(************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) (* match dest_recarg ra with | Mrec (_,i) -> List.mem i listind | _ -> false) rvec in Array.exists one_is_rec (dest_subterms rarg) let mis_is_recursive (ind,mib,mip) = mis_is_recursive_subset (List.interval 0 (mib.mind_ntypes - 1)) mip.mind_recargs let mis_nf_constructor_type (ind,mib,mip) j = let specif = mip.mind_nf_lc and ntypes = mib.mind_ntypes and nconstr = Array.length mip.mind_consnames in let make_Ik k = mkInd ((fst ind),ntypes-k-1) in if j > nconstr then error "Not enough constructors in the type."; substl (List.tabulate make_Ik ntypes) specif.(j-1) (* Arity of constructors excluding parameters and local defs *) let mis_constr_nargs indsp = let (mib,mip) = Global.lookup_inductive indsp in let recargs = dest_subterms mip.mind_recargs in Array.map List.length recargs let mis_constr_nargs_env env (kn,i) = let mib = Environ.lookup_mind kn env in let mip = mib.mind_packets.(i) in let recargs = dest_subterms mip.mind_recargs in Array.map List.length recargs (* Arity of constructors excluding local defs *) let mis_constructor_nargs (indsp,j) = let (mib,mip) = Global.lookup_inductive indsp in recarg_length mip.mind_recargs j + mib.mind_nparams let mis_constructor_nargs_env env ((kn,i),j) = let mib = Environ.lookup_mind kn env in let mip = mib.mind_packets.(i) in recarg_length mip.mind_recargs j + mib.mind_nparams (* Arity of constructors with arg and defs *) let mis_constructor_nhyps (indsp,j) = let (mib,mip) = Global.lookup_inductive indsp in mip.mind_consnrealdecls.(j-1) + rel_context_length (mib.mind_params_ctxt) let mis_constructor_nhyps_env env ((kn,i),j) = let mib = Environ.lookup_mind kn env in let mip = mib.mind_packets.(i) in mip.mind_consnrealdecls.(j-1) + rel_context_length (mib.mind_params_ctxt) let constructor_nrealargs env (ind,j) = let (_,mip) = Inductive.lookup_mind_specif env ind in recarg_length mip.mind_recargs j let constructor_nrealhyps (ind,j) = let (mib,mip) = Global.lookup_inductive ind in mip.mind_consnrealdecls.(j-1) let get_full_arity_sign env ind = let (mib,mip) = Inductive.lookup_mind_specif env ind in mip.mind_arity_ctxt let nconstructors ind = let (mib,mip) = Inductive.lookup_mind_specif (Global.env()) ind in Array.length mip.mind_consnames let mis_constructor_has_local_defs (indsp,j) = let (mib,mip) = Global.lookup_inductive indsp in let l1 = mip.mind_consnrealdecls.(j-1) + rel_context_length (mib.mind_params_ctxt) in let l2 = recarg_length mip.mind_recargs j + mib.mind_nparams in not (Int.equal l1 l2) let inductive_has_local_defs ind = let (mib,mip) = Global.lookup_inductive ind in let l1 = rel_context_length (mib.mind_params_ctxt) + mip.mind_nrealargs_ctxt in let l2 = mib.mind_nparams + mip.mind_nrealargs in not (Int.equal l1 l2) (* Length of arity (w/o local defs) *) let inductive_nparams ind = (fst (Global.lookup_inductive ind)).mind_nparams let inductive_nargs ind = let (mib,mip) = Global.lookup_inductive ind in (rel_context_length (mib.mind_params_ctxt), mip.mind_nrealargs_ctxt) let inductive_nargs_env env ind = let (mib,mip) = Inductive.lookup_mind_specif env ind in (rel_context_length (mib.mind_params_ctxt), mip.mind_nrealargs_ctxt) let allowed_sorts env (kn,i as ind) = let (mib,mip) = Inductive.lookup_mind_specif env ind in mip.mind_kelim (* Annotation for cases *) let make_case_info env ind style = let (mib,mip) = Inductive.lookup_mind_specif env ind in let print_info = { ind_nargs = mip.mind_nrealargs_ctxt; style = style } in { ci_ind = ind; ci_npar = mib.mind_nparams; ci_cstr_ndecls = mip.mind_consnrealdecls; ci_pp_info = print_info } (*s Useful functions *) type constructor_summary = { cs_cstr : constructor; cs_params : constr list; cs_nargs : int; cs_args : rel_context; cs_concl_realargs : constr array } let lift_constructor n cs = { cs_cstr = cs.cs_cstr; cs_params = List.map (lift n) cs.cs_params; cs_nargs = cs.cs_nargs; cs_args = lift_rel_context n cs.cs_args; cs_concl_realargs = Array.map (liftn n (cs.cs_nargs+1)) cs.cs_concl_realargs } (* Accept less parameters than in the signature *) let instantiate_params t args sign = let rec inst s t = function | ((_,None,_)::ctxt,a::args) -> (match kind_of_term t with | Prod(_,_,t) -> inst (a::s) t (ctxt,args) | _ -> anomaly"instantiate_params: type, ctxt and args mismatch") | ((_,(Some b),_)::ctxt,args) -> (match kind_of_term t with | LetIn(_,_,_,t) -> inst ((substl s b)::s) t (ctxt,args) | _ -> anomaly"instantiate_params: type, ctxt and args mismatch") | _, [] -> substl s t | _ -> anomaly"instantiate_params: type, ctxt and args mismatch" in inst [] t (List.rev sign,args) let