(***********************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) (* mip.mind_sort <> (Prop Null) | Some d -> d in if not (List.exists ((=) kind) mip.mind_kelim) then raise (InductiveError (NotAllowedCaseAnalysis (dep,(new_sort_in_family kind),ind))); let nbargsprod = mip.mind_nrealargs + 1 in (* Pas génant car env ne sert pas à typer mais juste à renommer les Anonym *) (* mais pas très joli ... (mais manque get_sort_of à ce niveau) *) let env' = push_rel_context lnamespar env in let indf = make_ind_family(ind, extended_rel_list 0 lnamespar) in let constrs = get_constructors env indf in let rec add_branch env k = if k = Array.length mip.mind_consnames then let nbprod = k+1 in let indf = make_ind_family(ind,extended_rel_list nbprod lnamespar) in let lnamesar,_ = get_arity env indf in let ci = make_default_case_info env ind in it_mkLambda_or_LetIn_name env' (lambda_create env' (build_dependent_inductive env indf, mkCase (ci, mkRel (nbprod+nbargsprod), mkRel 1, rel_vect nbargsprod k))) lnamesar else let cs = lift_constructor (k+1) constrs.(k) in let t = build_branch_type env dep (mkRel (k+1)) cs in mkLambda_string "f" t (add_branch (push_rel (Anonymous, None, t) env) (k+1)) in let typP = make_arity env' dep indf (new_sort_in_family kind) in it_mkLambda_or_LetIn_name env (mkLambda_string "P" typP (add_branch (push_rel (Anonymous,None,typP) env') 0)) lnamespar (* check if the type depends recursively on one of the inductive scheme *) (**********************************************************************) (* Building the recursive elimination *) (* * t is the type of the constructor co and recargs is the information on * the recursive calls. (It is assumed to be in form given by the user). * build the type of the corresponding branch of the recurrence principle * assuming f has this type, branch_rec gives also the term * [x1]..[xk](f xi (F xi) ...) to be put in the corresponding branch of * the case operation * FPvect gives for each inductive definition if we want an elimination * on it with which predicate and which recursive function. *) let type_rec_branch is_rec dep env sigma (vargs,depPvect,decP) tyi cs recargs = let make_prod = make_prod_dep dep in let nparams = List.length vargs in let process_pos env depK pk = let rec prec env i sign p = let p',largs = whd_betadeltaiota_nolet_stack env sigma p in match kind_of_term p' with | Prod (n,t,c) -> let d = (n,None,t) in make_prod env (n,t,prec (push_rel d env) (i+1) (d::sign) c) | LetIn (n,b,t,c) -> let d = (n,Some b,t) in mkLetIn (n,b,t,prec (push_rel d env) (i+1) (d::sign) c) | Ind (_,_) -> let (_,realargs) = list_chop nparams largs in let base = applist (lift i pk,realargs) in if depK then Reduction.beta_appvect base [|applist (mkRel (i+1),extended_rel_list 0 sign)|] else base | _ -> assert false in prec env 0 [] in let rec process_constr env i c recargs nhyps li = if nhyps > 0 then match kind_of_term c with | Prod (n,t,c_0) -> let (optionpos,rest) = match recargs with | [] -> None,[] | ra::rest -> (match dest_recarg ra with | Mrec j when is_rec -> (depPvect.(j),rest) | Imbr _ -> Options.if_verbose warning "Ignoring recursive call"; (None,rest) | _ -> (None, rest)) in (match optionpos with | None -> make_prod env (n,t, process_constr (push_rel (n,None,t) env) (i+1) c_0 rest (nhyps-1) (i::li)) | Some(dep',p) -> let nP = lift (i+1+decP) p in let t_0 = process_pos env dep' nP (lift 1 t) in make_prod_dep (dep or dep') env (n,t, mkArrow t_0 (process_constr (push_rel (n,None,t) (push_rel (Anonymous,None,t_0) env)) (i+2) (lift 1 c_0) rest (nhyps-1) (i::li)))) | LetIn (n,b,t,c_0) -> mkLetIn (n,b,t, process_constr (push_rel (n,Some b,t) env) (i+1) c_0 recargs (nhyps-1) li) | _ -> assert false else if dep then let realargs = List.map (fun k -> mkRel (i-k)) (List.rev li) in let params = List.map (lift i) vargs in let co = applist (mkConstruct cs.cs_cstr,params@realargs) in Reduction.beta_appvect c [|co|] else c in let nhyps = List.length cs.cs_args in let nP = match depPvect.(tyi) with | Some(_,p) -> lift (nhyps+decP) p | _ -> assert false in let base = appvect (nP,cs.cs_concl_realargs) in let c = it_mkProd_or_LetIn base cs.cs_args in process_constr env 0 c recargs nhyps [] let make_rec_branch_arg env sigma (nparams,fvect,decF) f cstr recargs = let process_pos env fk = let rec prec env i hyps p = let p',largs = whd_betadeltaiota_nolet_stack env sigma p in match kind_of_term p' with | Prod (n,t,c) -> let d = (n,None,t) in lambda_name env (n,t,prec (push_rel d env) (i+1) (d::hyps) c) | LetIn (n,b,t,c) -> let d = (n,Some b,t) in mkLetIn (n,b,t,prec (push_rel d env) (i+1) (d::hyps) c) | Ind _ -> let (_,realargs) = list_chop nparams largs and arg = appvect (mkRel (i+1),extended_rel_vect 0 hyps) in applist(lift i fk,realargs@[arg]) | _ -> assert false in prec env 0 [] in (* ici, cstrprods est la liste des produits du constructeur instantié *) let rec process_constr env i f = function | (n,None,t as d)::cprest, recarg::rest -> let optionpos = match dest_recarg recarg with | Norec -> None | Imbr _ -> None | Mrec i -> fvect.