(************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) (* evar_map -> constr -> constr type reduction_function = contextual_reduction_function type local_reduction_function = constr -> constr type contextual_stack_reduction_function = env -> evar_map -> constr -> constr * constr list type stack_reduction_function = contextual_stack_reduction_function type local_stack_reduction_function = constr -> constr * constr list type contextual_state_reduction_function = env -> evar_map -> state -> state type state_reduction_function = contextual_state_reduction_function type local_state_reduction_function = state -> state (*************************************) (*** Reduction Functions Operators ***) (*************************************) let rec whd_state (x, stack as s) = match kind_of_term x with | App (f,cl) -> whd_state (f, append_stack cl stack) | Cast (c,_,_) -> whd_state (c, stack) | _ -> s let appterm_of_stack (f,s) = (f,list_of_stack s) let whd_stack x = appterm_of_stack (whd_state (x, empty_stack)) let whd_castapp_stack = whd_stack let stack_reduction_of_reduction red_fun env sigma s = let t = red_fun env sigma (app_stack s) in whd_stack t let strong whdfun env sigma t = let rec strongrec env t = map_constr_with_full_binders push_rel strongrec env (whdfun env sigma t) in strongrec env t let local_strong whdfun = let rec strongrec t = map_constr strongrec (whdfun t) in strongrec let rec strong_prodspine redfun c = let x = redfun c in match kind_of_term x with | Prod (na,a,b) -> mkProd (na,a,strong_prodspine redfun b) | _ -> x (*************************************) (*** Reduction using bindingss ***) (*************************************) (* This signature is very similar to Closure.RedFlagsSig except there is eta but no per-constant unfolding *) module type RedFlagsSig = sig type flags type flag val fbeta : flag val fevar : flag val fdelta : flag val feta : flag val fiota : flag val fzeta : flag val mkflags : flag list -> flags val red_beta : flags -> bool val red_delta : flags -> bool val red_evar : flags -> bool val red_eta : flags -> bool val red_iota : flags -> bool val red_zeta : flags -> bool end (* Naive Implementation module RedFlags = (struct type flag = BETA | DELTA | EVAR | IOTA | ZETA | ETA type flags = flag list let fbeta = BETA let fdelta = DELTA let fevar = EVAR let fiota = IOTA let fzeta = ZETA let feta = ETA let mkflags l = l let red_beta = List.mem BETA let red_delta = List.mem DELTA let red_evar = List.mem EVAR let red_eta = List.mem ETA let red_iota = List.mem IOTA let red_zeta = List.mem ZETA end : RedFlagsSig) *) (* Compact Implementation *) module RedFlags = (struct type flag = int type flags = int let fbeta = 1 let fdelta = 2 let fevar = 4 let feta = 8 let fiota = 16 let fzeta = 32 let mkflags = List.fold_left (lor) 0 let red_beta f = f land fbeta <> 0 let red_delta f = f land fdelta <> 0 let red_evar f = f land fevar <> 0 let red_eta f = f land feta <> 0 let red_iota f = f land fiota <> 0 let red_zeta f = f land fzeta <> 0 end : RedFlagsSig) open RedFlags (* Local *) let beta = mkflags [fbeta] let evar = mkflags [fevar] let betaevar = mkflags [fevar; fbeta] let betaiota = mkflags [fiota; fbeta] let betaiotazeta = mkflags [fiota; fbeta;fzeta] (* Contextual *) let delta = mkflags [fdelta;fevar] let betadelta = mkflags [fbeta;fdelta;fzeta;fevar] let betadeltaeta = mkflags [fbeta;fdelta;fzeta;fevar;feta] let betadeltaiota = mkflags [fbeta;fdelta;fzeta;fevar;fiota] let betadeltaiota_nolet = mkflags [fbeta;fdelta;fevar;fiota] let betadeltaiotaeta = mkflags [fbeta;fdelta;fzeta;fevar;fiota;feta] let betaiotaevar = mkflags [fbeta;fiota;fevar] let betaetalet = mkflags [fbeta;feta;fzeta] let betalet = mkflags [fbeta;fzeta] (* Beta Reduction tools *) let rec stacklam recfun env t stack = match (decomp_stack stack,kind_of_term t) with | Some (h,stacktl), Lambda (_,_,c) -> stacklam recfun (h::env) c stacktl | _ -> recfun (substl env t, stack) let beta_applist (c,l) = stacklam app_stack [] c (append_stack (Array.of_list l) empty_stack) (* Iota reduction tools *) type 'a miota_args = { mP : constr; (* the result type *) mconstr : constr; (* the constructor *) mci : case_info; (* special info to re-build pattern *) mcargs : 'a list; (* the constructor's arguments *) mlf : 'a array } (* the branch code vector *) let reducible_mind_case c = match kind_of_term c with | Construct _ | CoFix _ -> true | _ -> false let contract_cofix (bodynum,(types,names,bodies as typedbodies)) = let nbodies = Array.length bodies in let make_Fi j = mkCoFix (nbodies-j-1,typedbodies) in substl (list_tabulate make_Fi nbodies) bodies.(bodynum) let reduce_mind_case mia = match kind_of_term mia.mconstr with | Construct (ind_sp,i) -> (* let ncargs = (fst mia.mci).(i-1) in*) let real_cargs = list_skipn mia.mci.ci_npar mia.mcargs in applist (mia.mlf.(i-1),real_cargs) | CoFix cofix -> let cofix_def = contract_cofix cofix in mkCase (mia.mci, mia.mP, applist(cofix_def,mia.mcargs), mia.mlf) | _ -> assert false (* contracts fix==FIX[nl;i](A1...Ak;[F1...Fk]{B1....Bk}) to produce Bi[Fj --> FIX[nl;j](A1...Ak;[F1...Fk]{B1...Bk})] *) let contract_fix ((recindices,bodynum),(types,names,bodies as typedbodies)) = let nbodies = Array.length recindices in let make_Fi j = mkFix ((recindices,nbodies-j-1),typedbodies) in substl (list_tabulate make_Fi nbodies) bodies.(bodynum) let fix_recarg ((recindices,bodynum),_) stack = assert (0 <= bodynum & bodynum < Array.length recindices); let recargnum = Array.get recindices bodynum in try Some (recargnum, stack_nth stack recargnum) with Not_found -> None type fix_reduction_result = NotReducible | Reduced of state let reduce_fix whdfun fix stack = match fix_recarg fix stack with | None -> NotReducible | Some (recargnum,recarg) -> let (recarg'hd,_ as recarg') = whdfun (recarg, empty_stack) in let stack' = stack_assign stack recargnum (app_stack recarg') in (match kind_of_term recarg'hd with | Construct _ -> Reduced (contract_fix fix, stack') | _ -> NotReducible) (* Generic reduction function *) (* Y avait un commentaire pour whd_betadeltaiota : NB : Cette fonction alloue peu c'est l'appel ``let (c,cargs) = whfun (recarg, empty_stack)'' ------------------- qui coute cher *) let rec whd_state_gen flags env sigma = let rec whrec (x, stack as s) = match kind_of_term x with | Rel n when red_delta flags -> (match lookup_rel n env with | (_,Some body,_) -> whrec (lift n body, stack) | _ -> s) | Var id when red_delta flags -> (match lookup_named id env with | (_,Some body,_) -> whrec (body, stack) | _ -> s) | Evar ev when red_evar flags -> (match existential_opt_value sigma ev with | Some body -> whrec (body, stack) | None -> s) | Const const when red_delta flags -> (match constant_opt_value env const with | Some body -> whrec (body, stack) | None -> s) | LetIn (_,b,_,c) when red_zeta flags -> stacklam whrec [b] c stack | Cast (c,_,_) -> whrec (c, stack) | App (f,cl) -> whrec (f, append_stack cl stack) | Lambda (na,t,c) -> (match decomp_stack stack with | Some (a,m) when red_beta flags -> stacklam whrec [a] c m | None when red_eta flags -> let env' = push_rel (na,None,t) env in let whrec' = whd_state_gen flags env' sigma in (match kind_of_term (app_stack (whrec' (c, empty_stack))) with | App (f,cl) -> let napp = Array.length cl in if napp > 0 then let x', l' = whrec' (array_last cl, empty_stack) in match kind_of_term x', decomp_stack l' with | Rel 1, None -> let lc = Array.sub cl 0 (napp-1) in let u = if napp=1 then f else appvect (f,lc) in if noccurn 1 u then (pop u,empty_stack) else s | _ -> s else s | _ -> s) | _ -> s) | Case (ci,p,d,lf) when red_iota flags -> let (c,cargs) = whrec (d, empty_stack) in if reducible_mind_case