get_constructor (ind,mib,mip,params) j = assert (j <= Array.length mip.mind_consnames); let typi = mis_nf_constructor_type (ind,mib,mip) j in let typi = instantiate_params typi params mib.mind_params_ctxt in let (args,ccl) = decompose_prod_assum typi in let (_,allargs) = decompose_app ccl in let vargs = List.skipn (List.length params) allargs in { cs_cstr = ith_constructor_of_inductive ind j; cs_params = params; cs_nargs = rel_context_length args; cs_args = args; cs_concl_realargs = Array.of_list vargs } let get_constructors env (ind,params) = let (mib,mip) = Inductive.lookup_mind_specif env ind in Array.init (Array.length mip.mind_consnames) (fun j -> get_constructor (ind,mib,mip,params) (j+1)) (* substitution in a signature *) let substnl_rel_context subst n sign = let rec aux n = function | d::sign -> substnl_decl subst n d :: aux (n+1) sign | [] -> [] in List.rev (aux n (List.rev sign)) let substl_rel_context subst = substnl_rel_context subst 0 let instantiate_context sign args = let rec aux subst = function | (_,None,_)::sign, a::args -> aux (a::subst) (sign,args) | (_,Some b,_)::sign, args -> aux (substl subst b::subst) (sign,args) | [], [] -> subst | _ -> anomaly "Signature/instance mismatch in inductive family" in aux [] (List.rev sign,args) let get_arity env (ind,params) = let (mib,mip) = Inductive.lookup_mind_specif env ind in let parsign = (* Dynamically detect if called with an instance of recursively uniform parameter only or also of non recursively uniform parameters *) let parsign = mib.mind_params_ctxt in let nnonrecparams = mib.mind_nparams - mib.mind_nparams_rec in if Int.equal (List.length params) (rel_context_nhyps parsign - nnonrecparams) then snd (List.chop nnonrecparams mib.mind_params_ctxt) else parsign in let arproperlength = List.length mip.mind_arity_ctxt - List.length parsign in let arsign,_ = List.chop arproperlength mip.mind_arity_ctxt in let subst = instantiate_context parsign params in (substl_rel_context subst arsign, Inductive.inductive_sort_family mip) (* Functions to build standard types related to inductive *) let build_dependent_constructor cs = applist (mkConstruct cs.cs_cstr, (List.map (lift cs.cs_nargs) cs.cs_params) @(extended_rel_list 0 cs.cs_args)) let build_dependent_inductive env ((ind, params) as indf) = let arsign,_ = get_arity env indf in let nrealargs = List.length arsign in applist (mkInd ind, (List.map (lift nrealargs) params)@(extended_rel_list 0 arsign)) (* builds the arity of an elimination predicate in sort [s] *) let make_arity_signature env dep indf = let (arsign,_) = get_arity env indf in if dep then (* We need names everywhere *) name_context env ((Anonymous,None,build_dependent_inductive env indf)::arsign) (* Costly: would be better to name once for all at definition time *) else (* No need to enforce names *) arsign let make_arity env dep indf s = mkArity (make_arity_signature env dep indf, s) (* [p] is the predicate and [cs] a constructor summary *) let build_branch_type env dep p cs = let base = appvect (lift cs.cs_nargs p, cs.cs_concl_realargs) in if dep then it_mkProd_or_LetIn_name env (applist (base,[build_dependent_constructor cs])) cs.cs_args else it_mkProd_or_LetIn base cs.cs_args (**************************************************) let extract_mrectype t = let (t, l) = decompose_app t in match kind_of_term t with | Ind ind -> (ind, l) | _ -> raise Not_found let find_mrectype env sigma c = let (t, l) = decompose_app (whd_betadeltaiota env sigma c) in match kind_of_term t with | Ind ind -> (ind, l) | _ -> raise Not_found let find_rectype env sigma c = let (t, l) = decompose_app (whd_betadeltaiota env sigma c) in match kind_of_term t with | Ind ind -> let (mib,mip) = Inductive.lookup_mind_specif env ind in let (par,rargs) = List.chop mib.mind_nparams l in IndType((ind, par),rargs) | _ -> raise Not_found let find_inductive env sigma c = let (t, l) = decompose_app (whd_betadeltaiota env sigma c) in match kind_of_term t with | Ind ind when (fst (Inductive.lookup_mind_specif env ind)).mind_finite -> (ind, l) | _ -> raise Not_found let find_coinductive env sigma c = let (t, l) = decompose_app (whd_betadeltaiota env sigma c) in match kind_of_term t with | Ind ind when not (fst (Inductive.lookup_mind_specif env ind)).mind_finite -> (ind, l) | _ -> raise Not_found (***********************************************) (* find appropriate names for pattern variables. Useful in the Case and Inversion (case_then_using et case_nodep_then_using) tactics. *) let is_predicate_explicitly_dep env pred arsign = let rec srec env pval arsign = let pv' = whd_betadeltaiota env