(************************************************************************) (* * The Coq Proof Assistant / The Coq Development Team *) (* v * INRIA, CNRS and contributors - Copyright 1999-2018 *) (* match dest_recarg ra with | Mrec (_,i) -> Int.List.mem i listind | _ -> false) rvec in Array.exists one_is_rec (dest_subterms rarg) let mis_is_recursive (ind,mib,mip) = mis_is_recursive_subset (List.interval 0 (mib.mind_ntypes - 1)) mip.mind_recargs let mis_nf_constructor_type ((ind,u),mib,mip) j = let specif = mip.mind_nf_lc and ntypes = mib.mind_ntypes and nconstr = Array.length mip.mind_consnames in let make_Ik k = mkIndU (((fst ind),ntypes-k-1),u) in if j > nconstr then user_err Pp.(str "Not enough constructors in the type."); substl (List.init ntypes make_Ik) (subst_instance_constr u specif.(j-1)) (* Number of constructors *) let nconstructors ind = let (_,mip) = Global.lookup_inductive ind in Array.length mip.mind_consnames let nconstructors_env env ind = let (_,mip) = Inductive.lookup_mind_specif env ind in Array.length mip.mind_consnames (* Arity of constructors excluding parameters, excluding local defs *) let constructors_nrealargs ind = let (_,mip) = Global.lookup_inductive ind in mip.mind_consnrealargs let constructors_nrealargs_env env ind = let (_,mip) = Inductive.lookup_mind_specif env ind in mip.mind_consnrealargs (* Arity of constructors excluding parameters, including local defs *) let constructors_nrealdecls ind = let (_,mip) = Global.lookup_inductive ind in mip.mind_consnrealdecls let constructors_nrealdecls_env env ind = let (_,mip) = Inductive.lookup_mind_specif env ind in mip.mind_consnrealdecls (* Arity of constructors including parameters, excluding local defs *) let constructor_nallargs (indsp,j) = let (mib,mip) = Global.lookup_inductive indsp in mip.mind_consnrealargs.(j-1) + mib.mind_nparams let constructor_nallargs_env env ((kn,i),j) = let mib = Environ.lookup_mind kn env in let mip = mib.mind_packets.(i) in mip.mind_consnrealargs.(j-1) + mib.mind_nparams (* Arity of constructors including params, including local defs *) let constructor_nalldecls (indsp,j) = (* TOCHANGE en decls *) let (mib,mip) = Global.lookup_inductive indsp in mip.mind_consnrealdecls.(j-1) + Context.Rel.length (mib.mind_params_ctxt) let constructor_nalldecls_env env ((kn,i),j) = (* TOCHANGE en decls *) let mib = Environ.lookup_mind kn env in let mip = mib.mind_packets.(i) in mip.mind_consnrealdecls.(j-1) + Context.Rel.length (mib.mind_params_ctxt) (* Arity of constructors excluding params, excluding local defs *) let constructor_nrealargs (ind,j) = let (_,mip) = Global.lookup_inductive ind in mip.mind_consnrealargs.(j-1) let constructor_nrealargs_env env (ind,j) = let (_,mip) = Inductive.lookup_mind_specif env ind in mip.mind_consnrealargs.(j-1) (* Arity of constructors excluding params, including local defs *) let constructor_nrealdecls (ind,j) = (* TOCHANGE en decls *) let (_,mip) = Global.lookup_inductive ind in mip.mind_consnrealdecls.(j-1) let constructor_nrealdecls_env env (ind,j) = (* TOCHANGE en decls *) let (_,mip) = Inductive.lookup_mind_specif env ind in mip.mind_consnrealdecls.