c then whrec (reduce_mind_case {mP=p; mconstr=c; mcargs=list_of_stack cargs; mci=ci; mlf=lf}, stack) else (mkCase (ci, p, app_stack (c,cargs), lf), stack) | Fix fix when red_iota flags -> (match reduce_fix whrec fix stack with | Reduced s' -> whrec s' | NotReducible -> s) | x -> s in whrec let local_whd_state_gen flags = let rec whrec (x, stack as s) = match kind_of_term x with | LetIn (_,b,_,c) when red_zeta flags -> stacklam whrec [b] c stack | Cast (c,_,_) -> whrec (c, stack) | App (f,cl) -> whrec (f, append_stack cl stack) | Lambda (_,_,c) -> (match decomp_stack stack with | Some (a,m) when red_beta flags -> stacklam whrec [a] c m | None when red_eta flags -> (match kind_of_term (app_stack (whrec (c, empty_stack))) with | App (f,cl) -> let napp = Array.length cl in if napp > 0 then let x', l' = whrec (array_last cl, empty_stack) in match kind_of_term x', decomp_stack l' with | Rel 1, None -> let lc = Array.sub cl 0 (napp-1) in let u = if napp=1 then f else appvect (f,lc) in if noccurn 1 u then (pop u,empty_stack) else s | _ -> s else s | _ -> s) | _ -> s) | Case (ci,p,d,lf) when red_iota flags -> let (c,cargs) = whrec (d, empty_stack) in if reducible_mind_case c then whrec (reduce_mind_case {mP=p; mconstr=c; mcargs=list_of_stack cargs; mci=ci; mlf=lf}, stack) else (mkCase (ci, p, app_stack (c,cargs), lf), stack) | Fix fix when red_iota flags -> (match reduce_fix whrec fix stack with | Reduced s' -> whrec s' | NotReducible -> s) | x -> s in whrec (* 1. Beta Reduction Functions *) let whd_beta_state = local_whd_state_gen beta let whd_beta_stack x = appterm_of_stack (whd_beta_state (x, empty_stack)) let whd_beta x = app_stack (whd_beta_state (x,empty_stack)) (* Nouveau ! *) let whd_betaetalet_state = local_whd_state_gen betaetalet let whd_betaetalet_stack x = appterm_of_stack (whd_betaetalet_state (x, empty_stack)) let whd_betaetalet x = app_stack (whd_betaetalet_state (x,empty_stack)) let whd_betalet_state = local_whd_state_gen betalet let whd_betalet_stack x = appterm_of_stack (whd_betalet_state (x, empty_stack)) let whd_betalet x = app_stack (whd_betalet_state (x,empty_stack)) (* 2. Delta Reduction Functions *) let whd_delta_state e = whd_state_gen delta e let whd_delta_stack env sigma x = appterm_of_stack (whd_delta_state env sigma (x, empty_stack)) let whd_delta env sigma c = app_stack (whd_delta_state env sigma (c, empty_stack)) let whd_betadelta_state e = whd_state_gen betadelta e let whd_betadelta_stack env sigma x = appterm_of_stack (whd_betadelta_state env sigma (x, empty_stack)) let whd_betadelta env sigma c = app_stack (whd_betadelta_state env sigma (c, empty_stack)) let whd_betaevar_state e = whd_state_gen betaevar e let whd_betaevar_stack env sigma c = appterm_of_stack (whd_betaevar_state env sigma (c, empty_stack)) let whd_betaevar env sigma c = app_stack (whd_betaevar_state env sigma (c, empty_stack)) let whd_betadeltaeta_state e = whd_state_gen betadeltaeta e let whd_betadeltaeta_stack env sigma x = appterm_of_stack (whd_betadeltaeta_state env sigma (x, empty_stack)) let whd_betadeltaeta env sigma x = app_stack (whd_betadeltaeta_state env sigma (x, empty_stack)) (* 3. Iota reduction Functions *) let whd_betaiota_state = local_whd_state_gen betaiota let whd_betaiota_stack x = appterm_of_stack (whd_betaiota_state (x, empty_stack)) let whd_betaiota x = app_stack (whd_betaiota_state (x, empty_stack)) let whd_betaiotazeta_state = local_whd_state_gen betaiotazeta let whd_betaiotazeta_stack x = appterm_of_stack (whd_betaiotazeta_state (x, empty_stack)) let whd_betaiotazeta x = app_stack (whd_betaiotazeta_state (x, empty_stack)) let whd_betaiotaevar_state e = whd_state_gen betaiotaevar e let whd_betaiotaevar_stack env sigma x = appterm_of_stack (whd_betaiotaevar_state env sigma (x, empty_stack)) let whd_betaiotaevar env sigma x = app_stack (whd_betaiotaevar_state