(***********************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) (* (name,liftn n (k-i) c)) 0 l let transform_rec loc env sigma (pj,c,lf) indt = let p = pj.uj_val in let ((ind,params) as indf,realargs) = dest_ind_type indt in let (mib,mip) = lookup_mind_specif env ind in let mI = mkInd ind in let recargs = mip.mind_listrec in let tyi = snd ind in let ci = make_default_case_info env ind in let nconstr = Array.length mip.mind_consnames in if Array.length lf <> nconstr then (let cj = {uj_val=c; uj_type=mkAppliedInd indt} in error_number_branches_loc loc env sigma cj nconstr); if mis_is_recursive_subset [tyi] mip then let (dep,_) = find_case_dep_nparams env (nf_evar sigma c, j_nf_evar sigma pj) indf in let init_depFvec i = if i = tyi then Some(dep,mkRel 1) else None in let depFvec = Array.init mib.mind_ntypes init_depFvec in (* build now the fixpoint *) let lnames,_ = get_arity env indf in let nar = List.length lnames in let nparams = mip.mind_nparams in let constrs = get_constructors env (lift_inductive_family (nar+2) indf) in let branches = array_map3 (fun f t reca -> whd_beta (Indrec.make_rec_branch_arg env sigma (nparams,depFvec,nar+1) f t reca)) (Array.map (lift (nar+2)) lf) constrs recargs in let deffix = it_mkLambda_or_LetIn_name env (lambda_create env (applist (mI,List.append (List.map (lift (nar+1)) params) (extended_rel_list 0 lnames)), mkCase (ci, lift (nar+2) p, mkRel 1, branches))) (lift_rel_context 1 lnames) in if noccurn 1 deffix then whd_beta (applist (pop deffix,realargs@[c])) else let ind = applist (mI,(List.append (List.map (lift nar) params) (extended_rel_list 0 lnames))) in let typPfix = it_mkProd_or_LetIn_name env (prod_create env (ind, (if dep then let ext_lnames = (Anonymous,None,ind)::lnames in let args = extended_rel_list 0 ext_lnames in whd_beta (applist (lift (nar+1) p, args)) else let args = extended_rel_list 1 lnames in whd_beta (applist (lift (nar+1) p, args))))) lnames in let fix = mkFix (([|nar|],0), ([|Name(id_of_string "F")|],[|typPfix|],[|deffix|])) in applist (fix,realargs@[c]) else mkCase (ci, p, c, lf) (***********************************************************************) (* To embed constr in rawconstr *) let ((constr_in : constr -> Dyn.t), (constr_out : Dyn.t -> constr)) = create "constr" let mt_evd = Evd.empty let vect_lift_type = Array.mapi (fun i t -> type_app (lift i) t) (* Utilisé pour inférer le prédicat des Cases *) (* Semble exagérement fort *) (* Faudra préférer une unification entre les types de toutes les clauses *) (* et autoriser des ? à rester dans le résultat de l'unification *) let evar_type_fixpoint loc env isevars lna lar vdefj = let lt = Array.length vdefj in if Array.length lar = lt then for i = 0 to lt-1 do if not (the_conv_x_leq env isevars (vdefj.(i)).uj_type (lift lt lar.(i))) then error_ill_typed_rec_body_loc loc env (evars_of isevars) i lna vdefj lar done let check_branches_message loc env isevars c (explft,lft) = for i = 0 to Array.length explft - 1 do if not (the_conv_x_leq env isevars lft.(i) explft.(i)) then let sigma = evars_of isevars in error_ill_formed_branch_loc loc env sigma c i lft.(i) explft.(i) done (* coerce to tycon if any *) let inh_conv_coerce_to_tycon loc env isevars j = function | None -> j | Some typ -> inh_conv_coerce_to loc env isevars j typ (* let evar_type_case isevars env ct pt lft p c = let (mind,bty,rslty) = type_case_branches env (evars_of isevars) ct pt p c in check_branches_message isevars env (c,ct) (bty,lft); (mind,rslty) *) let pretype_id loc env lvar id = try List.assoc id lvar with Not_found -> try let (n,typ) = lookup_rel_id id (rel_context env) in { uj_val = mkRel n; uj_type = type_app (lift n) typ } with Not_found -> try let (_,_,typ) = lookup_named id env in { uj_val = mkVar id; uj_type = typ } with Not_found -> error_var_not_found_loc loc id (*************************************************************************) (* Main pretyping function *) let pretype_ref isevars env lvar ref = let c = Declare.constr_of_reference ref in make_judge c (Retyping.get_type_of env Evd.empty