(************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) (* push_rel_decl_to_named_context sigma d acc) (rel_context env) ~init:(empty_csubst, avoid, named_context env) let make_env env sigma = { env = env; extra = lazy (get_extra env sigma) } let rel_context env = rel_context env.env let push_rel sigma d env = { env = push_rel d env.env; extra = lazy (push_rel_decl_to_named_context sigma d (Lazy.force env.extra)); } let pop_rel_context n env sigma = make_env (pop_rel_context n env.env) sigma let push_rel_context sigma ctx env = { env = push_rel_context ctx env.env; extra = lazy (List.fold_right (fun d acc -> push_rel_decl_to_named_context sigma d acc) ctx (Lazy.force env.extra)); } let lookup_named id env = lookup_named id env.env let e_new_evar env evdref ?src ?naming typ = let open Context.Named.Declaration in let inst_vars = List.map (get_id %> mkVar) (named_context env.env) in let inst_rels = List.rev (rel_list 0 (nb_rel env.env)) in let (subst, _, nc) = Lazy.force env.extra in let typ' = csubst_subst subst typ in let instance = inst_rels @ inst_vars in let sign = val_of_named_context nc in let sigma = !evdref in let (sigma, e) = new_evar_instance sign sigma typ' ?src ?naming instance in evdref := sigma; e let push_rec_types sigma (lna,typarray,_) env = let ctxt = Array.map2_i (fun i na t -> Context.Rel.Declaration.LocalAssum (na, lift i t)) lna typarray in Array.fold_left (fun e assum -> push_rel sigma assum e) env ctxt end open ExtraEnv (* An auxiliary function for searching for fixpoint guard indexes *) exception Found of int array let nf_fix sigma (nas, cs, ts) = let inj c = EConstr.to_constr sigma c in (nas, Array.map inj cs, Array.map inj ts) let search_guard ?loc env possible_indexes fixdefs = (* Standard situation with only one possibility for each fix. *) (* We treat it separately in order to get proper error msg. *) let is_singleton = function [_] -> true | _ -> false in if List.for_all is_singleton possible_indexes then let indexes = Array.of_list (List.map List.hd possible_indexes) in let fix = ((indexes, 0),fixdefs) in (try check_fix env fix with reraise -> let (e, info) = CErrors.push reraise in let info = Option.cata (fun loc -> Loc.add_loc info loc) info loc in iraise (e, info)); indexes else (* we now search recursively among all combinations *) (try List.iter (fun l -> let indexes = Array.of_list l in let fix = ((indexes, 0),fixdefs) in (* spiwack: We search for a unspecified structural argument under the assumption that we need to check the guardedness condition (otherwise the first inductive argument will be chosen). A more robust solution may be to raise an error when totality is assumed but the strutural argument is not specified. *) try let flags = { (typing_flags env) with Declarations.check_guarded = true } in let env = Environ.set_typing_flags flags env in check_fix env fix; raise (Found indexes) with TypeError _ -> ()) (List.combinations possible_indexes); let errmsg = "Cannot guess decreasing argument of fix." in user_err ?loc ~hdr:"search_guard" (Pp.str errmsg) with Found indexes -> indexes) (* To force universe name declaration before use *) let strict_universe_declarations = ref true let is_strict_universe_declarations () = !strict_universe_declarations let _ = Goptions.(declare_bool_option { optdepr = false; optname = "strict universe declaration"; optkey = ["Strict";"Universe";"Declaration"]; optread = is_strict_universe_declarations; optwrite = (:=) strict_universe_declarations }) let _ = Goptions.(declare_bool_option { optdepr = false; optname = "minimization to Set"; optkey = ["Universe";"Minimization";"ToSet"]; optread = Universes.is_set_minimization; optwrite = (:=) Universes.set_minimization }) (** Miscellaneous interpretation functions *) let interp_known_universe_level evd r = let loc, qid = Libnames.qualid_of_reference r in try match r with | Libnames.Ident (loc, id) -> Evd.universe_of_name evd id | Libnames.Qualid _ -> raise Not_found with Not_found -> let univ, k = Nametab.locate_universe qid in Univ.Level.make univ k let interp_universe_level_name ~anon_rigidity evd r = try evd, interp_known_universe_level evd r with Not_found -> match r with (* Qualified generated name *) | Libnames.Qualid (loc, qid) -> let dp, i = Libnames.repr_qualid qid in let num = try int_of_string (Id.to_string i) with Failure _ -> user_err ?loc ~hdr:"interp_universe_level_name" (Pp.(str "Undeclared global universe: " ++ Libnames.pr_reference r)) in let level = Univ.Level.make dp num in let evd = try Evd.add_global_univ evd level with UGraph.AlreadyDeclared -> evd in evd, level | Libnames.Ident (loc, id) -> (* Undeclared *) if not (is_strict_universe_declarations ()) then new_univ_level_variable ?loc ~name:id univ_rigid evd else user_err ?loc ~hdr:"interp_universe_level_name" (Pp.(str "Undeclared universe: " ++ Id.print id)) let interp_universe ?loc evd = function | [] -> let evd, l = new_univ_level_variable ?loc univ_rigid evd in evd, Univ.Universe.make l | l -> List.fold_left (fun (evd, u) l -> let evd', u' = match l with | Some (l,n) -> (* [univ_flexible_alg] can produce algebraic universes in terms *) let anon_rigidity = univ_flexible in let evd', l = interp_universe_level_name ~anon_rigidity evd l in let u' = Univ.Universe.make l in (match n with | 0 -> evd', u' | 1 -> evd', Univ.Universe.super u' | _ -> user_err ?loc ~hdr:"interp_universe" (Pp.