env sigma (x, empty_stack)) let whd_betadeltaiota_state e = whd_state_gen betadeltaiota e let whd_betadeltaiota_stack env sigma x = appterm_of_stack (whd_betadeltaiota_state env sigma (x, empty_stack)) let whd_betadeltaiota env sigma x = app_stack (whd_betadeltaiota_state env sigma (x, empty_stack)) let whd_betadeltaiotaeta_state e = whd_state_gen betadeltaiotaeta e let whd_betadeltaiotaeta_stack env sigma x = appterm_of_stack (whd_betadeltaiotaeta_state env sigma (x, empty_stack)) let whd_betadeltaiotaeta env sigma x = app_stack (whd_betadeltaiotaeta_state env sigma (x, empty_stack)) let whd_betadeltaiota_nolet_state e = whd_state_gen betadeltaiota_nolet e let whd_betadeltaiota_nolet_stack env sigma x = appterm_of_stack (whd_betadeltaiota_nolet_state env sigma (x, empty_stack)) let whd_betadeltaiota_nolet env sigma x = app_stack (whd_betadeltaiota_nolet_state env sigma (x, empty_stack)) (****************************************************************************) (* Reduction Functions *) (****************************************************************************) (* Replacing defined evars for error messages *) let rec whd_evar sigma c = match kind_of_term c with | Evar (ev,args) when Evd.in_dom sigma ev & Evd.is_defined sigma ev -> whd_evar sigma (Evd.existential_value sigma (ev,args)) | Sort s when is_sort_variable sigma s -> whd_sort_variable sigma c | _ -> collapse_appl c let nf_evar evd = local_strong (whd_evar evd) (* lazy reduction functions. The infos must be created for each term *) let clos_norm_flags flgs env sigma t = norm_val (create_clos_infos flgs env) (inject (nf_evar sigma t)) let nf_beta = clos_norm_flags Closure.beta empty_env Evd.empty let nf_betaiota = clos_norm_flags Closure.betaiota empty_env Evd.empty let nf_betadeltaiota env sigma = clos_norm_flags Closure.betadeltaiota env sigma (* Attention reduire un beta-redexe avec un argument qui n'est pas une variable, peut changer enormement le temps de conversion lors du type checking : (fun x => x + x) M *) let rec whd_betaiotaevar_preserving_vm_cast env sigma t = let rec stacklam_var subst t stack = match (decomp_stack stack,kind_of_term t) with | Some (h,stacktl), Lambda (_,_,c) -> begin match kind_of_term h with | Rel i when not (evaluable_rel i env) -> stacklam_var (h::subst) c stacktl | Var id when not (evaluable_named id env)-> stacklam_var (h::subst) c stacktl | _ -> whrec (substl subst t, stack) end | _ -> whrec (substl subst t, stack) and whrec (x, stack as s) = match kind_of_term x with | Evar ev -> (match existential_opt_value sigma ev with | Some body -> whrec (body, stack) | None -> s) | Cast (c,VMcast,t) -> let c = app_stack (whrec (c,empty_stack)) in let t = app_stack (whrec (t,empty_stack)) in (mkCast(c,VMcast,t),stack) | Cast (c,DEFAULTcast,_) -> whrec (c, stack) | App (f,cl) -> whrec (f, append_stack cl stack) | Lambda (na,t,c) -> (match decomp_stack stack with | Some (a,m) -> stacklam_var [a] c m | _ -> s) | Case (ci,p,d,lf) -> let (c,cargs) = whrec (d, empty_stack) in if reducible_mind_case c then whrec (reduce_mind_case {mP=p; mconstr=c; mcargs=list_of_stack cargs; mci=ci; mlf=lf}, stack) else (mkCase (ci, p, app_stack (c,cargs), lf), stack) | x -> s in app_stack (whrec (t,empty_stack)) let nf_betaiotaevar_preserving_vm_cast = strong whd_betaiotaevar_preserving_vm_cast (* lazy weak head reduction functions *) let whd_flags flgs env sigma t = whd_val (create_clos_infos flgs env) (inject (nf_evar sigma t)) (********************************************************************) (* Conversion *) (********************************************************************) (* let fkey = Profile.declare_profile "fhnf";; let fhnf info v = Profile.profile2 fkey fhnf info v;; let fakey = Profile.declare_profile "fhnf_apply";; let fhnf_apply info k h a = Profile.profile4 fakey fhnf_apply