c) let pretype_sort = function | RProp c -> judge_of_prop_contents c | RType _ -> judge_of_new_Type () (* [pretype tycon env isevars lvar lmeta cstr] attempts to type [cstr] *) (* in environment [env], with existential variables [(evars_of isevars)] and *) (* the type constraint tycon *) let rec pretype tycon env isevars lvar lmeta = function | RRef (loc,ref) -> inh_conv_coerce_to_tycon loc env isevars (pretype_ref isevars env lvar ref) tycon | RVar (loc, id) -> inh_conv_coerce_to_tycon loc env isevars (pretype_id loc env lvar id) tycon | REvar (loc, ev) -> (* Ne faudrait-il pas s'assurer que hyps est bien un sous-contexte du contexte courant, et qu'il n'y a pas de Rel "caché" *) let hyps = (Evd.map (evars_of isevars) ev).evar_hyps in let args = instance_from_named_context hyps in let c = mkEvar (ev, args) in let j = (Retyping.get_judgment_of env (evars_of isevars) c) in inh_conv_coerce_to_tycon loc env isevars j tycon | RMeta (loc,n) -> let j = try List.assoc n lmeta with Not_found -> user_err_loc (loc,"pretype", [< 'sTR "Metavariable "; 'iNT n; 'sTR" is unbound" >]) in inh_conv_coerce_to_tycon loc env isevars j tycon | RHole loc -> if !compter then nbimpl:=!nbimpl+1; (match tycon with | Some ty -> { uj_val = new_isevar isevars env ty; uj_type = ty } | None -> (match loc with None -> error "There is an implicit argument I cannot solve" | Some loc -> user_err_loc (loc,"pretype", [< 'sTR "Cannot infer a term for this placeholder" >]))) | RRec (loc,fixkind,names,lar,vdef) -> let larj = Array.map (pretype_type empty_valcon env isevars lvar lmeta) lar in let lara = Array.map (fun a -> a.utj_val) larj in let nbfix = Array.length lar in let names = Array.map (fun id -> Name id) names in let newenv = push_rec_types (names,lara,[||]) env in let vdefj = Array.mapi (fun i def -> (* we lift nbfix times the type in tycon, because of * the nbfix variables pushed to newenv *) pretype (mk_tycon (lift nbfix (larj.(i).utj_val))) newenv isevars lvar lmeta def) vdef in evar_type_fixpoint loc env isevars names lara vdefj; let fixj = match fixkind with | RFix (vn,i as vni) -> let fix = (vni,(names,lara,Array.map j_val vdefj)) in check_fix env fix; make_judge (mkFix fix) lara.(i) | RCoFix i -> let cofix = (i,(names,lara,Array.map j_val vdefj)) in check_cofix env cofix; make_judge (mkCoFix cofix) lara.(i) in inh_conv_coerce_to_tycon loc env isevars fixj tycon | RSort (loc,s) -> inh_conv_coerce_to_tycon loc env isevars (pretype_sort s) tycon | RApp (loc,f,args) -> let fj = pretype empty_tycon env isevars lvar lmeta f in let floc = loc_of_rawconstr f in let rec apply_rec env n resj = function | [] -> resj | c::rest -> let argloc = loc_of_rawconstr c in let resj = inh_app_fun env isevars resj in let resty = whd_betadeltaiota env (evars_of isevars) resj.uj_type in match kind_of_term resty with | Prod (na,c1,c2) -> let hj = pretype (mk_tycon c1) env isevars lvar lmeta c in let newresj = { uj_val = applist (j_val resj, [j_val hj]); uj_type = subst1 hj.uj_val c2 } in apply_rec env (n+1) newresj rest | _ -> let hj = pretype empty_tycon env isevars lvar lmeta c in error_cant_apply_not_functional_loc (Rawterm.join_loc floc argloc) env (evars_of isevars) resj [hj] in let resj = apply_rec env 1 fj args in (* let apply_one_arg (floc,tycon,jl) c = let (dom,rng) = split_tycon floc env isevars tycon in let cj = pretype dom env isevars lvar lmeta c in let rng_tycon = option_app (subst1 cj.uj_val) rng in let argloc = loc_of_rawconstr c in (join_loc floc argloc,rng_tycon,(argloc,cj)::jl) in let _,_,jl = List.fold_left apply_one_arg (floc,mk_tycon j.uj_type,[]) args in let jl = List.rev jl in let resj = inh_apply_rel_list loc env isevars jl (floc,j) tycon in *) inh_conv_coerce_to_tycon loc env isevars resj tycon | RLambda(loc,name,c1,c2) -> let (dom,rng) = split_tycon loc env isevars tycon in let dom_valcon = valcon_of_tycon dom in let j = pretype_type dom_valcon env isevars lvar lmeta c1 in let var = (name,None,j.utj_val) in let j' = pretype rng (push_rel var env) isevars lvar lmeta c2 in judge_of_abstraction env name j j' | RProd(loc,name,c1,c2) -> let