(************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) (* match dest_recarg ra with | Mrec i -> List.mem i listind | _ -> false) rvec in array_exists one_is_rec (dest_subterms rarg) let mis_is_recursive (ind,mib,mip) = mis_is_recursive_subset (interval 0 (mib.mind_ntypes-1)) mip.mind_recargs let mis_nf_constructor_type (ind,mib,mip) j = let specif = mip.mind_nf_lc and ntypes = mib.mind_ntypes and nconstr = Array.length mip.mind_consnames in let make_Ik k = mkInd ((fst ind),ntypes-k-1) in if j > nconstr then error "Not enough constructors in the type"; substl (list_tabulate make_Ik ntypes) specif.(j-1) (* Arity of constructors excluding parameters and local defs *) let mis_constr_nargs indsp = let (mib,mip) = Global.lookup_inductive indsp in let recargs = dest_subterms mip.mind_recargs in Array.map List.length recargs let mis_constr_nargs_env env (kn,i) = let mib = Environ.lookup_mind kn env in let mip = mib.mind_packets.(i) in let recargs = dest_subterms mip.mind_recargs in Array.map List.length recargs let mis_constructor_nargs_env env ((kn,i),j) = let mib = Environ.lookup_mind kn env in let mip = mib.mind_packets.(i) in recarg_length mip.mind_recargs j + mip.mind_nparams (* Annotation for cases *) let make_case_info env ind style pats_source = let (mib,mip) = Inductive.lookup_mind_specif env ind in let print_info = { ind_nargs = mip.mind_nrealargs; style = style; source = pats_source } in { ci_ind = ind; ci_npar = mip.mind_nparams; ci_pp_info = print_info } let make_default_case_info env style ind = let (mib,mip) = Inductive.lookup_mind_specif env ind in make_case_info env ind style (Array.map (fun _ -> RegularPat) mip.mind_consnames) (*s Useful functions *) type constructor_summary = { cs_cstr : constructor; cs_params : constr list; cs_nargs : int; cs_args : rel_context; cs_concl_realargs : constr array } let lift_constructor n cs = { cs_cstr = cs.cs_cstr; cs_params = List.map (lift n) cs.cs_params; cs_nargs = cs.cs_nargs; cs_args = lift_rel_context n cs.cs_args; cs_concl_realargs = Array.map (liftn n (cs.cs_nargs+1)) cs.cs_concl_realargs } let instantiate_params t args sign = let rec inst s t = function | ((_,None,_)::ctxt,a::args) -> (match kind_of_term t with | Prod(_,_,t) -> inst (a::s) t (ctxt,args) | _ -> anomaly"instantiate_params: type, ctxt and args mismatch") | ((_,(Some b),_)::ctxt,args) -> (match kind_of_term t with | LetIn(_,_,_,t) -> inst ((substl s b)::s) t (ctxt,args) | _ -> anomaly"instantiate_params: type, ctxt and args mismatch") | [], [] -> substl s t | _ -> anomaly"instantiate_params: type, ctxt and args mismatch" in inst [] t (List.rev sign,args) let get_constructor (ind,mib,mip,params) j = assert (j <= Array.length mip.mind_consnames); let typi = mis_nf_constructor_type (ind,mib,mip) j in let typi = instantiate_params typi params mip.mind_params_ctxt in let (args,ccl) = decompose_prod_assum typi in let (_,allargs) = decompose_app ccl in let vargs = list_skipn mip.mind_nparams allargs in { cs_cstr = ith_constructor_of_inductive ind j; cs_params = params; cs_nargs = rel_context_length args; cs_args = args; cs_concl_realargs = Array.of_list vargs } let get_constructors env (ind,params) = let (mib,mip) = Inductive.lookup_mind_specif env ind in Array.init (Array.length mip.mind_consnames) (fun j -> get_constructor (ind,mib,mip,params) (j+1)) let rec instantiate args c = match kind_of_term c, args with | Prod (_,_,c), a::args -> instantiate args (subst1 a c) | LetIn (_,b,_,c), args -> instantiate args (subst1 b c) | _, [] -> c | _ -> anomaly "too short arity" let get_arity env (ind,params) = let (mib,mip) = Inductive.lookup_mind_specif env ind in let arity = mip.mind_nf_arity in destArity (instantiate params arity) (* Functions to build standard types related to inductive *) let build_dependent_constructor cs = applist (mkConstruct cs.cs_cstr, (List.map (lift cs.cs_nargs) cs.cs_params) @(extended_rel_list 0 cs.cs_args)) let build_dependent_inductive env ((ind, params) as indf) = let arsign,_ = get_arity env indf in let (mib,mip) = Inductive.lookup_mind_specif env ind in let nrealargs = mip.mind_nrealargs in applist (mkInd ind, (List.map (lift nrealargs) params)@(extended_rel_list 0 arsign)) (* builds the arity of an elimination predicate in sort [s] *) let make_arity_signature env dep indf = let (arsign,_) = get_arity env indf in if dep then (* We need names everywhere *) name_context env ((Anonymous,None,build_dependent_inductive env indf)::arsign) (* Costly: would be better to name once for all at definition time *) else (* No need to enforce names *) arsign let make_arity env dep indf s = mkArity (make_arity_signature env dep indf, s) (* [p] is the predicate and [cs] a constructor summary *) let build_branch_type env dep p cs = let base = appvect (lift cs.cs_nargs p, cs.cs_concl_realargs) in if dep then it_mkProd_or_LetIn_name env (applist (base,[build_dependent_constructor cs])) cs.cs_args else it_mkProd_or_LetIn