(j-1) (* Length of arity, excluding params, excluding local defs *) let inductive_nrealargs ind = let (_,mip) = Global.lookup_inductive ind in mip.mind_nrealargs let inductive_nrealargs_env env ind = let (_,mip) = Inductive.lookup_mind_specif env ind in mip.mind_nrealargs (* Length of arity, excluding params, including local defs *) let inductive_nrealdecls ind = let (_,mip) = Global.lookup_inductive ind in mip.mind_nrealdecls let inductive_nrealdecls_env env ind = let (_,mip) = Inductive.lookup_mind_specif env ind in mip.mind_nrealdecls (* Full length of arity (w/o local defs) *) let inductive_nallargs ind = let (mib,mip) = Global.lookup_inductive ind in mib.mind_nparams + mip.mind_nrealargs let inductive_nallargs_env env ind = let (mib,mip) = Inductive.lookup_mind_specif env ind in mib.mind_nparams + mip.mind_nrealargs (* Length of arity (w/o local defs) *) let inductive_nparams ind = let (mib,mip) = Global.lookup_inductive ind in mib.mind_nparams let inductive_nparams_env env ind = let (mib,mip) = Inductive.lookup_mind_specif env ind in mib.mind_nparams (* Length of arity (with local defs) *) let inductive_nparamdecls ind = let (mib,mip) = Global.lookup_inductive ind in Context.Rel.length mib.mind_params_ctxt let inductive_nparamdecls_env env ind = let (mib,mip) = Inductive.lookup_mind_specif env ind in Context.Rel.length mib.mind_params_ctxt (* Full length of arity (with local defs) *) let inductive_nalldecls ind = let (mib,mip) = Global.lookup_inductive ind in Context.Rel.length (mib.mind_params_ctxt) + mip.mind_nrealdecls let inductive_nalldecls_env env ind = let (mib,mip) = Inductive.lookup_mind_specif env ind in Context.Rel.length (mib.mind_params_ctxt) + mip.mind_nrealdecls (* Others *) let inductive_paramdecls (ind,u) = let (mib,mip) = Global.lookup_inductive ind in Inductive.inductive_paramdecls (mib,u) let inductive_paramdecls_env env (ind,u) = let (mib,mip) = Inductive.lookup_mind_specif env ind in Inductive.inductive_paramdecls (mib,u) let inductive_alldecls (ind,u) = let (mib,mip) = Global.lookup_inductive ind in Vars.subst_instance_context u mip.mind_arity_ctxt let inductive_alldecls_env env (ind,u) = let (mib,mip) = Inductive.lookup_mind_specif env ind in Vars.subst_instance_context u mip.mind_arity_ctxt let constructor_has_local_defs (indsp,j) = let (mib,mip) = Global.lookup_inductive indsp in let l1 = mip.mind_consnrealdecls.(j-1) + Context.Rel.length (mib.mind_params_ctxt) in let l2 = recarg_length mip.mind_recargs j + mib.mind_nparams in not (Int.equal l1 l2) let inductive_has_local_defs ind = let (mib,mip) = Global.lookup_inductive ind in let l1 = Context.Rel.length (mib.mind_params_ctxt) + mip.mind_nrealdecls in let l2 = mib.mind_nparams + mip.mind_nrealargs in not (Int.equal l1 l2) let allowed_sorts env (kn,i as ind) = let (mib,mip) = Inductive.lookup_mind_specif env ind in mip.mind_kelim let projection_nparams_env env p = let pb = lookup_projection p env in pb.proj_npars let projection_nparams p = projection_nparams_env (Global.env ()) p let has_dependent_elim mib = match mib.mind_record with | PrimRecord _ -> mib.mind_finite == BiFinite | NotRecord | FakeRecord -> true (* Annotation for cases *) let make_case_info env ind style = let (mib,mip) = Inductive.lookup_mind_specif env ind in let ind_tags = Context.Rel.to_tags (List.firstn mip.mind_nrealdecls mip.mind_arity_ctxt) in let cstr_tags = Array.map2 (fun c n -> let d,_ = decompose_prod_assum c in Context.Rel.to_tags (List.firstn n d)) mip.mind_nf_lc mip.mind_consnrealdecls in let print_info = { ind_tags; cstr_tags; style } in { ci_ind = ind; ci_npar = mib.mind_nparams; ci_cstr_ndecls = mip.mind_consnrealdecls; ci_cstr_nargs = mip.mind_consnrealargs; ci_pp_info = print_info } (*s Useful functions *) type constructor_summary = { cs_cstr : pconstructor; cs_params : constr list; cs_nargs : int; cs_args : Constr.rel_context; cs_concl_realargs : constr array } let lift_constructor n cs = { cs_cstr = cs.cs_cstr; cs_params = List.map (lift n) cs.cs_params; cs_nargs = cs.cs_nargs; cs_args = lift_rel_context n cs.cs_args; cs_concl_realargs = Array.map (liftn n (cs.cs_nargs+1)) cs.cs_concl_realargs } (* Accept either all parameters or only recursively uniform ones *) let instantiate_params t params sign = let nnonrecpar = Context.Rel.nhyps sign - List.length params in (* Adjust the signature if recursively non-uniform parameters are not here *) let _,sign = context_chop nnonrecpar sign in let _,t = decompose_prod_n_assum (Context.Rel.length sign) t in let subst = subst_of_rel_context_instance sign params in substl subst t let get_constructor ((ind,u as indu),mib,mip,params) j = assert (j <= Array.length mip.mind_consnames); let typi = mis_nf_constructor_type (indu,mib,mip) j in let ctx = Vars.subst_instance_context u mib.mind_params_ctxt in let typi = instantiate_params typi params ctx in let (args,ccl) = decompose_prod_assum typi in let (_,allargs) = decompose_app ccl in let vargs = List.skipn (List.length params) allargs in { cs_cstr = (ith_constructor_of_inductive ind j,u); cs_params = params; cs_nargs = Context.Rel.length args; cs_args = args; cs_concl_realargs = Array.of_list vargs } let get_constructors env (ind,params) = let (mib,mip) = Inductive.lookup_mind_specif env (fst ind) in Array.init (Array.length mip.mind_consnames) (fun j -> get_constructor (ind,mib,mip,params) (j+1)) let get_projections env (ind,params) = let (mib,mip) = Inductive.lookup_mind_specif env (fst ind) in match mib.mind_record with | PrimRecord infos -> let (_, projs, _) = infos.(snd (fst ind)) in Some projs | NotRecord | FakeRecord -> None let make_case_or_project env sigma indf ci pred c branches = let open EConstr in let projs = get_projections env indf in match projs with | None -> (mkCase (ci, pred, c, branches)) | Some ps -> assert(Array.length branches == 1); let na, ty, t = destLambda sigma pred in let () = let (ind, _), _ = dest_ind_family indf in let mib, _ = Inductive.lookup_mind_specif env ind in if (* dependent *) not (Vars.noccurn sigma 1 t) && not (has_dependent_elim mib) then user_err ~hdr:"make_case_or_project" Pp.(str"Dependent case analysis not allowed" ++ str" on inductive type " ++ Names.MutInd.print (fst ind)) in let branch = branches.(0) in let ctx, br = decompose_lam_n_assum sigma (Array.length ps) branch in let n, len, ctx = List.fold_right (fun decl (i, j, ctx) -> match decl with | LocalAssum (na, ty) -> let t = mkProj (Projection.make ps.(i) true, mkRel j) in (i + 1, j + 1, LocalDef (na, t, Vars.liftn 1 j ty) :: ctx) | LocalDef (na, b, ty) -> (i, j + 1, LocalDef (na, Vars.liftn 1 j b, Vars.liftn 1 j ty) :: ctx)) ctx (0, 1, []) in mkLetIn (na, c, ty, it_mkLambda_or_LetIn (Vars.liftn 1 (Array.length ps + 1) br) ctx) (* substitution in a signature *) let substnl_rel_context subst n sign = let rec aux n = function | d::sign -> substnl_decl subst n d :: aux (n+1) sign | [] -> [] in List.rev (aux n (List.rev sign)) let substl_rel_context subst = substnl_rel_context subst 0 let get_arity env ((ind,u),params) = let (mib,mip) = Inductive.lookup_mind_specif env ind in let parsign = (* Dynamically detect if called with an instance of recursively uniform parameter only or also of recursively non-uniform parameters *) let