(str "Cannot interpret universe increment +" ++ int n))) | None -> let evd, l = new_univ_level_variable ?loc univ_flexible evd in evd, Univ.Universe.make l in (evd', Univ.sup u u')) (evd, Univ.Universe.type0m) l let interp_known_level_info ?loc evd = function | UUnknown | UAnonymous -> user_err ?loc ~hdr:"interp_known_level_info" (str "Anonymous universes not allowed here.") | UNamed ref -> try interp_known_universe_level evd ref with Not_found -> user_err ?loc ~hdr:"interp_known_level_info" (str "Undeclared universe " ++ Libnames.pr_reference ref) let interp_level_info ?loc evd : Misctypes.level_info -> _ = function | UUnknown -> new_univ_level_variable ?loc univ_rigid evd | UAnonymous -> new_univ_level_variable ?loc univ_flexible evd | UNamed s -> interp_universe_level_name ~anon_rigidity:univ_flexible evd s type inference_hook = env -> evar_map -> Evar.t -> evar_map * constr type inference_flags = { use_typeclasses : bool; solve_unification_constraints : bool; use_hook : inference_hook option; fail_evar : bool; expand_evars : bool } (* Compute the set of still-undefined initial evars up to restriction (e.g. clearing) and the set of yet-unsolved evars freshly created in the extension [sigma'] of [sigma] (excluding the restrictions of the undefined evars of [sigma] to be freshly created evars of [sigma']). Otherwise said, we partition the undefined evars of [sigma'] into those already in [sigma] or deriving from an evar in [sigma] by restriction, and the evars properly created in [sigma'] *) type frozen = | FrozenId of evar_info Evar.Map.t (** No pending evars. We do not put a set here not to reallocate like crazy, but the actual data of the map is not used, only keys matter. All functions operating on this type must have the same behaviour on [FrozenId map] and [FrozenProgress (Evar.Map.domain map, Evar.Set.empty)] *) | FrozenProgress of (Evar.Set.t * Evar.Set.t) Lazy.t (** Proper partition of the evar map as described above. *) let frozen_and_pending_holes (sigma, sigma') = let undefined0 = Evd.undefined_map sigma in (** Fast path when the undefined evars where not modified *) if undefined0 == Evd.undefined_map sigma' then FrozenId undefined0 else let data = lazy begin let add_derivative_of evk evi acc = match advance sigma' evk with None -> acc | Some evk' -> Evar.Set.add evk' acc in let frozen = Evar.Map.fold add_derivative_of undefined0 Evar.Set.empty in let fold evk _ accu = if not (Evar.Set.mem evk frozen) then Evar.Set.add evk accu else accu in let pending = Evd.fold_undefined fold sigma' Evar.Set.empty in (frozen, pending) end in FrozenProgress data let apply_typeclasses env evdref frozen fail_evar = let filter_frozen = match frozen with | FrozenId map -> fun evk -> Evar.Map.mem evk map | FrozenProgress (lazy (frozen, _)) -> fun evk -> Evar.Set.mem evk frozen in evdref := Typeclasses.resolve_typeclasses ~filter:(if Flags.is_program_mode () then (fun evk evi -> Typeclasses.no_goals_or_obligations evk evi && not (filter_frozen evk)) else (fun evk evi -> Typeclasses.no_goals evk evi && not (filter_frozen evk))) ~split:true ~fail:fail_evar env !evdref; if Flags.is_program_mode () then (* Try optionally solving the obligations *) evdref := Typeclasses.resolve_typeclasses ~filter:(fun evk evi -> Typeclasses.all_evars evk evi && not (filter_frozen evk)) ~split:true ~fail:false env !evdref let apply_inference_hook hook evdref frozen = match frozen with | FrozenId _ -> () | FrozenProgress (lazy (_, pending)) -> evdref := Evar.Set.fold (fun evk sigma -> if Evd.is_undefined sigma evk (* in particular not defined by side-effect *) then try let sigma, c = hook sigma evk in Evd.define evk (EConstr.Unsafe.to_constr c) sigma with Exit -> sigma else sigma) pending !evdref let apply_heuristics env evdref fail_evar = (* Resolve eagerly, potentially making wrong choices *) try evdref := solve_unif_constraints_with_heuristics ~ts:(Typeclasses.classes_transparent_state ()) env !evdref with e when CErrors.noncritical e -> let e = CErrors.push e in if fail_evar then iraise e let check_typeclasses_instances_are_solved env current_sigma frozen = (* Naive way, call resolution again with failure flag *) apply_typeclasses env (ref current_sigma) frozen true let check_extra_evars_are_solved env current_sigma frozen = match frozen with | FrozenId _ -> () | FrozenProgress (lazy (_, pending)) -> Evar.Set.iter (fun evk -> if not (Evd.is_defined current_sigma evk) then let (loc,k) = evar_source evk current_sigma in match k with | Evar_kinds.ImplicitArg (gr, (i, id), false) -> () | _ -> error_unsolvable_implicit ?loc env current_sigma evk None) pending (* [check_evars] fails if some unresolved evar remains *) let check_evars env initial_sigma sigma c = let rec proc_rec c = match EConstr.kind sigma c with | Evar (evk, _) -> if not (Evd.mem initial_sigma evk) then let (loc,k) = evar_source evk sigma in begin match k with | Evar_kinds.ImplicitArg (gr, (i, id), false) -> () | _ -> Pretype_errors.error_unsolvable_implicit ?loc env sigma evk None end | _ -> EConstr.iter sigma proc_rec c in proc_rec c let check_evars_are_solved env current_sigma frozen = check_typeclasses_instances_are_solved env current_sigma