Evd.empty pval in match kind_of_term pv', arsign with | Lambda (na,t,b), (_,None,_)::arsign -> srec (push_rel_assum (na,t) env) b arsign | Lambda (na,_,_), _ -> (* The following code has an impact on the introduction names given by the tactics "case" and "inversion": when the elimination is not dependent, "case" uses Anonymous for inductive types in Prop and names created by mkProd_name for inductive types in Set/Type while "inversion" uses anonymous for inductive types both in Prop and Set/Type !! Previously, whether names were created or not relied on whether the predicate created in Indrec.make_case_com had a dependent arity or not. To avoid different predicates printed the same in v8, all predicates built in indrec.ml got a dependent arity (Aug 2004). The new way to decide whether names have to be created or not is to use an Anonymous or Named variable to enforce the expected dependency status (of course, Anonymous implies non dependent, but not conversely). At the end, this is only to preserve the compatibility: a check whether the predicate is actually dependent or not would indeed be more natural! *) begin match na with | Anonymous -> false | Name _ -> true end | _ -> anomaly "Non eta-expanded dep-expanded \"match\" predicate" in srec env pred arsign let is_elim_predicate_explicitly_dependent env pred indf = let arsign,_ = get_arity env indf in is_predicate_explicitly_dep env pred arsign let set_names env n brty = let (ctxt,cl) = decompose_prod_n_assum n brty in it_mkProd_or_LetIn_name env cl ctxt let set_pattern_names env ind brv = let (mib,mip) = Inductive.lookup_mind_specif env ind in let arities = Array.map (fun c -> rel_context_length ((prod_assum c)) - mib.mind_nparams) mip.mind_nf_lc in Array.map2 (set_names env) arities brv let type_case_branches_with_names env indspec p c = let (ind,args) = indspec in let (mib,mip as specif) = Inductive.lookup_mind_specif env ind in let nparams = mib.mind_nparams in let (params,realargs) = List.chop nparams args in let lbrty = Inductive.build_branches_type ind specif params p in (* Build case type *) let conclty = Reduction.beta_appvect p (Array.of_list (realargs@[c])) in (* Adjust names *) if is_elim_predicate_explicitly_dependent env p (ind,params) then (set_pattern_names env ind lbrty, conclty) else (lbrty, conclty) (* Type of Case predicates *) let arity_of_case_predicate env (ind,params) dep k = let arsign,_ = get_arity env (ind,params) in let mind = build_dependent_inductive env (ind,params) in let concl = if dep then mkArrow mind (mkSort k) else mkSort k in it_mkProd_or_LetIn concl arsign (***********************************************) (* Inferring the sort of parameters of a polymorphic inductive type knowing the sort of the conclusion *) (* Compute the inductive argument types: replace the sorts that appear in the type of the inductive by the sort of the conclusion, and the other ones by fresh universes. *) let rec instantiate_universes env scl is = function | (_,Some _,_ as d)::sign, exp -> d :: instantiate_universes env scl is (sign, exp) | d::sign, None::exp -> d :: instantiate_universes env scl is (sign, exp) | (na,None,ty)::sign, Some u::exp -> let ctx,_ = Reduction.dest_arity env ty in let s = (* Does the sort of parameter [u] appear in (or equal) the sort of inductive [is] ? *) if univ_depends u is then scl (* constrained sort: replace by scl *) else (* unconstriained sort: replace by fresh universe *) new_Type_sort() in (na,None,mkArity(ctx,s)):: instantiate_universes env scl is (sign, exp) | sign, [] -> sign (* Uniform parameters are exhausted *) | [], _ -> assert false (* Does not deal with universes, but only with Set/Type distinction *) let type_of_inductive_knowing_conclusion env mip conclty = match mip.mind_arity with | Monomorphic s -> s.mind_user_arity | Polymorphic ar -> let _,scl = Reduction.dest_arity env conclty in let ctx = List.rev mip.mind_arity_ctxt in let ctx = instantiate_universes env scl ar.poly_level (ctx,ar.poly_param_levels) in mkArity (List.rev ctx,scl) (***********************************************) (* Guard condition *) (* A function which checks that a term well typed verifies both syntactic conditions *) let control_only_guard env c = let check_fix_cofix e c = match kind_of_term c with | CoFix (_,(_,_,_) as cofix) -> Inductive.check_cofix e cofix | Fix (_,(_,_,_) as fix) -> Inductive.check_fix e fix | _ -> () in let rec iter env c = check_fix_cofix env c; iter_constr_with_full_binders push_rel iter env c in iter env c let subst_inductive subst (kn,i as ind) = let kn' = Mod_subst.subst_ind subst kn in if kn == kn' then ind else (kn',i)