nparams = List.length params in if Int.equal nparams mib.mind_nparams then mib.mind_params_ctxt else begin assert (Int.equal nparams mib.mind_nparams_rec); let nnonrecparamdecls = mib.mind_nparams - mib.mind_nparams_rec in snd (Termops.context_chop nnonrecparamdecls mib.mind_params_ctxt) end in let parsign = Vars.subst_instance_context u parsign in let arproperlength = List.length mip.mind_arity_ctxt - List.length parsign in let arsign,_ = List.chop arproperlength mip.mind_arity_ctxt in let subst = subst_of_rel_context_instance parsign params in let arsign = Vars.subst_instance_context u arsign in (substl_rel_context subst arsign, Inductive.inductive_sort_family mip) (* Functions to build standard types related to inductive *) let build_dependent_constructor cs = applist (mkConstructU cs.cs_cstr, (List.map (lift cs.cs_nargs) cs.cs_params) @(Context.Rel.to_extended_list mkRel 0 cs.cs_args)) let build_dependent_inductive env ((ind, params) as indf) = let arsign,_ = get_arity env indf in let nrealargs = List.length arsign in applist (mkIndU ind, (List.map (lift nrealargs) params)@(Context.Rel.to_extended_list mkRel 0 arsign)) (* builds the arity of an elimination predicate in sort [s] *) let make_arity_signature env sigma dep indf = let (arsign,_) = get_arity env indf in let arsign = List.map (fun d -> Termops.map_rel_decl EConstr.of_constr d) arsign in if dep then (* We need names everywhere *) Namegen.name_context env sigma ((LocalAssum (Anonymous,EConstr.of_constr (build_dependent_inductive env indf)))::arsign) (* Costly: would be better to name once for all at definition time *) else (* No need to enforce names *) arsign let make_arity env sigma dep indf s = let open EConstr in it_mkProd_or_LetIn (mkSort s) (make_arity_signature env sigma dep indf) (* [p] is the predicate and [cs] a constructor summary *) let build_branch_type env sigma dep p cs = let base = appvect (lift cs.cs_nargs p, cs.cs_concl_realargs) in if dep then EConstr.Unsafe.to_constr (Namegen.it_mkProd_or_LetIn_name env sigma (EConstr.of_constr (applist (base,[build_dependent_constructor cs]))) (List.map (fun d -> Termops.map_rel_decl EConstr.of_constr d) cs.cs_args)) else Term.it_mkProd_or_LetIn base cs.cs_args (**************************************************) (** From a rel context describing the constructor arguments, build an expansion function. The term built is expecting to be substituted first by a substitution of the form [params, x : ind params] *) let compute_projections env (kn, i as ind) = let open Term in let mib = Environ.lookup_mind kn env in let u = match mib.mind_universes with | Monomorphic_ind _ -> Instance.empty | Polymorphic_ind auctx -> make_abstract_instance auctx | Cumulative_ind acumi -> make_abstract_instance (ACumulativityInfo.univ_context acumi) in let x = match mib.mind_record with | NotRecord | FakeRecord -> anomaly Pp.(str "Trying to build primitive projections for a non-primitive record") | PrimRecord info-> Name (pi1 (info.(i))) in let pkt = mib.mind_packets.(i) in let { mind_nparams = nparamargs; mind_params_ctxt = params } = mib in let subst = List.init mib.mind_ntypes (fun i -> mkIndU ((kn, mib.mind_ntypes - i - 1), u)) in let rctx, _ = decompose_prod_assum (substl subst pkt.mind_nf_lc.(0)) in let ctx, paramslet = List.chop pkt.mind_consnrealdecls.