frozen; check_problems_are_solved env current_sigma; check_extra_evars_are_solved env current_sigma frozen (* Try typeclasses, hooks, unification heuristics ... *) let solve_remaining_evars flags env current_sigma init_sigma = let frozen = frozen_and_pending_holes (init_sigma, current_sigma) in let evdref = ref current_sigma in if flags.use_typeclasses then apply_typeclasses env evdref frozen false; if Option.has_some flags.use_hook then apply_inference_hook (Option.get flags.use_hook env) evdref frozen; if flags.solve_unification_constraints then apply_heuristics env evdref false; if flags.fail_evar then check_evars_are_solved env !evdref frozen; !evdref let check_evars_are_solved env current_sigma init_sigma = let frozen = frozen_and_pending_holes (init_sigma, current_sigma) in check_evars_are_solved env current_sigma frozen let process_inference_flags flags env initial_sigma (sigma,c,cty) = let sigma = solve_remaining_evars flags env sigma initial_sigma in let c = if flags.expand_evars then nf_evar sigma c else c in sigma,c,cty let adjust_evar_source evdref na c = match na, kind !evdref c with | Name id, Evar (evk,args) -> let evi = Evd.find !evdref evk in begin match evi.evar_source with | loc, Evar_kinds.QuestionMark (b,Anonymous) -> let src = (loc,Evar_kinds.QuestionMark (b,na)) in let (evd, evk') = restrict_evar !evdref evk (evar_filter evi) ~src None in evdref := evd; mkEvar (evk',args) | _ -> c end | _, _ -> c (* coerce to tycon if any *) let inh_conv_coerce_to_tycon ?loc resolve_tc env evdref j = function | None -> j | Some t -> evd_comb2 (Coercion.inh_conv_coerce_to ?loc resolve_tc env.ExtraEnv.env) evdref j t let check_instance loc subst = function | [] -> () | (id,_) :: _ -> if List.mem_assoc id subst then user_err ?loc (Id.print id ++ str "appears more than once.") else user_err ?loc (str "No such variable in the signature of the existential variable: " ++ Id.print id ++ str ".") (* used to enforce a name in Lambda when the type constraints itself is named, hence possibly dependent *) let orelse_name name name' = match name with | Anonymous -> name' | _ -> name let ltac_interp_name_env k0 lvar env sigma = (* envhd is the initial part of the env when pretype was called first *) (* (in practice is is probably 0, but we have to grant the specification of pretype which accepts to start with a non empty rel_context) *) (* tail is the part of the env enriched by pretyping *) let n = Context.Rel.length (rel_context env) - k0 in let ctxt,_ = List.chop n (rel_context env) in let open Context.Rel.Declaration in let ctxt' = List.smartmap (map_name (ltac_interp_name lvar)) ctxt in if List.equal (fun d1 d2 -> Name.equal (get_name d1) (get_name d2)) ctxt ctxt' then env else push_rel_context sigma ctxt' (pop_rel_context n env sigma) let invert_ltac_bound_name lvar env id0 id = let id' = Id.Map.find id lvar.ltac_idents in try mkRel (pi1 (lookup_rel_id id' (rel_context env))) with Not_found -> user_err (str "Ltac variable " ++ Id.print id0 ++ str " depends on pattern variable name " ++ Id.print id ++ str " which is not bound in current context.") let protected_get_type_of env sigma c = try Retyping.get_type_of ~lax:true env.ExtraEnv.env sigma c with Retyping.RetypeError _ -> user_err (str "Cannot reinterpret " ++ quote (print_constr c) ++ str " in the current environment.") let pretype_id pretype k0 loc env evdref lvar id = let sigma = !evdref in (* Look for the binder of [id] *) try let (n,_,typ) = lookup_rel_id id (rel_context env) in { uj_val = mkRel n; uj_type = lift n typ } with Not_found -> let env = ltac_interp_name_env k0 lvar env !evdref in (* Check if [id] is an ltac variable *) try let (ids,c) = Id.Map.find id lvar.ltac_constrs in let subst = List.map (invert_ltac_bound_name lvar env id) ids in let c = substl subst c in { uj_val = c; uj_type = protected_get_type_of env sigma c } with Not_found -> try let {closure;term} = Id.Map.find id lvar.ltac_uconstrs in let lvar = { ltac_constrs = closure.typed; ltac_uconstrs = closure.untyped; ltac_idents = closure.idents; ltac_genargs = Id.Map.empty; } in (* spiwack: I'm catching [Not_found] potentially too eagerly here, as the call to the main pretyping function is caught inside the try but I want to avoid refactoring this function too much for now. *) pretype env evdref lvar term with Not_found -> (* Check if [id] is a ltac variable not bound to a term *) (* and build a nice error message *) if Id.Map.mem id lvar.ltac_genargs then begin let Geninterp.Val.Dyn (typ, _) = Id.Map.find id lvar.ltac_genargs in user_err ?loc (str "Variable " ++ Id.print id ++ str " should be bound to a term but is \ bound to a " ++ Geninterp.Val.pr typ ++ str ".") end; (* Check if [id] is a section or goal variable *) try { uj_val = mkVar id; uj_type = NamedDecl.get_type (lookup_named id env) } with Not_found -> (* [id] not found, standard error message *) error_var_not_found ?loc id (*************************************************************************) (* Main pretyping function *) let interp_known_glob_level ?loc evd = function | GProp -> Univ.Level.prop | GSet -> Univ.Level.set | GType s -> interp_known_level_info ?loc evd s let interp_glob_level ?loc evd : Misctypes.glob_level -> _ = function | GProp -> evd, Univ.Level.prop | GSet -> evd, Univ.Level.set | GType s -> interp_level_info ?loc evd s let interp_instance ?loc evd ~len l = if len != List.length l then user_err ?loc ~hdr:"pretype" (str "Universe instance should have length " ++ int len) else let evd, l' = List.fold_left (fun (evd, univs) l -> let evd, l = interp_glob_level ?loc evd l in (evd, l :: univs)) (evd, []) l in if List.exists (fun l -> Univ.Level.is_prop l) l' then user_err ?loc ~hdr:"pretype" (str "Universe instances cannot contain Prop, polymorphic" ++ str " universe instances must be greater or equal to Set."); evd, Some (Univ.Instance.of_array (Array.of_list (List.rev l'))) let pretype_global ?loc rigid env evd gr us = let evd, instance = match us with | None -> evd, None | Some l -> let _, ctx = Global.constr_of_global_in_context env.ExtraEnv.env gr in let len = Univ.AUContext.size ctx in interp_instance ?loc evd ~len l in let (sigma, c) = Evd.fresh_global ?loc ~rigid ?names:instance env.ExtraEnv.env evd gr in (sigma, EConstr.of_constr c) let pretype_ref ?loc evdref env ref us = match ref with | VarRef id -> (* Section variable *) (try make_judge (mkVar id) (NamedDecl.get_type (lookup_named id env)) with Not_found -> (* This may happen if env is a goal env and section variables have been cleared - section variables should be different from goal variables *) Pretype_errors.error_var_not_found ?loc id) | ref -> let evd, c = pretype_global ?loc univ_flexible env !evdref ref us in let () = evdref := evd in let ty = unsafe_type_of env.ExtraEnv.env evd c in make_judge c ty let judge_of_Type ?loc evd s = let evd, s = interp_universe ?loc evd s in let judge = { uj_val = mkSort (Type s); uj_type = mkSort (Type (Univ.super s)) } in evd, judge let pretype_sort ?loc evdref = function | GProp -> judge_of_prop | GSet -> judge_of_set | GType s -> evd_comb1 (judge_of_Type ?loc) evdref s let new_type_evar env evdref loc = let sigma = !evdref in let (sigma, (e, _)) = Evarutil.new_type_evar env.ExtraEnv.env sigma univ_flexible_alg ~src:(loc,Evar_kinds.InternalHole) in evdref := sigma; e module ConstrInterpObj = struct type ('r, 'g, 't) obj = unbound_ltac_var_map -> env -> evar_map -> types -> 'g -> constr * evar_map let name = "constr_interp" let default _ = None end module ConstrInterp = Genarg.Register(ConstrInterpObj) let register_constr_interp0 = ConstrInterp.register0 (* [pretype tycon env evdref lvar lmeta cstr] attempts to type [cstr] *) (* in environment [env], with existential variables [evdref] and *) (* the type constraint tycon *) let rec pretype k0 resolve_tc (tycon : type_constraint) (env : ExtraEnv.t) evdref (lvar : ltac_var_map) t = let inh_conv_coerce_to_tycon ?loc = inh_conv_coerce_to_tycon ?loc resolve_tc in let pretype_type = pretype_type k0 resolve_tc in let pretype = pretype k0 resolve_tc in let open Context.Rel.Declaration in let loc = t.CAst.loc in match DAst.get t with | GRef (ref,u) -> inh_conv_coerce_to_tycon ?loc env evdref (pretype_ref ?loc evdref env ref u) tycon | GVar id -> inh_conv_coerce_to_tycon ?loc env evdref (pretype_id (fun e r l t -> pretype tycon e r l t) k0 loc env evdref lvar id) tycon | GEvar (id, inst) -> (* Ne faudrait-il pas s'assurer que hyps est bien un sous-contexte du contexte courant, et qu'il n'y a pas de Rel "caché" *) let evk = try Evd.evar_key id !evdref with Not_found -> user_err ?loc (str "Unknown existential variable.") in let hyps = evar_filtered_context (Evd.find !evdref evk) in let args = pretype_instance k0 resolve_tc env evdref lvar loc hyps evk inst in let c = mkEvar (evk, args) in let j = (Retyping.get_judgment_of env.ExtraEnv.env !evdref c) in inh_conv_coerce_to_tycon ?loc env evdref j tycon | GPatVar kind -> let env = ltac_interp_name_env k0 lvar env !evdref in let ty = match tycon with | Some ty -> ty | None -> new_type_evar env evdref loc in let k = Evar_kinds.MatchingVar kind in { uj_val = e_new_evar env evdref ~src:(loc,k) ty; uj_type = ty } | GHole (k, naming, None) -> let env = ltac_interp_name_env k0 lvar env !evdref in let ty = match tycon with | Some ty -> ty | None -> new_type_evar env evdref loc in { uj_val = e_new_evar env evdref ~src:(loc,k) ~naming ty; uj_type = ty } | GHole (k, _naming, Some arg) -> let env = ltac_interp_name_env k0 lvar env !evdref in let ty = match tycon with | Some ty -> ty | None -> new_type_evar env evdref loc in let open Genarg in let ist = lvar.ltac_genargs in let GenArg (Glbwit tag, arg) = arg in let interp = ConstrInterp.obj tag in let (c, sigma) = interp ist env.ExtraEnv.env !evdref ty arg in let () = evdref := sigma in { uj_val = c; uj_type = ty } | GRec (fixkind,names,bl,lar,vdef) -> let rec type_bl env ctxt = function [] -> ctxt | (na,bk,None,ty)::bl -> let ty' = pretype_type empty_valcon env evdref lvar ty in let dcl = LocalAssum (na, ty'.utj_val) in let dcl' = LocalAssum (ltac_interp_name lvar na,ty'.utj_val) in type_bl (push_rel !evdref dcl env) (Context.Rel.add dcl' ctxt) bl | (na,bk,Some bd,ty)::bl -> let ty' = pretype_type empty_valcon env evdref lvar ty in let bd' = pretype (mk_tycon ty'.utj_val) env evdref lvar bd in let dcl = LocalDef (na, bd'.uj_val, ty'.utj_val) in let dcl' = LocalDef (ltac_interp_name lvar na, bd'.uj_val, ty'.utj_val) in type_bl (push_rel !evdref dcl env) (Context.Rel.add dcl' ctxt) bl in let ctxtv = Array.map (type_bl env Context.Rel.empty) bl in let larj = Array.map2 (fun e ar -> pretype_type empty_valcon (push_rel_context !evdref e env) evdref lvar ar) ctxtv lar in let lara = Array.map (fun a -> a.utj_val) larj in let ftys = Array.map2 (fun e a -> it_mkProd_or_LetIn a e) ctxtv lara in let nbfix = Array.length lar in let names = Array.map (fun id -> Name id) names in let _ = match tycon with | Some t -> let fixi = match fixkind with | GFix (vn,i) -> i | GCoFix i -> i in e_conv env.ExtraEnv.env evdref ftys.