j = pretype_type empty_valcon env isevars lvar lmeta c1 in let var = (name,j.utj_val) in let env' = push_rel_assum var env in let j' = pretype_type empty_valcon env' isevars lvar lmeta c2 in let resj = try judge_of_product env name j j' with TypeError _ as e -> Stdpp.raise_with_loc loc e in inh_conv_coerce_to_tycon loc env isevars resj tycon | RLetIn(loc,name,c1,c2) -> let j = pretype empty_tycon env isevars lvar lmeta c1 in let t = Evarutil.refresh_universes j.uj_type in let var = (name,Some j.uj_val,t) in let tycon = option_app (lift 1) tycon in let j' = pretype tycon (push_rel var env) isevars lvar lmeta c2 in { uj_val = mkLetIn (name, j.uj_val, t, j'.uj_val) ; uj_type = type_app (subst1 j.uj_val) j'.uj_type } | ROldCase (loc,isrec,po,c,lf) -> let cj = pretype empty_tycon env isevars lvar lmeta c in let (IndType (indf,realargs) as indt) = try find_rectype env Evd.empty (nf_evar (evars_of isevars) cj.uj_type) with Induc -> error_case_not_inductive_loc loc env (evars_of isevars) cj in let pj = match po with | Some p -> pretype empty_tycon env isevars lvar lmeta p | None -> try match tycon with Some pred -> Retyping.get_judgment_of env (evars_of isevars) pred | None -> error "notype" with UserError _ -> (* get type information from type of branches*) let expbr = Cases.branch_scheme env isevars isrec indf in let rec findtype i = if i >= Array.length lf then let sigma = evars_of isevars in error_cant_find_case_type_loc loc env sigma cj.uj_val else try let expti = expbr.(i) in let fj = pretype (mk_tycon expti) env isevars lvar lmeta lf.(i) in let pred = Cases.pred_case_ml_onebranch loc env (evars_of isevars) isrec indt (i,fj) in if has_undefined_isevars isevars pred then findtype (i+1) else let pty = Retyping.get_type_of env (evars_of isevars) pred in { uj_val = pred; uj_type = pty } with UserError _ -> findtype (i+1) in findtype 0 in let pj = j_nf_evar (evars_of isevars) pj in let (dep,_) = find_case_dep_nparams env (cj.uj_val,pj) indf in let pj = if dep then pj else let n = List.length realargs in let rec decomp n p = if n=0 then p else match kind_of_term p with | Lambda (_,_,c) -> decomp (n-1) c | _ -> decomp (n-1) (applist (lift 1 p, [mkRel 1])) in let sign,s = decompose_prod_n n pj.uj_type in let ind = build_dependent_inductive env indf in let s' = mkProd (Anonymous, ind, s) in let ccl = lift 1 (decomp n pj.uj_val) in let ccl' = mkLambda (Anonymous, ind, ccl) in {uj_val=lam_it ccl' sign; uj_type=prod_it s' sign} in let (bty,rsty) = Indrec.type_rec_branches isrec env (evars_of isevars) indt pj cj.uj_val in if Array.length bty <> Array.length lf then error_number_branches_loc loc env (evars_of isevars) cj (Array.length bty) else let lfj = array_map2 (fun tyc f -> pretype (mk_tycon tyc) env isevars lvar lmeta f) bty lf in let lfv = Array.map j_val lfj in let lft = Array.map (fun j -> j.uj_type) lfj in check_branches_message loc env isevars cj.uj_val (bty,lft); let v = if isrec then transform_rec loc env (evars_of isevars)(pj,cj.uj_val,lfv) indt else let mis,_ = dest_ind_family indf in let ci = make_default_case_info env mis in mkCase (ci, (nf_betaiota pj.uj_val), cj.uj_val, Array.map (fun j-> j.uj_val) lfj) in { uj_val = v; uj_type = rsty } | RCases (loc,prinfo,po,tml,eqns) -> Cases.compile_cases loc ((fun vtyc env -> pretype vtyc env isevars lvar lmeta),isevars) tycon env (* loc *) (po,tml,eqns) | RCast(loc,c,t) -> let tj = pretype_type empty_tycon env isevars lvar lmeta t in let cj = pretype (mk_tycon tj.utj_val) env isevars lvar lmeta c in (* User Casts are for helping pretyping, experimentally not to be kept*) (* ... except for Correctness *) let v = mkCast (cj.uj_val, tj.utj_val) in let cj = { uj_val = v; uj_type = tj.utj_val } in inh_conv_coerce_to_tycon loc env isevars cj tycon | RDynamic (loc,d) -> if (tag d) = "constr" then let c = constr_out d in let j = (Retyping.get_judgment_of env (evars_of isevars) c) in j (*inh_conv_coerce_to_tycon loc env isevars j tycon*) else user_err_loc (loc,"pretype",[< 'sTR "Not a constr tagged Dynamic" >]) (* [pretype_type valcon env isevars