(0) rctx in let mp, dp, l = MutInd.repr3 kn in (** We build a substitution smashing the lets in the record parameters so that typechecking projections requires just a substitution and not matching with a parameter context. *) let indty = (* [ty] = [Ind inst] is typed in context [params] *) let inst = Context.Rel.to_extended_vect mkRel 0 paramslet in let indu = mkIndU (ind, u) in let ty = mkApp (indu, inst) in (* [Ind inst] is typed in context [params-wo-let] *) ty in let ci = let print_info = { ind_tags = []; cstr_tags = [|Context.Rel.to_tags ctx|]; style = LetStyle } in { ci_ind = ind; ci_npar = nparamargs; ci_cstr_ndecls = pkt.mind_consnrealdecls; ci_cstr_nargs = pkt.mind_consnrealargs; ci_pp_info = print_info } in let len = List.length ctx in let compat_body ccl i = (* [ccl] is defined in context [params;x:indty] *) (* [ccl'] is defined in context [params;x:indty;x:indty] *) let ccl' = liftn 1 2 ccl in let p = mkLambda (x, lift 1 indty, ccl') in let branch = it_mkLambda_or_LetIn (mkRel (len - i)) ctx in let body = mkCase (ci, p, mkRel 1, [|lift 1 branch|]) in it_mkLambda_or_LetIn (mkLambda (x,indty,body)) params in let projections decl (j, pbs, subst) = match decl with | LocalDef (na,c,t) -> (* From [params, field1,..,fieldj |- c(params,field1,..,fieldj)] to [params, x:I, field1,..,fieldj |- c(params,field1,..,fieldj)] *) let c = liftn 1 j c in (* From [params, x:I, field1,..,fieldj |- c(params,field1,..,fieldj)] to [params, x:I |- c(params,proj1 x,..,projj x)] *) let c1 = substl subst c in (* From [params, x:I |- subst:field1,..,fieldj] to [params, x:I |- subst:field1,..,fieldj+1] where [subst] is represented with instance of field1 last *) let subst = c1 :: subst in (j+1, pbs, subst) | LocalAssum (na,t) -> match na with | Name id -> let kn = Constant.make1 (KerName.make mp dp (Label.of_id id)) in (* from [params, field1,..,fieldj |- t(params,field1,..,fieldj)] to [params, x:I, field1,..,fieldj |- t(params,field1,..,fieldj] *) let t = liftn 1 j t in (* from [params, x:I, field1,..,fieldj |- t(params,field1,..,fieldj)] to [params-wo-let, x:I |- t(params,proj1 x,..,projj x)] *) (* from [params, x:I, field1,..,fieldj |- t(field1,..,fieldj)] to [params, x:I |- t(proj1 x,..,projj x)] *) let ty = substl subst t in let term = mkProj (Projection.make kn true, mkRel 1) in let fterm = mkProj (Projection.make kn false, mkRel 1) in let compat = compat_body ty (j - 1) in let etab = it_mkLambda_or_LetIn (mkLambda (x, indty, term)) params in let etat = it_mkProd_or_LetIn (mkProd (x, indty, ty)) params in let body = (etab, etat, compat) in (j + 1, body :: pbs, fterm :: subst) | Anonymous -> anomaly Pp.(str "Trying to build primitive projections for a non-primitive record") in let (_, pbs, subst) = List.fold_right projections ctx (1, [], []) in Array.rev_of_list pbs let legacy_match_projection env ind = Array.map pi3 (compute_projections env ind) let compute_projections ind mib = let ans = compute_projections ind mib in Array.map (fun (prj, ty, _) -> (prj, ty)) ans (**************************************************) let extract_mrectype sigma t = let open EConstr in let (t, l) = decompose_app sigma t in match EConstr.kind sigma t with | Ind ind -> (ind, l) | _ -> raise Not_found let find_mrectype_vect env sigma c = let (t, l) = Termops.decompose_app_vect sigma (whd_all env sigma c) in match EConstr.kind sigma t with | Ind ind -> (ind, l) | _ -> raise Not_found let find_mrectype env sigma c = let (ind, v) = find_mrectype_vect env sigma c in (ind, Array.to_list v) let find_rectype env sigma c = let open EConstr in let (t, l) = decompose_app