(fixi) t | None -> true in (* Note: bodies are not used by push_rec_types, so [||] is safe *) let newenv = push_rec_types !evdref (names,ftys,[||]) env in let vdefj = Array.map2_i (fun i ctxt def -> (* we lift nbfix times the type in tycon, because of * the nbfix variables pushed to newenv *) let (ctxt,ty) = decompose_prod_n_assum !evdref (Context.Rel.length ctxt) (lift nbfix ftys.(i)) in let nenv = push_rel_context !evdref ctxt newenv in let j = pretype (mk_tycon ty) nenv evdref lvar def in { uj_val = it_mkLambda_or_LetIn j.uj_val ctxt; uj_type = it_mkProd_or_LetIn j.uj_type ctxt }) ctxtv vdef in Typing.check_type_fixpoint ?loc env.ExtraEnv.env evdref names ftys vdefj; let nf c = nf_evar !evdref c in let ftys = Array.map nf ftys in (** FIXME *) let fdefs = Array.map (fun x -> nf (j_val x)) vdefj in let fixj = match fixkind with | GFix (vn,i) -> (* First, let's find the guard indexes. *) (* If recursive argument was not given by user, we try all args. An earlier approach was to look only for inductive arguments, but doing it properly involves delta-reduction, and it finally doesn't seem worth the effort (except for huge mutual fixpoints ?) *) let possible_indexes = Array.to_list (Array.mapi (fun i (n,_) -> match n with | Some n -> [n] | None -> List.map_i (fun i _ -> i) 0 ctxtv.(i)) vn) in let fixdecls = (names,ftys,fdefs) in let indexes = search_guard ?loc env.ExtraEnv.env possible_indexes (nf_fix !evdref fixdecls) in make_judge (mkFix ((indexes,i),fixdecls)) ftys.(i) | GCoFix i -> let fixdecls = (names,ftys,fdefs) in let cofix = (i, fixdecls) in (try check_cofix env.ExtraEnv.env (i, nf_fix !evdref fixdecls) with reraise -> let (e, info) = CErrors.push reraise in let info = Option.cata (Loc.add_loc info) info loc in iraise (e, info)); make_judge (mkCoFix cofix) ftys.(i) in inh_conv_coerce_to_tycon ?loc env evdref fixj tycon | GSort s -> let j = pretype_sort ?loc evdref s in inh_conv_coerce_to_tycon ?loc env evdref j tycon | GProj (p, c) -> (* TODO: once GProj is used as an input syntax, use bidirectional typing here *) let cj = pretype empty_tycon env evdref lvar c in judge_of_projection env.ExtraEnv.env !evdref p cj | GApp (f,args) -> let fj = pretype empty_tycon env evdref lvar f in let floc = loc_of_glob_constr f in let length = List.length args in let candargs = (* Bidirectional typechecking hint: parameters of a constructor are completely determined by a typing constraint *) if Flags.is_program_mode () && length > 0 && isConstruct !evdref fj.uj_val then match tycon with | None -> [] | Some ty -> let ((ind, i), u) = destConstruct !evdref fj.uj_val in let npars = inductive_nparams ind in if Int.equal npars 0 then [] else try let IndType (indf, args) = find_rectype env.ExtraEnv.env !evdref ty in let ((ind',u'),pars) = dest_ind_family indf in if eq_ind ind ind' then List.map EConstr.of_constr pars else (* Let the usual code throw an error *) [] with Not_found -> [] else [] in let app_f = match EConstr.kind !evdref fj.uj_val with | Const (p, u) when Environ.is_projection p env.ExtraEnv.env -> let p = Projection.make p false in let pb = Environ.lookup_projection p env.ExtraEnv.env in let npars = pb.Declarations.proj_npars in fun n -> if n == npars + 1 then fun _ v -> mkProj (p, v) else fun f v -> applist (f, [v]) | _ -> fun _ f v -> applist (f, [v]) in let rec apply_rec env n resj candargs = function | [] -> resj | c::rest -> let argloc = loc_of_glob_constr c in let resj = evd_comb1 (Coercion.inh_app_fun resolve_tc env.ExtraEnv.env) evdref resj in let resty = whd_all env.ExtraEnv.env !evdref resj.uj_type in match EConstr.kind !evdref resty with | Prod (na,c1,c2) -> let tycon = Some c1 in let hj = pretype tycon env evdref lvar c in let candargs, ujval = match candargs with | [] -> [], j_val hj | arg :: args -> if e_conv env.ExtraEnv.env evdref (j_val hj) arg then args, nf_evar !evdref (j_val hj) else [], j_val hj in let ujval = adjust_evar_source evdref na ujval in let value, typ = app_f n (j_val resj) ujval, subst1 ujval c2 in let j = { uj_val = value; uj_type = typ } in apply_rec env (n+1) j candargs rest | _ -> let hj = pretype empty_tycon env evdref lvar c in error_cant_apply_not_functional ?loc:(Loc.merge_opt floc argloc) env.ExtraEnv.env !evdref resj [|hj|] in let resj = apply_rec env 1 fj candargs args in let resj = match EConstr.kind !evdref resj.uj_val with | App (f,args) -> if is_template_polymorphic env.ExtraEnv.env !evdref f then (* Special case for inductive type applications that must be refreshed right away. *) let c = mkApp (f, args) in let c = evd_comb1 (Evarsolve.refresh_universes (Some true) env.ExtraEnv.env) evdref c in let t = Retyping.get_type_of env.ExtraEnv.env !evdref c in make_judge c (* use this for keeping evars: resj.uj_val *) t else resj | _ -> resj in inh_conv_coerce_to_tycon ?loc env evdref resj tycon | GLambda(name,bk,c1,c2) -> let tycon' = evd_comb1 (fun evd tycon -> match tycon with | None -> evd, tycon | Some ty -> let evd, ty' = Coercion.inh_coerce_to_prod ?loc env.ExtraEnv.env evd ty in evd, Some ty') evdref tycon in let (name',dom,rng) = evd_comb1 (split_tycon ?loc env.ExtraEnv.env) evdref tycon' in let dom_valcon = valcon_of_tycon dom in let j = pretype_type dom_valcon env evdref lvar c1 in (* The name specified by ltac is used also to create bindings. So the substitution must also be applied on variables before they are looked up in the rel context. *) let var = LocalAssum (name, j.utj_val) in let j' = pretype rng (push_rel !evdref var env) evdref lvar c2 in let name = ltac_interp_name lvar name in let resj = judge_of_abstraction env.ExtraEnv.env (orelse_name name name') j j' in inh_conv_coerce_to_tycon ?loc env evdref resj tycon | GProd(name,bk,c1,c2) -> let j = pretype_type empty_valcon env evdref lvar c1 in (* The name specified by ltac is used also to create bindings. So the substitution must also be applied on variables before they are looked up in the rel context. *) let j' = match name with | Anonymous -> let j = pretype_type empty_valcon env evdref lvar c2 in { j with utj_val = lift 1 j.utj_val } | Name _ -> let var = LocalAssum (name, j.utj_val) in let env' = push_rel !evdref var env in pretype_type empty_valcon env' evdref lvar c2 in let name = ltac_interp_name lvar name in let resj = try judge_of_product env.ExtraEnv.env name j j' with TypeError _ as e -> let (e, info) = CErrors.push e in let info = Option.cata (Loc.add_loc info) info loc in iraise (e, info) in inh_conv_coerce_to_tycon ?loc env evdref resj tycon | GLetIn(name,c1,t,c2) -> let tycon1 = match t with | Some t -> mk_tycon (pretype_type empty_valcon env evdref lvar t).utj_val | None -> empty_tycon in let j = pretype tycon1 env evdref lvar c1 in let t = evd_comb1 (Evarsolve.refresh_universes ~onlyalg:true ~status:Evd.univ_flexible (Some false) env.ExtraEnv.env) evdref j.uj_type in (* The name specified by ltac is used also to create bindings. So the substitution must also be applied on variables before they are looked up in the rel context. *) let var = LocalDef (name, j.uj_val, t) in let tycon = lift_tycon 1 tycon in let j' = pretype tycon (push_rel !evdref var env) evdref lvar c2 in let name = ltac_interp_name lvar name in { uj_val = mkLetIn (name, j.uj_val, t, j'.uj_val) ; uj_type = subst1 j.uj_val j'.uj_type } | GLetTuple (nal,(na,po),c,d) -> let cj = pretype empty_tycon env evdref lvar c in let (IndType (indf,realargs)) = try find_rectype env.ExtraEnv.env !evdref cj.uj_type with Not_found -> let cloc = loc_of_glob_constr c in error_case_not_inductive ?loc:cloc env.ExtraEnv.env !evdref cj in let cstrs = get_constructors env.ExtraEnv.env indf in if not (Int.equal (Array.length cstrs) 1) then user_err ?loc (str "Destructing let is only for inductive types" ++ str " with one constructor."); let cs = cstrs.(0) in if not (Int.equal (List.length nal) cs.cs_nargs) then user_err ?loc:loc (str "Destructing let on this type expects " ++ int cs.cs_nargs ++ str " variables."); let fsign, record = let set_name na d = set_name na (map_rel_decl EConstr.of_constr d) in match get_projections env.ExtraEnv.env indf with | None -> List.map2 set_name (List.rev nal) cs.cs_args, false | Some ps -> let rec aux n k names l = match names, l with | na :: names, (LocalAssum (_,t) :: l) -> let t = EConstr.of_constr t in let proj = Projection.make ps.(cs.cs_nargs - k) true in LocalDef (na, lift (cs.cs_nargs - n) (mkProj (proj, cj.uj_val)), t) :: aux (n+1) (k + 1) names l | na :: names, (decl :: l) -> set_name na decl :: aux (n+1) k names l | [], [] -> [] | _ -> assert false in aux 1 1 (List.rev nal) cs.cs_args, true in let fsign = if Flags.version_strictly_greater Flags.V8_6 || Flags.version_less_or_equal Flags.VOld then Context.Rel.map (whd_betaiota !evdref) fsign else fsign (* beta-iota-normalization regression in 8.5 and 8.6 *) in let obj ind p v f = if not record then let nal = List.map (fun na -> ltac_interp_name lvar na) nal in let nal = List.rev nal in let fsign = List.map2 set_name nal fsign in let f = it_mkLambda_or_LetIn f fsign in let ci = make_case_info env.ExtraEnv.env (fst ind) LetStyle in mkCase (ci, p, cj.uj_val,[|f|]) else it_mkLambda_or_LetIn f fsign in let env_f = push_rel_context !evdref fsign env in (* Make dependencies from arity signature impossible *) let arsgn = let arsgn,_ = get_arity env.ExtraEnv.env indf in List.map (set_name Anonymous) arsgn in let indt = build_dependent_inductive env.ExtraEnv.env indf in let psign = LocalAssum (na, indt) :: arsgn in (* For locating names in [po] *) let predlvar = Cases.make_return_predicate_ltac_lvar !evdref na c cj.uj_val lvar in let psign' = LocalAssum (ltac_interp_name predlvar na, indt) :: arsgn in let psign' = List.map (fun d -> map_rel_decl EConstr.of_constr d) psign' in let psign' = Namegen.name_context env.ExtraEnv.env !evdref psign' in (* For naming abstractions in [po] *) let psign = List.map (fun d -> map_rel_decl EConstr.of_constr d) psign in let nar = List.length arsgn in (match po with | Some p -> let env_p = push_rel_context !evdref psign env in let pj = pretype_type empty_valcon env_p evdref predlvar p in let ccl = nf_evar !evdref pj.utj_val in let p = it_mkLambda_or_LetIn ccl psign' in let inst = (Array.map_to_list EConstr.of_constr cs.cs_concl_realargs) @[EConstr.of_constr (build_dependent_constructor cs)] in let lp = lift cs.cs_nargs p in let fty = hnf_lam_applist env.ExtraEnv.env !evdref lp inst in let fj = pretype (mk_tycon fty) env_f evdref lvar d in let v = let ind,_ = dest_ind_family indf in Typing.check_allowed_sort env.ExtraEnv.env !evdref ind cj.uj_val p; obj ind p cj.uj_val fj.uj_val in { uj_val = v; uj_type = (substl (realargs@[cj.uj_val]) ccl) } | None -> let tycon = lift_tycon cs.cs_nargs tycon in let fj = pretype tycon env_f evdref predlvar d in let ccl = nf_evar !evdref fj.uj_type in let ccl = if noccur_between !evdref 1 cs.cs_nargs ccl then lift (- cs.cs_nargs) ccl else error_cant_find_case_type ?loc env.ExtraEnv.env !evdref cj.uj_val in (* let ccl = refresh_universes ccl in *) let p = it_mkLambda_or_LetIn (lift (nar+1) ccl) psign' in let v = let ind,_ = dest_ind_family indf in Typing.check_allowed_sort env.ExtraEnv.env !evdref ind cj.uj_val p; obj ind p cj.uj_val fj.uj_val in { uj_val = v; uj_type = ccl }) | GIf (c,(na,po),b1,b2) -> let cj = pretype empty_tycon env evdref lvar c in let (IndType (indf,realargs)) = try find_rectype env.ExtraEnv.env !evdref cj.uj_type with Not_found -> let cloc = loc_of_glob_constr c in error_case_not_inductive ?loc:cloc env.ExtraEnv.env !evdref cj in let cstrs = get_constructors env.ExtraEnv.env indf in if not (Int.equal (Array.length cstrs) 2) then user_err ?loc (str "If is only for inductive types with two constructors."); let arsgn = let arsgn,_ = get_arity env.ExtraEnv.env indf in (* Make dependencies from arity signature impossible *) List.map (set_name Anonymous) arsgn in let nar = List.length arsgn in let indt = build_dependent_inductive env.ExtraEnv.env indf in let psign = LocalAssum (na, indt) :: arsgn in (* For locating names in [po] *) let predlvar = Cases.make_return_predicate_ltac_lvar !evdref na c cj.uj_val lvar in let psign' = LocalAssum (ltac_interp_name predlvar na, indt) :: arsgn in let psign' = List.map (fun d -> map_rel_decl EConstr.of_constr d) psign' in let psign' = Namegen.name_context env.ExtraEnv.env !evdref psign' in (* For naming abstractions in [po] *) let psign = List.map (fun d -> map_rel_decl EConstr.of_constr d) psign in let pred,p = match po with | Some p -> let env_p = push_rel_context !evdref psign env in let pj = pretype_type empty_valcon env_p evdref predlvar p in let ccl = nf_evar !evdref pj.utj_val in let pred = it_mkLambda_or_LetIn ccl psign' in let typ = lift (- nar) (beta_applist !evdref (pred,[cj.uj_val])) in pred, typ | None -> let p = match tycon with | Some ty -> ty | None -> let env = ltac_interp_name_env k0 lvar env !evdref in new_type_evar env evdref loc in it_mkLambda_or_LetIn (lift (nar+1) p) psign', p in let pred = nf_evar !evdref pred in let p = nf_evar !evdref p in let f cs b = let n = Context.Rel.length cs.cs_args in let pi = lift n pred in (* liftn n 2 pred ? *) let pi = beta_applist !evdref (pi, [EConstr.of_constr (build_dependent_constructor cs)]) in let cs_args = List.map (fun d -> map_rel_decl EConstr.of_constr d) cs.cs_args in let cs_args = if Flags.version_strictly_greater Flags.V8_6 || Flags.version_less_or_equal Flags.VOld then Context.Rel.map (whd_betaiota !evdref) cs_args else cs_args (* beta-iota-normalization regression in 8.5 and 8.6 *) in let csgn = List.map (set_name Anonymous) cs_args in let env_c = push_rel_context !evdref csgn env in let bj = pretype (mk_tycon pi) env_c evdref lvar b in it_mkLambda_or_LetIn bj.uj_val cs_args in let b1 = f cstrs.(0) b1 in let b2 = f cstrs.(1) b2 in let v = let ind,_ = dest_ind_family indf in let ci = make_case_info env.ExtraEnv.env (fst ind) IfStyle in let pred = nf_evar !evdref pred in Typing.check_allowed_sort env.ExtraEnv.env !evdref ind cj.uj_val pred; mkCase (ci, pred, cj.uj_val, [|b1;b2|]) in let cj = { uj_val = v; uj_type = p } in inh_conv_coerce_to_tycon ?loc env evdref cj tycon | GCases (sty,po,tml,eqns) -> Cases.compile_cases ?loc sty ((fun vtyc env evdref -> pretype vtyc (make_env env !evdref) evdref),evdref) tycon env.ExtraEnv.env (* loc *) lvar (po,tml,eqns) | GCast (c,k) -> let cj = match k with | CastCoerce -> let cj = pretype empty_tycon env evdref lvar c in evd_comb1 (Coercion.inh_coerce_to_base ?loc env.ExtraEnv.env) evdref cj | CastConv t | CastVM t | CastNative t -> let k = (match k with CastVM _ -> VMcast | CastNative _ -> NATIVEcast | _ -> DEFAULTcast) in let tj = pretype_type empty_valcon env evdref lvar t in let tval = evd_comb1 (Evarsolve.refresh_universes ~onlyalg:true ~status:Evd.univ_flexible (Some false) env.ExtraEnv.env) evdref tj.utj_val in let tval = nf_evar !evdref tval in let cj, tval = match k with | VMcast -> let cj = pretype empty_tycon env evdref lvar c in let cty = nf_evar !evdref cj.uj_type and tval = nf_evar !evdref tval in if not (occur_existential !evdref cty || occur_existential !evdref tval) then let (evd,b) = Reductionops.vm_infer_conv env.ExtraEnv.env !evdref cty tval in if b then (evdref := evd; cj, tval) else error_actual_type ?loc env.ExtraEnv.env !evdref cj tval (ConversionFailed (env.ExtraEnv.env,cty,tval)) else user_err ?loc (str "Cannot check cast with vm: " ++ str "unresolved arguments