info k h a;; *) (* Conversion utility functions *) type conversion_test = constraints -> constraints let pb_is_equal pb = pb = CONV let pb_equal = function | CUMUL -> CONV | CONV -> CONV let sort_cmp pb s0 s1 cuniv = match (s0,s1) with | (Prop c1, Prop c2) -> if c1 = c2 then cuniv else raise NotConvertible | (Prop c1, Type u) -> (match pb with CUMUL -> cuniv | _ -> raise NotConvertible) | (Type u1, Type u2) -> (match pb with | CONV -> enforce_eq u1 u2 cuniv | CUMUL -> enforce_geq u2 u1 cuniv) | (_, _) -> raise NotConvertible let base_sort_cmp pb s0 s1 = match (s0,s1) with | (Prop c1, Prop c2) -> c1 = c2 | (Prop c1, Type u) -> pb = CUMUL | (Type u1, Type u2) -> true | (_, _) -> false let test_conversion f env sigma x y = try let _ = f env (nf_evar sigma x) (nf_evar sigma y) in true with NotConvertible -> false let is_conv env sigma = test_conversion Reduction.conv env sigma let is_conv_leq env sigma = test_conversion Reduction.conv_leq env sigma let is_fconv = function | CONV -> is_conv | CUMUL -> is_conv_leq (********************************************************************) (* Special-Purpose Reduction *) (********************************************************************) let whd_meta metamap c = match kind_of_term c with | Meta p -> (try List.assoc p metamap with Not_found -> c) | _ -> c (* Try to replace all metas. Does not replace metas in the metas' values * Differs from (strong whd_meta). *) let plain_instance s c = let rec irec u = match kind_of_term u with | Meta p -> (try List.assoc p s with Not_found -> u) | App (f,l) when isCast f -> let (f,_,t) = destCast f in let l' = Array.map irec l in (match kind_of_term f with | Meta p -> (* Don't flatten application nodes: this is used to extract a proof-term from a proof-tree and we want to keep the structure of the proof-tree *) (try let g = List.assoc p s in match kind_of_term g with | App _ -> let h = id_of_string "H" in mkLetIn (Name h,g,t,mkApp(mkRel 1,Array.map (lift 1) l')) | _ -> mkApp (g,l') with Not_found -> mkApp (f,l')) | _ -> mkApp (irec f,l')) | Cast (m,_,_) when isMeta m -> (try List.assoc (destMeta m) s with Not_found -> u) | _ -> map_constr irec u in if s = [] then c else irec c (* Pourquoi ne fait-on pas nf_betaiota si s=[] ? *) let instance s c = if s = [] then c else local_strong whd_betaiota (plain_instance s c) (* pseudo-reduction rule: * [hnf_prod_app env s (Prod(_,B)) N --> B[N] * with an HNF on the first argument to produce a product. * if this does not work, then we use the string S as part of our * error message. *) let hnf_prod_app env sigma t n = match kind_of_term (whd_betadeltaiota env sigma t) with | Prod (_,_,b) -> subst1 n b | _ -> anomaly "hnf_prod_app: Need a product" let hnf_prod_appvect env sigma t nl = Array.fold_left (hnf_prod_app env sigma) t nl let hnf_prod_applist env sigma t nl = List.fold_left (hnf_prod_app env sigma) t nl let hnf_lam_app env sigma t n = match kind_of_term (whd_betadeltaiota env sigma t) with | Lambda (_,_,b) -> subst1 n b | _ -> anomaly "hnf_lam_app: Need an abstraction" let hnf_lam_appvect env sigma t nl = Array.fold_left (hnf_lam_app env sigma) t nl let hnf_lam_applist env sigma t nl = List.fold_left (hnf_lam_app env sigma) t nl let splay_prod env sigma = let rec decrec env m c = let t = whd_betadeltaiota env sigma c in match kind_of_term t with | Prod (n,a,c0) -> decrec (push_rel (n,None,a) env) ((n,a)::m) c0 | _ -> m,t in decrec env [] let splay_lambda env sigma = let rec decrec env m c = let t = whd_betadeltaiota env sigma c in match kind_of_term t with | Lambda (n,a,c0) -> decrec (push_rel (n,None,a) env) ((n,a)::m) c0 | _ -> m,t in decrec env [] let splay_prod_assum env sigma = let rec prodec_rec env l c = let t = whd_betadeltaiota_nolet env sigma c in match kind_of_term t with | Prod (x,t,c) -> prodec_rec (push_rel (x,None,t) env) (Sign.add_rel_decl (x, None, t) l) c | LetIn (x,b,t,c) -> prodec_rec (push_rel (x, Some b, t) env) (Sign.add_rel_decl (x, Some b, t) l) c | Cast (c,_,_) -> prodec_rec env l c | _ -> l,t in prodec_rec env Sign.empty_rel_context let splay_arity env sigma c = let l, c = splay_prod env sigma c in match kind_of_term c with | Sort s -> l,s | _ -> error "not an arity" let sort_of_arity env c = snd (splay_arity env Evd.empty c) let decomp_n_prod env sigma n = let rec decrec env m ln c = if m = 0 then (ln,c) else match kind_of_term (whd_betadeltaiota env sigma c) with | Prod (n,a,c0) -> decrec (push_rel (n,None,a) env) (m-1) (Sign.add_rel_decl (n,None,a) ln) c0 | _ -> error "decomp_n_prod: Not enough products" in decrec env n Sign.empty_rel_context exception NotASort let decomp_sort env sigma t = match kind_of_term (whd_betadeltaiota env sigma t) with | Sort s -> s | _ -> raise NotASort (* One step of approximation *) let rec apprec env sigma s = let (t, stack as s) = whd_betaiota_state s in match kind_of_term t with | Case (ci,p,d,lf) -> let (cr,crargs) = whd_betadeltaiota_stack env sigma d in let rslt = mkCase (ci, p, applist (cr,crargs), lf) in if reducible_mind_case cr then apprec env sigma (rslt, stack) else s | Fix fix -> (match reduce_fix (whd_betadeltaiota_state env sigma) fix stack with | Reduced s -> apprec env sigma s | NotReducible -> s) | _ -> s let hnf env sigma c = apprec env sigma (c, empty_stack) (* A reduction function like whd_betaiota but which keeps casts * and does not reduce redexes containing existential variables. * Used in Correctness. * Added by JCF, 29/1/98. *) let whd_programs_stack env sigma = let rec whrec (x, stack as s) = match kind_of_term x with | App (f,cl) -> let n = Array.length cl - 1 in let c = cl.(n) in if occur_existential c then s else whrec (mkApp (f, Array.sub cl 0 n), append_stack [|c|] stack) | LetIn (_,b,_,c) -> if occur_existential b then s else stacklam whrec [b] c stack | Lambda (_,_,c) -> (match decomp_stack stack with | None -> s | Some (a,m) -> stacklam whrec [a] c m) | Case (ci,p,d,lf) -> if occur_existential d then s else let (c,cargs) = whrec (d, empty_stack) in if reducible_mind_case c then whrec (reduce_mind_case {mP=p; mconstr=c; mcargs=list_of_stack cargs; mci=ci; mlf=lf}, stack) else (mkCase (ci, p, app_stack(c,cargs), lf), stack) | Fix fix -> (match reduce_fix whrec fix stack with | Reduced s' -> whrec s' | NotReducible -> s) | _ -> s in whrec let whd_programs env sigma x = app_stack (whd_programs_stack env sigma (x, empty_stack)) exception IsType let find_conclusion env sigma = let rec decrec env c = let t = whd_betadeltaiota env sigma c in match kind_of_term t with | Prod (x,t,c0) -> decrec (push_rel (x,None,t) env) c0 | Lambda (x,t,c0) -> decrec (push_rel (x,None,t) env) c0 | t -> t in decrec env let is_arity env sigma c = match find_conclusion env sigma c with | Sort _ -> true | _ -> false let info_arity env sigma c = match find_conclusion env sigma c with | Sort (Prop Null) -> false | Sort (Prop Pos) -> true | _ -> raise IsType let is_info_arity env sigma c = try (info_arity env sigma c) with IsType -> true let is_type_arity env sigma c = match find_conclusion env sigma c with | Sort (Type _) -> true | _ -> false let is_info_type env sigma t = let s = t.utj_type in (s = Prop Pos) || (s <> Prop Null && try info_arity env sigma t.utj_val with IsType -> true) (*************************************) (* Metas *) let meta_value evd mv = let rec valrec mv = try let b = meta_fvalue evd mv in instance (List.map (fun mv' -> (mv',valrec mv')) (Metaset.elements b.freemetas)) b.rebus with Anomaly _ | Not_found -> mkMeta mv in valrec mv let meta_instance env b = let c_sigma = List.map (fun mv -> (mv,meta_value env mv)) (Metaset.elements b.freemetas) in instance c_sigma b.rebus let nf_meta env c = meta_instance env (mk_freelisted c)