sigma (whd_all env sigma c) in match EConstr.kind sigma t with | Ind (ind,u) -> let (mib,mip) = Inductive.lookup_mind_specif env ind in if mib.mind_nparams > List.length l then raise Not_found; let l = List.map EConstr.Unsafe.to_constr l in let (par,rargs) = List.chop mib.mind_nparams l in let indu = (ind, EInstance.kind sigma u) in IndType((indu, par),List.map EConstr.of_constr rargs) | _ -> raise Not_found let find_inductive env sigma c = let open EConstr in let (t, l) = decompose_app sigma (whd_all env sigma c) in match EConstr.kind sigma t with | Ind ind when (fst (Inductive.lookup_mind_specif env (fst ind))).mind_finite <> CoFinite -> let l = List.map EConstr.Unsafe.to_constr l in (ind, l) | _ -> raise Not_found let find_coinductive env sigma c = let open EConstr in let (t, l) = decompose_app sigma (whd_all env sigma c) in match EConstr.kind sigma t with | Ind ind when (fst (Inductive.lookup_mind_specif env (fst ind))).mind_finite == CoFinite -> let l = List.map EConstr.Unsafe.to_constr l in (ind, l) | _ -> raise Not_found (***********************************************) (* find appropriate names for pattern variables. Useful in the Case and Inversion (case_then_using et case_nodep_then_using) tactics. *) let is_predicate_explicitly_dep env sigma pred arsign = let rec srec env pval arsign = let pv' = whd_all env sigma pval in match EConstr.kind sigma pv', arsign with | Lambda (na,t,b), (LocalAssum _)::arsign -> srec (push_rel_assum (na, t) env) b arsign | Lambda (na,_,t), _ -> (* The following code has an impact on the introduction names given by the tactics "case" and "inversion": when the elimination is not dependent, "case" uses Anonymous for inductive types in Prop and names created by mkProd_name for inductive types in Set/Type while "inversion" uses anonymous for inductive types both in Prop and Set/Type !! Previously, whether names were created or not relied on whether the predicate created in Indrec.make_case_com had a dependent arity or not. To avoid different predicates printed the same in v8, all predicates built in indrec.ml got a dependent arity (Aug 2004). The new way to decide whether names have to be created or not is to use an Anonymous or Named variable to enforce the expected dependency status (of course, Anonymous implies non dependent, but not conversely). From Coq > 8.2, using or not the the effective dependency of the predicate is parametrable! *) begin match na with | Anonymous -> false | Name _ -> true end | _ -> anomaly (Pp.str "Non eta-expanded dep-expanded \"match\" predicate.") in srec env (EConstr.of_constr pred) arsign let is_elim_predicate_explicitly_dependent env sigma pred indf = let arsign,_ = get_arity env indf in is_predicate_explicitly_dep env sigma pred arsign let set_names env sigma n brty = let open EConstr in let (ctxt,cl) = decompose_prod_n_assum sigma n brty in EConstr.Unsafe.to_constr (Namegen.it_mkProd_or_LetIn_name env sigma cl ctxt) let set_pattern_names env sigma ind brv = let (mib,mip) = Inductive.lookup_mind_specif env ind in let arities = Array.map (fun c -> Context.Rel.length ((prod_assum c)) - mib.mind_nparams) mip.mind_nf_lc in Array.map2 (set_names env sigma) arities brv let type_case_branches_with_names env sigma indspec p c = let (ind,args) = indspec in let args = List.map EConstr.Unsafe.to_constr args in let (mib,mip as specif) = Inductive.lookup_mind_specif env (fst ind) in let nparams = mib.mind_nparams in let (params,realargs) = List.chop nparams args in let lbrty = Inductive.build_branches_type ind specif params p in (* Build case type *) let conclty = lambda_appvect_assum (mip.mind_nrealdecls+1) p (Array.of_list (realargs@[c])) in (* Adjust names *) if is_elim_predicate_explicitly_dependent env sigma p (ind,params) then (set_pattern_names env sigma (fst ind) (Array.map EConstr.of_constr lbrty), conclty) else (lbrty, conclty) (* Type of Case predicates *) let arity_of_case_predicate env (ind,params) dep k = let arsign,_ = get_arity env (ind,params) in let mind = build_dependent_inductive env (ind,params) in let concl = if dep then mkArrow mind (mkSort k) else mkSort k in Term.it_mkProd_or_LetIn concl arsign (***********************************************) (* Inferring the sort of parameters of a polymorphic inductive type knowing the sort of the conclusion *) (* Compute the inductive argument types: replace the sorts that appear in the type of the inductive by the sort of the conclusion, and the other ones by fresh universes. *) let rec instantiate_universes env evdref scl is = function | (LocalDef _ as d)::sign, exp -> d :: instantiate_universes env evdref scl is (sign, exp) | d::sign, None::exp -> d :: instantiate_universes env evdref scl is (sign, exp) | (LocalAssum (na,ty))::sign, Some l::exp -> let ctx,_ = Reduction.dest_arity env ty in let u = Univ.Universe.make l in let s = (* Does the sort of parameter [u] appear in (or equal) the sort of inductive [is] ? *) if univ_level_mem l is then scl (* constrained sort: replace by scl *) else (* unconstrained sort: replace by fresh universe *) let evm, s = Evd.new_sort_variable Evd.univ_flexible !evdref in let evm = Evd.set_leq_sort env evm s (Sorts.sort_of_univ u) in evdref := evm; s in (LocalAssum (na,mkArity(ctx,s))) :: instantiate_universes env evdref scl is (sign, exp) | sign, [] -> sign (* Uniform parameters are exhausted *) | [], _ -> assert false let type_of_inductive_knowing_conclusion env sigma ((mib,mip),u) conclty = match mip.mind_arity with | RegularArity s -> sigma, EConstr.of_constr (subst_instance_constr u s.mind_user_arity) | TemplateArity ar -> let _,scl = splay_arity env sigma conclty in let scl = EConstr.ESorts.kind sigma scl in let ctx = List.rev mip.mind_arity_ctxt in let evdref = ref sigma in let ctx = instantiate_universes env evdref scl ar.template_level (ctx,ar.template_param_levels) in !evdref, EConstr.of_constr (mkArity (List.rev ctx,scl)) let type_of_projection_constant env (p,u) = let pb = lookup_projection p env in Vars.subst_instance_constr u pb.proj_type let type_of_projection_knowing_arg env sigma p c ty = let c = EConstr.Unsafe.to_constr c in let IndType(pars,realargs) = try find_rectype env sigma ty with Not_found -> raise (Invalid_argument "type_of_projection_knowing_arg_type: not an inductive type") in let (_,u), pars = dest_ind_family pars in substl (c :: List.rev pars) (type_of_projection_constant env (p,u)) (***********************************************) (* Guard condition *) (* A function which checks that a term well typed verifies both syntactic conditions *) let control_only_guard env sigma c = let check_fix_cofix e c = match kind (EConstr.to_constr sigma c) with | CoFix (_,(_,_,_) as cofix) -> Inductive.check_cofix e cofix | Fix (_,(_,_,_) as fix) -> Inductive.check_fix e fix | _ -> () in let rec iter env c = check_fix_cofix env c; iter_constr_with_full_binders sigma EConstr.push_rel iter env c in iter env c