base cs.cs_args (**************************************************) let extract_mrectype t = let (t, l) = decompose_app t in match kind_of_term t with | Ind ind -> (ind, l) | _ -> raise Not_found let find_mrectype env sigma c = let (t, l) = decompose_app (whd_betadeltaiota env sigma c) in match kind_of_term t with | Ind ind -> (ind, l) | _ -> raise Not_found let find_rectype env sigma c = let (t, l) = decompose_app (whd_betadeltaiota env sigma c) in match kind_of_term t with | Ind ind -> let (mib,mip) = Inductive.lookup_mind_specif env ind in let (par,rargs) = list_chop mip.mind_nparams l in IndType((ind, par),rargs) | _ -> raise Not_found let find_inductive env sigma c = let (t, l) = decompose_app (whd_betadeltaiota env sigma c) in match kind_of_term t with | Ind ind when (fst (Inductive.lookup_mind_specif env ind)).mind_finite -> (ind, l) | _ -> raise Not_found let find_coinductive env sigma c = let (t, l) = decompose_app (whd_betadeltaiota env sigma c) in match kind_of_term t with | Ind ind when not (fst (Inductive.lookup_mind_specif env ind)).mind_finite -> (ind, l) | _ -> raise Not_found (***********************************************) (* find appropriate names for pattern variables. Useful in the Case and Inversion (case_then_using et case_nodep_then_using) tactics. *) let is_predicate_explicitly_dep env pred nodep_ar = let rec srec env pval nodep_ar = let pv' = whd_betadeltaiota env Evd.empty pval in match kind_of_term pv', kind_of_term nodep_ar with | Lambda (na,t,b), Prod (_,_,a') -> srec (push_rel_assum (na,t) env) b a' | Lambda (na,_,_), _ -> (* The following code has impact on the introduction names given by the tactics "case" and "inversion": when the elimination is not dependent, "case" uses Anonymous for inductive types in Prop and names created by mkProd_name for inductive types in Set/Type while "inversion" uses anonymous for inductive types both in Prop and Set/Type !! Previously, whether names were created or not relied on whether the predicate created in Indrec.make_case_com had a dependent arity or not. To avoid different predicates printed the same in v8, all predicates built in indrec.ml got a dependent arity (Aug 2004). The new way to decide whether names have to be created or not is to use an Anonymous or Named variable to enforce the expected dependency status (of course, Anonymous implies non dependent, but not conversely). At the end, this is only to preserve the compatibility: a check whether the predicate is actually dependent or not would indeed be more natural! *) na <> Anonymous | _ -> anomaly "Non eta-expanded dep-expanded \"match\" predicate" in srec env pred nodep_ar let is_elim_predicate_explicitly_dependent env pred indf = let arsign,s = get_arity env indf in let glob_t = it_mkProd_or_LetIn (mkSort s) arsign in is_predicate_explicitly_dep env pred glob_t let set_names env n brty = let (ctxt,cl) = decompose_prod_n_assum n brty in it_mkProd_or_LetIn_name env cl ctxt let set_pattern_names env ind brv = let (_,mip) = Inductive.lookup_mind_specif env ind in let arities = Array.map (fun c -> rel_context_length (fst (decompose_prod_assum c)) - mip.mind_nparams) mip.mind_nf_lc in array_map2 (set_names env) arities brv let type_case_branches_with_names env indspec pj c = let (ind,args) = indspec in let (lbrty,conclty,_) = Inductive.type_case_branches env indspec pj c in let (mib,mip) = Inductive.lookup_mind_specif env ind in let params = list_firstn mip.mind_nparams args in if is_elim_predicate_explicitly_dependent env pj.uj_val (ind,params) then (set_pattern_names env ind lbrty, conclty) else (lbrty, conclty) (* Type of Case predicates *) let arity_of_case_predicate env (ind,params) dep k = let arsign,_ = get_arity env (ind,params) in let mind = build_dependent_inductive env (ind,params) in let concl = if dep then mkArrow mind (mkSort k) else mkSort k in it_mkProd_or_LetIn concl arsign (***********************************************) (* Guard condition *) (* A function which checks that a term well typed verifies both syntactic conditions *) let control_only_guard env = let rec control_rec c = match kind_of_term c with | Rel _ | Var _ -> () | Sort _ | Meta _ -> () | Ind _ -> () | Construct _ -> () | Const _ -> () | CoFix (_,(_,tys,bds) as cofix) -> Inductive.check_cofix env cofix; Array.iter control_rec tys; Array.iter control_rec bds; | Fix (_,(_,tys,bds) as fix) -> Inductive.check_fix env fix; Array.iter control_rec tys; Array.iter control_rec bds; | Case(_,p,c,b) -> control_rec p;control_rec c;Array.iter control_rec b | Evar (_,cl) -> Array.iter control_rec cl | App (c,cl) -> control_rec c; Array.iter control_rec cl | Cast (c1,c2) -> control_rec c1; control_rec c2 | Prod (_,c1,c2) -> control_rec c1; control_rec c2 | Lambda (_,c1,c2) -> control_rec c1; control_rec c2 | LetIn (_,c1,c2,c3) -> control_rec c1; control_rec c2; control_rec c3 in control_rec let subst_inductive subst (kn,i) = (Mod_subst.subst_kn subst kn,i)