lvar lmeta c] coerces [c] into a type *) and pretype_type valcon env isevars lvar lmeta = function | RHole loc -> if !compter then nbimpl:=!nbimpl+1; (match valcon with | Some v -> { utj_val = v; utj_type = Retyping.get_sort_of env (evars_of isevars) v } | None -> let s = new_Type_sort () in { utj_val = new_isevar isevars env (mkSort s); utj_type = s}) | c -> let j = pretype empty_tycon env isevars lvar lmeta c in let tj = inh_coerce_to_sort env isevars j in match valcon with | None -> tj | Some v -> if the_conv_x_leq env isevars v tj.utj_val then tj else error_unexpected_type_loc (loc_of_rawconstr c) env (evars_of isevars) tj.utj_val v let unsafe_infer tycon isevars env lvar lmeta constr = let j = pretype tycon env isevars lvar lmeta constr in j_nf_evar (evars_of isevars) j let unsafe_infer_type valcon isevars env lvar lmeta constr = let tj = pretype_type valcon env isevars lvar lmeta constr in tj_nf_evar (evars_of isevars) tj (* If fail_evar is false, [process_evars] builds a meta_map with the unresolved Evar that were not in initial sigma; otherwise it fail on the first unresolved Evar not already in the initial sigma. *) (* [fail_evar] says how to process unresolved evars: * true -> raise an error message * false -> convert them into new Metas (casted with their type) *) (* assumes the defined existentials have been replaced in c (should be done in unsafe_infer and unsafe_infer_type) *) let check_evars fail_evar initial_sigma sigma c = let metamap = ref [] in let rec proc_rec c = match kind_of_term c with | Evar (ev,args as k) -> assert (Evd.in_dom sigma ev); if not (Evd.in_dom initial_sigma ev) then (if fail_evar then errorlabstrm "whd_ise" [< 'sTR"There is an unknown subterm I cannot solve" >] else (* try to avoid duplication *) (if not (List.exists (fun (k',_) -> k=k') !metamap) then metamap := (k, existential_type sigma k) :: !metamap)) | _ -> iter_constr proc_rec c in (proc_rec c; !metamap) (* TODO: comment faire remonter l'information si le typage a resolu des variables du sigma original. il faudrait que la fonction de typage retourne aussi le nouveau sigma... *) (* constr with holes *) type open_constr = (existential * types) list * constr let ise_resolve_casted_gen fail_evar sigma env lvar lmeta typ c = let isevars = create_evar_defs sigma in let j = unsafe_infer (mk_tycon typ) isevars env lvar lmeta c in let metamap = check_evars fail_evar sigma (evars_of isevars) (mkCast(j.uj_val,j.uj_type)) in (metamap, j) let ise_resolve_casted sigma env typ c = ise_resolve_casted_gen true sigma env [] [] typ c (* Raw calls to the unsafe inference machine: boolean says if we must fail on unresolved evars, or replace them by Metas; the unsafe_judgment list allows us to extend env with some bindings *) let ise_infer_gen fail_evar sigma env lvar lmeta exptyp c = let tycon = match exptyp with None -> empty_tycon | Some t -> mk_tycon t in let isevars = create_evar_defs sigma in let j = unsafe_infer tycon isevars env lvar lmeta c in let metamap = check_evars fail_evar sigma (evars_of isevars) (mkCast(j.uj_val,j.uj_type)) in (metamap, j) let ise_infer_type_gen fail_evar sigma env lvar lmeta c = let isevars = create_evar_defs sigma in let tj = unsafe_infer_type empty_valcon isevars env lvar lmeta c in let metamap = check_evars fail_evar sigma (evars_of isevars) tj.utj_val in (metamap, tj) type meta_map = (int * unsafe_judgment) list type var_map = (identifier * unsafe_judgment) list let understand_judgment sigma env c = snd (ise_infer_gen true sigma env [] [] None c) let understand_type_judgment sigma env c = snd (ise_infer_type_gen true sigma env [] [] c) let understand sigma env c = let _, c = ise_infer_gen true sigma env [] [] None c in c.uj_val let understand_type sigma env c = let _,c = ise_infer_type_gen true sigma env [] [] c in c.utj_val let understand_gen sigma env lvar lmeta exptyp c = let _, c = ise_infer_gen true sigma env lvar lmeta exptyp c in c.uj_val let understand_gen_tcc sigma env lvar lmeta exptyp c = let metamap, c = ise_infer_gen false sigma env lvar lmeta exptyp c in metamap, c.uj_val