(* $Id$ *) open Pp open Util open Names open Sign open Evd open Term open Reduction open Environ open Type_errors open Typeops open Classops open List open Recordops open Evarutil open Pretype_errors open Rawterm open Evarconv open Coercion (***********************************************************************) (* This concerns Cases *) open Inductive open Instantiate let lift_context n l = let k = List.length l in list_map_i (fun i (name,c) -> (name,liftn n (k-i) c)) 0 l let transform_rec loc env sigma (p,c,lf) (indt,pt) = let (indf,realargs) = dest_ind_type indt in let (mispec,params) = dest_ind_family indf in let mI = mkMutInd (mis_inductive mispec) in let recargs = mis_recarg mispec in let tyi = mis_index mispec in if Array.length lf <> mis_nconstr mispec then error_number_branches_loc loc CCI env c (mkAppliedInd indt) (mis_nconstr mispec); if mis_is_recursive_subset [tyi] mispec then let dep = find_case_dep_nparams env sigma (c,p) indf pt in let init_depFvec i = if i = tyi then Some(dep,mkRel 1) else None in let depFvec = Array.init (mis_ntypes mispec) init_depFvec in (* build now the fixpoint *) let lnames,_ = get_arity indf in let nar = List.length lnames in let nparams = mis_nparams mispec in let constrs = get_constructors (lift_inductive_family (nar+2) indf) in let ci = make_default_case_info mispec in let branches = array_map3 (fun f t reca -> whd_beta (Indrec.make_rec_branch_arg env sigma (nparams,depFvec,nar+1) f t reca)) (Array.map (lift (nar+2)) lf) constrs recargs in let deffix = it_mkLambda_or_LetIn_name env (lambda_create env (applist (mI,List.append (List.map (lift (nar+1)) params) (extended_rel_list 0 lnames)), mkMutCase (ci, lift (nar+2) p, mkRel 1, branches))) (lift_rel_context 1 lnames) in if noccurn 1 deffix then whd_beta (applist (pop deffix,realargs@[c])) else let ind = applist (mI,(List.append (List.map (lift nar) params) (extended_rel_list 0 lnames))) in let typPfix = it_mkProd_or_LetIn_name env (prod_create env (ind, (if dep then let ext_lnames = (Anonymous,None,ind)::lnames in let args = extended_rel_list 0 ext_lnames in whd_beta (applist (lift (nar+1) p, args)) else let args = extended_rel_list 1 lnames in whd_beta (applist (lift (nar+1) p, args))))) lnames in let fix = mkFix (([|nar|],0), ([|typPfix|],[Name(id_of_string "F")],[|deffix|])) in applist (fix,realargs@[c]) else let ci = make_default_case_info mispec in mkMutCase (ci, p, c, lf) (***********************************************************************) let ctxt_of_ids cl = cl let mt_evd = Evd.empty let vect_lift_type = Array.mapi (fun i t -> type_app (lift i) t) let j_nf_ise sigma {uj_val=v;uj_type=t} = {uj_val=nf_ise1 sigma v;uj_type=type_app (nf_ise1 sigma) t} let jv_nf_ise sigma = Array.map (j_nf_ise sigma) (* Utilisé pour inférer le prédicat des Cases *) (* Semble exagérement fort *) (* Faudra préférer une unification entre les types de toutes les clauses *) (* et autoriser des ? à rester dans le résultat de l'unification *) let evar_type_fixpoint env isevars lna lar vdefj = let lt = Array.length vdefj in if Array.length lar = lt then for i = 0 to lt-1 do if not (the_conv_x_leq env isevars (vdefj.(i)).uj_type (lift lt lar.(i))) then error_ill_typed_rec_body CCI env i lna (jv_nf_ise !isevars vdefj) (Array.map (type_app (nf_ise1 !isevars)) lar) done let let_path = make_path ["Core"] (id_of_string "let") CCI let wrong_number_of_cases_message loc env isevars (c,ct) expn = let c = nf_ise1 !isevars c and ct = nf_ise1 !isevars ct in error_number_branches_loc loc CCI env c ct expn let check_branches_message loc env isevars c (explft,lft) = for i = 0 to Array.length explft - 1 do if not (the_conv_x_leq env isevars lft.