sigma c = let l, c = splay_prod env sigma c in match kind_of_term c with | Sort s -> l,s | _ -> invalid_arg "splay_arity" let sort_of_arity env sigma c = snd (splay_arity env sigma c) let splay_prod_n env sigma n = let rec decrec env m ln c = if Int.equal m 0 then (ln,c) else match kind_of_term (whd_betadeltaiota env sigma c) with | Prod (n,a,c0) -> decrec (push_rel (n,None,a) env) (m-1) (add_rel_decl (n,None,a) ln) c0 | _ -> invalid_arg "splay_prod_n" in decrec env n empty_rel_context let splay_lam_n env sigma n = let rec decrec env m ln c = if Int.equal m 0 then (ln,c) else match kind_of_term (whd_betadeltaiota env sigma c) with | Lambda (n,a,c0) -> decrec (push_rel (n,None,a) env) (m-1) (add_rel_decl (n,None,a) ln) c0 | _ -> invalid_arg "splay_lam_n" in decrec env n empty_rel_context let is_sort env sigma t = match kind_of_term (whd_betadeltaiota env sigma t) with | Sort s -> true | _ -> false (* reduction to head-normal-form allowing delta/zeta only in argument of case/fix (heuristic used by evar_conv) *) let whd_betaiota_deltazeta_for_iota_state ts env sigma csts s = let rec whrec csts s = let (t, stack as s),csts' = whd_state_gen ~csts false betaiota env sigma s in match Stack.strip_app stack with |args, (Stack.Case _ :: _ as stack') -> let (t_o,stack_o),csts_o = whd_state_gen ~csts:csts' false (Closure.RedFlags.red_add_transparent betadeltaiota ts) env sigma (t,args) in if reducible_mind_case t_o then whrec csts_o (t_o, stack_o@stack') else s,csts' |args, (Stack.Fix _ :: _ as stack') -> let (t_o,stack_o),csts_o = whd_state_gen ~csts:csts' false (Closure.RedFlags.red_add_transparent betadeltaiota ts) env sigma (t,args) in if isConstruct t_o then whrec csts_o (t_o, stack_o@stack') else s,csts' |_ -> s,csts' in whrec csts s let find_conclusion env sigma = let rec decrec env c = let t = whd_betadeltaiota env sigma c in match kind_of_term t with | Prod (x,t,c0) -> decrec (push_rel (x,None,t) env) c0 | Lambda (x,t,c0) -> decrec (push_rel (x,None,t) env) c0 | t -> t in decrec env let is_arity env sigma c = match find_conclusion env sigma c with | Sort _ -> true | _ -> false (*************************************) (* Metas *) let meta_value evd mv = let rec valrec mv = match meta_opt_fvalue evd mv with | Some (b,_) -> let metas = Metamap.bind valrec b.freemetas in instance evd metas b.rebus | None -> mkMeta mv in valrec mv let meta_instance sigma b = let fm = b.freemetas in if Metaset.is_empty fm then b.rebus else let c_sigma = Metamap.bind (fun mv -> meta_value sigma mv) fm in instance sigma c_sigma b.rebus let nf_meta sigma c = meta_instance sigma (mk_freelisted c) (* Instantiate metas that create beta/iota redexes *) let meta_reducible_instance evd b = let fm = b.freemetas in let fold mv accu = let fvalue = try meta_opt_fvalue evd mv with Not_found -> None in match fvalue with | None -> accu | Some (g, (_, s)) -> Metamap.add mv (g.rebus, s) accu in let metas = Metaset.fold fold fm Metamap.empty in let rec irec u = let u = whd_betaiota Evd.empty u in match kind_of_term u with | Case (ci,p,c,bl) when isMeta (strip_outer_cast c) -> let m = destMeta (strip_outer_cast c) in (match try let g, s = Metamap.find m metas in let is_coerce = match s with CoerceToType -> true | _ -> false in if isConstruct g || not is_coerce then Some g else None with Not_found -> None with | Some g -> irec (mkCase (ci,p,g,bl)) | None -> mkCase (ci,irec p,c,Array.map irec bl)) | App (f,l) when isMeta (strip_outer_cast f) -> let m = destMeta (strip_outer_cast f) in (match try let g, s = Metamap.find m metas in let is_coerce = match s with CoerceToType -> true | _ -> false in if isLambda g || not is_coerce then Some g else None with Not_found -> None with | Some g -> irec (mkApp (g,l)) | None -> mkApp (f,Array.map irec l)) | Meta m -> (try let g, s = Metamap.find m metas in let is_coerce = match s with CoerceToType -> true | _ -> false in if not is_coerce then irec g else u with Not_found -> u) | _ -> map_constr irec u in if Metaset.is_empty fm then (* nf_betaiota? *) b.rebus else irec b.rebus let head_unfold_under_prod ts env _ c = let unfold cst = if Cpred.mem cst (snd ts) then match constant_opt_value env cst with | Some c -> c | None -> mkConst cst else mkConst cst in let rec aux c = match kind_of_term c with | Prod (n,t,c) -> mkProd (n,aux t, aux c) | _ -> let (h,l) = decompose_app c in match kind_of_term h with | Const cst -> beta_applist (unfold cst,l) | _ -> c in aux c