remain.") | NATIVEcast -> let cj = pretype empty_tycon env evdref lvar c in let cty = nf_evar !evdref cj.uj_type and tval = nf_evar !evdref tval in begin let (evd,b) = Nativenorm.native_infer_conv env.ExtraEnv.env !evdref cty tval in if b then (evdref := evd; cj, tval) else error_actual_type ?loc env.ExtraEnv.env !evdref cj tval (ConversionFailed (env.ExtraEnv.env,cty,tval)) end | _ -> pretype (mk_tycon tval) env evdref lvar c, tval in let v = mkCast (cj.uj_val, k, tval) in { uj_val = v; uj_type = tval } in inh_conv_coerce_to_tycon ?loc env evdref cj tycon and pretype_instance k0 resolve_tc env evdref lvar loc hyps evk update = let f decl (subst,update) = let id = NamedDecl.get_id decl in let t = replace_vars subst (EConstr.of_constr (NamedDecl.get_type decl)) in let c, update = try let c = List.assoc id update in let c = pretype k0 resolve_tc (mk_tycon t) env evdref lvar c in c.uj_val, List.remove_assoc id update with Not_found -> try let (n,_,t') = lookup_rel_id id (rel_context env) in if is_conv env.ExtraEnv.env !evdref t t' then mkRel n, update else raise Not_found with Not_found -> try let t' = env |> lookup_named id |> NamedDecl.get_type in if is_conv env.ExtraEnv.env !evdref t t' then mkVar id, update else raise Not_found with Not_found -> user_err ?loc (str "Cannot interpret " ++ pr_existential_key !evdref evk ++ str " in current context: no binding for " ++ Id.print id ++ str ".") in ((id,c)::subst, update) in let subst,inst = List.fold_right f hyps ([],update) in check_instance loc subst inst; Array.map_of_list snd subst (* [pretype_type valcon env evdref lvar c] coerces [c] into a type *) and pretype_type k0 resolve_tc valcon (env : ExtraEnv.t) evdref lvar c = match DAst.get c with | GHole (knd, naming, None) -> let loc = loc_of_glob_constr c in (match valcon with | Some v -> let s = let sigma = !evdref in let t = Retyping.get_type_of env.ExtraEnv.env sigma v in match EConstr.kind sigma (whd_all env.ExtraEnv.env sigma t) with | Sort s -> ESorts.kind sigma s | Evar ev when is_Type sigma (existential_type sigma ev) -> evd_comb1 (define_evar_as_sort env.ExtraEnv.env) evdref ev | _ -> anomaly (Pp.str "Found a type constraint which is not a type.") in (* Correction of bug #5315 : we need to define an evar for *all* holes *) let evkt = e_new_evar env evdref ~src:(loc, knd) ~naming (mkSort s) in let ev,_ = destEvar !evdref evkt in evdref := Evd.define ev (to_constr !evdref v) !evdref; (* End of correction of bug #5315 *) { utj_val = v; utj_type = s } | None -> let env = ltac_interp_name_env k0 lvar env !evdref in let s = evd_comb0 (new_sort_variable univ_flexible_alg) evdref in { utj_val = e_new_evar env evdref ~src:(loc, knd) ~naming (mkSort s); utj_type = s}) | _ -> let j = pretype k0 resolve_tc empty_tycon env evdref lvar c in let loc = loc_of_glob_constr c in let tj = evd_comb1 (Coercion.inh_coerce_to_sort ?loc env.ExtraEnv.env) evdref j in match valcon with | None -> tj | Some v -> if e_cumul env.ExtraEnv.env evdref v tj.utj_val then tj else error_unexpected_type ?loc:(loc_of_glob_constr c) env.ExtraEnv.env !evdref tj.utj_val v let ise_pretype_gen flags env sigma lvar kind c = let env = make_env env sigma in let evdref = ref sigma in let k0 = Context.Rel.length (rel_context env) in let c', c'_ty = match kind with | WithoutTypeConstraint -> let j = pretype k0 flags.use_typeclasses empty_tycon env evdref lvar c in j.uj_val, j.uj_type | OfType exptyp -> let j = pretype k0 flags.use_typeclasses (mk_tycon exptyp) env evdref lvar c in j.uj_val, j.uj_type | IsType -> let tj = pretype_type k0 flags.use_typeclasses empty_valcon env evdref lvar c in tj.utj_val, mkSort tj.utj_type in process_inference_flags flags env.ExtraEnv.env sigma (!evdref,c',c'_ty) let default_inference_flags fail = { use_typeclasses = true; solve_unification_constraints = true; use_hook = None; fail_evar = fail; expand_evars = true } let no_classes_no_fail_inference_flags = { use_typeclasses = false; solve_unification_constraints = true; use_hook = None; fail_evar = false; expand_evars = true } let all_and_fail_flags = default_inference_flags true let all_no_fail_flags = default_inference_flags false let ise_pretype_gen_ctx flags env sigma lvar kind c = let evd, c, _ = ise_pretype_gen flags env sigma lvar kind c in let evd, f = Evarutil.nf_evars_and_universes evd in f (EConstr.Unsafe.to_constr c), Evd.evar_universe_context evd (** Entry points of the high-level type synthesis algorithm *) let understand ?(flags=all_and_fail_flags) ?(expected_type=WithoutTypeConstraint) env sigma c = ise_pretype_gen_ctx flags env sigma empty_lvar expected_type c let understand_tcc_ty ?(flags=all_no_fail_flags) env sigma ?(expected_type=WithoutTypeConstraint) c = ise_pretype_gen flags env sigma empty_lvar expected_type c let understand_tcc ?flags env sigma ?expected_type c = let sigma, c, _ = understand_tcc_ty ?flags env sigma ?expected_type c in sigma, c let understand_ltac flags env sigma lvar kind c = let (sigma, c, _) = ise_pretype_gen flags env sigma lvar kind c in (sigma, c) let pretype k0 resolve_tc typcon env evdref lvar t = pretype k0 resolve_tc typcon (make_env env !evdref) evdref lvar t let pretype_type k0 resolve_tc valcon env evdref lvar t = pretype_type k0 resolve_tc valcon (make_env env !evdref) evdref lvar t