(i) explft.(i)) then let c = nf_ise1 !isevars c and lfi = nf_betaiota env !isevars (nf_ise1 !isevars lft.(i)) in error_ill_formed_branch_loc loc CCI env c i lfi (nf_betaiota env !isevars explft.(i)) done (* coerce to tycon if any *) let inh_conv_coerce_to_tycon loc env isevars j = function | None -> j | Some typ -> inh_conv_coerce_to loc env isevars j typ (* let evar_type_case isevars env ct pt lft p c = let (mind,bty,rslty) = type_case_branches env !isevars ct pt p c in check_branches_message isevars env (c,ct) (bty,lft); (mind,rslty) *) let pretype_id loc env lvar id = try List.assoc id lvar with Not_found -> try let (n,typ) = lookup_rel_id id (rel_context env) in { uj_val = mkRel n; uj_type = type_app (lift n) typ } with Not_found -> try let typ = lookup_id_type id (named_context env) in { uj_val = mkVar id; uj_type = typ } with Not_found -> error_var_not_found_loc loc CCI id (*************************************************************************) (* Main pretyping function *) let pretype_ref isevars env lvar ref = let c = Declare.constr_of_reference !isevars env ref in make_judge c (Retyping.get_type_of env Evd.empty c) (* let pretype_ref _ isevars env lvar ref = ... | RConst (sp,ctxt) -> let cst = (sp,Array.map pretype ctxt) in make_judge (mkConst cst) (type_of_constant env !isevars cst) *) (* A traiter mais les tables globales nécessaires à cela pour l'instant | REVar (sp,ctxt) -> let ev = (sp,Array.map pretype ctxt) in let body = if Evd.is_defined !isevars sp then existential_value !isevars ev else mkEvar ev in let typ = existential_type !isevars ev in make_judge body typ | RInd (ind_sp,ctxt) -> let ind = (ind_sp,Array.map pretype ctxt) in make_judge (mkMutInd ind) (type_of_inductive env !isevars ind) | RConstruct (cstr_sp,ctxt) -> let cstr = (cstr_sp,Array.map pretype ctxt) in let typ = type_of_constructor env !isevars cstr in { uj_val=mkMutConstruct cstr; uj_type=typ } *) let pretype_sort = function | RProp c -> judge_of_prop_contents c | RType -> { uj_val = dummy_sort; uj_type = dummy_sort } (* [pretype tycon env isevars lvar lmeta cstr] attempts to type [cstr] *) (* in environment [env], with existential variables [!isevars] and *) (* the type constraint tycon *) let rec pretype tycon env isevars lvar lmeta = function | RRef (loc,ref) -> inh_conv_coerce_to_tycon loc env isevars (pretype_ref isevars env lvar ref) tycon | RVar (loc, id) -> inh_conv_coerce_to_tycon loc env isevars (pretype_id loc env lvar id) tycon | REvar (loc, ev) -> (* Ne faudrait-il pas s'assurer que hyps est bien un sous-contexte du contexte courant, et qu'il n'y a pas de Rel "caché" *) let hyps = (Evd.map !isevars ev).evar_hyps in let args = instance_from_named_context hyps in let c = mkEvar (ev, Array.of_list args) in let j = (Retyping.get_judgment_of env !isevars c) in inh_conv_coerce_to_tycon loc env isevars j tycon | RMeta (loc,n) -> let j = try List.assoc n lmeta with Not_found -> user_err_loc (loc,"pretype", [< 'sTR "Metavariable "; 'iNT n; 'sTR" is unbound" >]) in inh_conv_coerce_to_tycon loc env isevars j tycon | RHole loc -> if !compter then nbimpl:=!nbimpl+1; (match tycon with | Some ty -> { uj_val = new_isevar isevars env ty CCI; uj_type = ty } | None -> (match loc with None -> anomaly "There is an implicit argument I cannot solve" | Some loc -> user_err_loc (loc,"pretype", [< 'sTR "Cannot infer a term for this placeholder" >]))) | RRec (loc,fixkind,lfi,lar,vdef) -> let larj = Array.map (pretype_type empty_valcon env isevars lvar lmeta) lar in let lara = Array.map (fun a -> a.utj_val) larj in let nbfix = Array.length lfi in let lfi = List.map (fun id -> Name id) (Array.to_list lfi) in let newenv = array_fold_left2 (fun env id ar -> (push_rel_assum (id,ar) env)) env (Array.of_list (List.rev lfi)) (vect_lift_type lara) in let vdefj = Array.mapi (fun i def -> (* we lift nbfix times the type in tycon, because of * the nbfix variables pushed to newenv *) pretype (mk_tycon (lift nbfix (larj.(i).utj_val))) newenv isevars lvar lmeta def) vdef in evar_type_fixpoint env isevars lfi lara vdefj; let fixj = match fixkind with | RFix (vn,i as vni) -> let fix = (vni,(lara,List.rev lfi,Array.map j_val vdefj)) in check_fix env !isevars fix; make_judge (mkFix fix) lara.(i) | RCoFix i -> let cofix = (i,(lara,List.rev lfi,Array.map j_val vdefj)) in check_cofix env !isevars cofix; make_judge (mkCoFix cofix) lara.(i) in inh_conv_coerce_to_tycon loc env isevars fixj tycon | RSort (loc,s) -> inh_conv_coerce_to_tycon loc env isevars (pretype_sort s) tycon | RApp (loc,f,args) -> let fj = pretype empty_tycon env isevars lvar lmeta f in let floc = loc_of_rawconstr f in let rec apply_rec env n resj = function | [] -> resj | c::rest -> let argloc = loc_of_rawconstr c in let resj = inh_app_fun env isevars resj in match kind_of_term (whd_betadeltaiota env !isevars resj.uj_type) with | IsProd (na,c1,c2) -> let hj = pretype (mk_tycon c1) env isevars lvar lmeta c in let newresj = { uj_val = applist (j_val resj, [j_val hj]); uj_type = subst1 hj.uj_val c2 } in apply_rec env (n+1) newresj rest | _ -> let j_nf_ise env sigma {uj_val=v;uj_type=t} = { uj_val = nf_ise1 sigma v; uj_type = nf_ise1 sigma t } in let hj = pretype empty_tycon env isevars lvar lmeta c in error_cant_apply_not_functional_loc (Rawterm.join_loc floc argloc) env (j_nf_ise env !isevars resj) [j_nf_ise env !isevars hj] in let resj = apply_rec env 1 fj args in (* let apply_one_arg (floc,tycon,jl) c = let (dom,rng) = split_tycon floc env isevars tycon in let cj = pretype dom env isevars lvar lmeta c in let rng_tycon = option_app (subst1 cj.uj_val) rng in let argloc = loc_of_rawconstr c in (join_loc floc argloc,rng_tycon,(argloc,cj)::jl) in let _,_,jl = List.fold_left apply_one_arg (floc,mk_tycon j.uj_type,[]) args in let jl = List.rev jl in let resj = inh_apply_rel_list loc env isevars jl (floc,j) tycon in *) inh_conv_coerce_to_tycon loc env isevars resj tycon | RLambda(loc,name,c1,c2) -> let (dom,rng) = split_tycon loc env isevars tycon in let dom_valcon = valcon_of_tycon dom in let j = pretype_type dom_valcon env isevars lvar lmeta c1 in let var = (name,j.utj_val) in let j' = pretype rng (push_rel_assum var env) isevars lvar lmeta c2 in fst (abs_rel env !isevars name j.utj_val j') | RProd(loc,name,c1,c2) -> let j = pretype_type empty_valcon env isevars lvar lmeta c1 in let var = (name,j.utj_val) in let env' = push_rel_assum var env in let j' = pretype_type empty_valcon env' isevars lvar lmeta c2 in let resj = try fst (gen_rel env !isevars name j j') with TypeError _ as e -> Stdpp.raise_with_loc loc e in inh_conv_coerce_to_tycon loc env isevars resj tycon | RLetIn(loc,name,c1,c2) -> let j = pretype empty_tycon env isevars lvar lmeta c1 in let var = (name,j.uj_val,j.uj_type) in let j' = pretype tycon (push_rel_def var env) isevars lvar lmeta c2 in { uj_val = mkLetIn (name, j.uj_val, j.uj_type, j'.uj_val) ; uj_type = type_app (subst1 j.uj_val) j'.uj_type } | ROldCase (loc,isrec,po,c,lf) -> let cj = pretype empty_tycon env isevars lvar lmeta c in let (IndType (indf,realargs) as indt) = try find_rectype env !isevars cj.uj_type with Induc -> error_case_not_inductive CCI env (nf_ise1 !isevars cj.uj_val) (nf_ise1 !isevars cj.uj_type) in let pj = match po with | Some p -> pretype empty_tycon env isevars lvar lmeta p | None -> try match tycon with Some pred -> Retyping.get_judgment_of env !isevars pred | None -> error "notype" with UserError _ -> (* get type information from type of branches*) let expbr = Cases.branch_scheme env isevars isrec indf in let rec findtype i = if i >= Array.length lf then error_cant_find_case_type_loc loc env cj.uj_val else try let expti = expbr.(i) in let fj = pretype (mk_tycon expti) env isevars lvar lmeta lf.(i) in let efjt = nf_ise1 !isevars fj.uj_type in let pred = Cases.pred_case_ml_onebranch env !isevars isrec indt (i,fj.uj_val,efjt) in if has_undefined_isevars isevars pred then findtype (i+1) else let pty = Retyping.get_type_of env !isevars pred in { uj_val = pred; uj_type = pty } with UserError _ -> findtype (i+1) in findtype 0 in let evalPt = nf_ise1 !isevars pj.uj_type in let dep = find_case_dep_nparams env !isevars (cj.uj_val,pj.uj_val) indf evalPt in let (p,pt) = if dep then (pj.uj_val, evalPt) else let n = List.length realargs in let rec decomp n p = if n=0 then p else match kind_of_term p with | IsLambda (_,_,c) -> decomp (n-1) c | _ -> decomp (n-1) (applist (lift 1 p, [mkRel 1])) in let sign,s = decompose_prod_n n evalPt in let ind = build_dependent_inductive indf in let s' = mkProd (Anonymous, ind, s) in let ccl = lift 1 (decomp n pj.uj_val) in let ccl' = mkLambda (Anonymous, ind, ccl) in (lam_it ccl' sign, prod_it s' sign) in let (bty,rsty) = Indrec.type_rec_branches isrec env !isevars indt pt p cj.uj_val in if Array.length bty <> Array.length lf then wrong_number_of_cases_message loc env isevars (cj.uj_val,nf_ise1 !isevars cj.uj_type) (Array.length bty) else let lfj = array_map2 (fun tyc f -> pretype (mk_tycon tyc) env isevars lvar lmeta f) bty lf in let lfv = Array.map j_val lfj in let lft = Array.map (fun j -> j.uj_type) lfj in check_branches_message loc env isevars cj.uj_val (bty,lft); let v = if isrec then transform_rec loc env !isevars(p,cj.uj_val,lfv) (indt,pt) else let mis,_ = dest_ind_family indf in let ci = make_default_case_info mis in mkMutCase (ci, p, cj.uj_val, Array.map (fun j-> j.uj_val) lfj) in {uj_val = v; uj_type = rsty } | RCases (loc,prinfo,po,tml,eqns) -> Cases.compile_cases loc ((fun vtyc env -> pretype vtyc env isevars lvar lmeta),isevars) tycon env (* loc *) (po,tml,eqns) | RCast(loc,c,t) -> let tj = pretype_type (valcon_of_tycon tycon) env isevars lvar lmeta t in let cj = pretype (mk_tycon tj.utj_val) env isevars lvar lmeta c in inh_conv_coerce_to_tycon loc env isevars cj tycon (* [pretype_type valcon env isevars lvar lmeta c] coerces [c] into a type *) and pretype_type valcon env isevars lvar lmeta = function | RHole loc -> if !compter then nbimpl:=!nbimpl+1; (match valcon with | Some v -> { utj_val = v; utj_type = Retyping.get_sort_of env !isevars v } | None -> { utj_val = new_isevar isevars env dummy_sort CCI; utj_type = Type Univ.dummy_univ }) | c -> let j = pretype empty_tycon env isevars lvar lmeta c in let tj = inh_coerce_to_sort env isevars j in match valcon with | None -> tj | Some v -> if the_conv_x_leq env isevars v tj.utj_val then { utj_val = nf_ise1 !isevars tj.utj_val; utj_type = tj.utj_type } else error_unexpected_type_loc (loc_of_rawconstr c) env tj.utj_val v let unsafe_infer tycon isevars env lvar lmeta constr = reset_problems (); pretype tycon env isevars lvar lmeta constr let unsafe_infer_type valcon isevars env lvar lmeta constr = reset_problems (); pretype_type valcon env isevars lvar lmeta constr (* If fail_evar is false, [process_evars] turns unresolved Evar that were not in initial sigma into Meta's; otherwise it fail on the first unresolved Evar not already in the initial sigma Rem: Does a side-effect on reference metamap *) (* [fail_evar] says how to process unresolved evars: * true -> raise an error message * false -> convert them into new Metas (casted with their type) *) let process_evars fail_evar initial_sigma sigma metamap c = let rec proc_rec c = match kind_of_term c with | IsEvar (ev,args as k) when Evd.in_dom sigma ev -> if Evd.is_defined sigma ev then proc_rec (existential_value sigma k) else if Evd.in_dom initial_sigma ev then c else if fail_evar then errorlabstrm "whd_ise" [< 'sTR"There is an unknown subterm I cannot solve" >] else let n = new_meta () in metamap := (n, existential_type sigma k) :: !metamap; mkMeta n | _ -> map_constr proc_rec c in proc_rec c (* TODO: comment faire remonter l'information si le typage a resolu des variables du sigma original. il faudrait que la fonction de typage retourne aussi le nouveau sigma... *) type meta_map = (int * unsafe_judgment) list type var_map = (identifier * unsafe_judgment) list let ise_resolve_casted_gen fail_evar sigma env lvar lmeta typ c = let isevars = ref sigma in let j = unsafe_infer (mk_tycon typ) isevars env lvar lmeta c in let metamap = ref [] in let v = process_evars fail_evar sigma !isevars metamap j.uj_val in let t = type_app (process_evars fail_evar sigma !isevars metamap) j.uj_type in !metamap, {uj_val = v; uj_type = t } let ise_resolve_casted sigma env typ c = ise_resolve_casted_gen true sigma env [] [] typ c (* Raw calls to the unsafe inference machine: boolean says if we must fail on unresolved evars, or replace them by Metas; the unsafe_judgment list allows us to extend env with some bindings *) let ise_infer_gen fail_evar sigma env lvar lmeta exptyp c = let tycon = match exptyp with None -> empty_tycon | Some t -> mk_tycon t in let isevars = ref sigma in let j = unsafe_infer tycon isevars env lvar lmeta c in let metamap = ref [] in let v = process_evars fail_evar sigma !isevars metamap j.uj_val in let t = type_app (process_evars fail_evar sigma !isevars metamap) j.uj_type in !metamap, {uj_val = v; uj_type = t } let ise_infer_type_gen fail_evar sigma env lvar lmeta c = let isevars = ref sigma in let tj = unsafe_infer_type empty_valcon isevars env lvar lmeta c in let metamap = ref [] in let v = process_evars fail_evar sigma !isevars metamap tj.utj_val in !metamap, {utj_val = v; utj_type = tj.utj_type } let understand_judgment sigma env c = snd (ise_infer_gen true sigma env [] [] None c) let understand_type_judgment sigma env c = snd (ise_infer_type_gen true sigma env [] [] c) let understand sigma env c = let _, c = ise_infer_gen true sigma env [] [] None c in c.uj_val let understand_type sigma env c = let _,c = ise_infer_type_gen true sigma env [] [] c in c.utj_val let understand_gen sigma env lvar lmeta exptyp c = let _, c = ise_infer_gen true sigma env lvar lmeta exptyp c in c.uj_val let understand_gen_tcc sigma env lvar lmeta exptyp c = let metamap, c = ise_infer_gen false sigma env lvar lmeta exptyp c in metamap, c.uj_val