(i) in (match optionpos with | None -> lambda_name env (n,t,process_constr (push_rel d env) (i+1) (whd_beta (applist (lift 1 f, [(mkRel 1)]))) (cprest,rest)) | Some(_,f_0) -> let nF = lift (i+1+decF) f_0 in let arg = process_pos env nF (lift 1 t) in lambda_name env (n,t,process_constr (push_rel d env) (i+1) (whd_beta (applist (lift 1 f, [(mkRel 1); arg]))) (cprest,rest))) | (n,Some c,t as d)::cprest, rest -> mkLetIn (n,c,t, process_constr (push_rel d env) (i+1) (lift 1 f) (cprest,rest)) | [],[] -> f | _,[] | [],_ -> anomaly "process_constr" in process_constr env 0 f (List.rev cstr.cs_args, recargs) (* Main function *) let mis_make_indrec env sigma listdepkind (ind,mib,mip) = let nparams = mip.mind_nparams in let lnamespar = mip.mind_params_ctxt in let nrec = List.length listdepkind in let depPvec = Array.create mib.mind_ntypes (None : (bool * constr) option) in let _ = let rec assign k = function | [] -> () | (indi,mibi,mipi,dep,_)::rest -> (Array.set depPvec (snd indi) (Some(dep,mkRel k)); assign (k-1) rest) in assign nrec listdepkind in let recargsvec = Array.map (fun mip -> mip.mind_recargs) mib.mind_packets in let make_one_rec p = let makefix nbconstruct = let rec mrec i ln ltyp ldef = function | (indi,mibi,mipi,dep,_)::rest -> let tyi = snd indi in let nctyi = Array.length mipi.mind_consnames in (* nb constructeurs du type *) (* arity in the context of the fixpoint, i.e. P1..P_nrec f1..f_nbconstruct *) let args = extended_rel_list (nrec+nbconstruct) lnamespar in let indf = make_ind_family(indi,args) in let lnames,_ = get_arity env indf in let nar = mipi.mind_nrealargs in let decf = nar+nrec+nbconstruct+nrec in let dect = nar+nrec+nbconstruct in let vecfi = rel_vect (dect+1-i-nctyi) nctyi in (* constructors in context of the Cases expr, i.e. P1..P_nrec f1..f_nbconstruct F_1..F_nrec a_1..a_nar x:I *) let args' = extended_rel_list (decf+1) lnamespar in let indf' = make_ind_family(indi,args') in let constrs = get_constructors env indf' in let branches = array_map3 (make_rec_branch_arg env sigma (nparams,depPvec,nar+1)) vecfi constrs (dest_subterms recargsvec.(tyi)) in let j = (match depPvec.(tyi) with | Some (_,c) when isRel c -> destRel c | _ -> assert false) in let deftyi = it_mkLambda_or_LetIn_name env (lambda_create env (build_dependent_inductive env (lift_inductive_family nrec indf), mkCase (make_default_case_info env indi, mkRel (dect+j+1), mkRel 1, branches))) (Termops.lift_rel_context nrec lnames) in let ind = build_dependent_inductive env indf in let typtyi = it_mkProd_or_LetIn_name env (prod_create env (ind, (if dep then let ext_lnames = (Anonymous,None,ind)::lnames in let args = extended_rel_list 0 ext_lnames in applist (mkRel (nbconstruct+nar+j+1), args) else let args = extended_rel_list 1 lnames in applist (mkRel (nbconstruct+nar+j+1), args)))) lnames in mrec (i+nctyi) (nar::ln) (typtyi::ltyp) (deftyi::ldef) rest | [] -> let fixn = Array.of_list (List.rev ln) in let fixtyi = Array.of_list (List.rev ltyp) in let fixdef = Array.of_list (List.rev ldef) in let names = Array.create nrec (Name(id_of_string "F")) in mkFix ((fixn,p),(names,fixtyi,fixdef)) in mrec 0 [] [] [] in let rec make_branch env i = function | (indi,mibi,mipi,dep,_)::rest -> let tyi = snd indi in let nconstr = Array.length mipi.mind_consnames in let rec onerec env j = if j = nconstr then make_branch env (i+j) rest else let recarg = (dest_subterms recargsvec.(tyi)).(j) in let vargs = extended_rel_list (nrec+i+j) lnamespar in let indf = (indi, vargs) in let cs = get_constructor (indi,mibi,mipi,vargs) (j+1) in let p_0 = type_rec_branch true dep env sigma (vargs,depPvec,i+j) tyi cs recarg in mkLambda_string "f" p_0 (onerec (push_rel (Anonymous,None,p_0) env) (j+1)) in onerec env 0 | [] -> makefix i listdepkind in let rec put_arity env i = function | (indi,_,_,dep,kinds)::rest -> let indf = make_ind_family (indi,extended_rel_list i lnamespar) in let typP = make_arity env dep indf (new_sort_in_family kinds) in mkLambda_string "P" typP (put_arity (push_rel (Anonymous,None,typP) env) (i+1) rest) | [] -> make_branch env 0 listdepkind in let (indi,mibi,mipi,dep,kind) = List.nth listdepkind p in let env' = push_rel_context lnamespar env in if mis_is_recursive_subset (List.map (fun (indi,_,_,_,_) -> snd indi) listdepkind) mipi.mind_recargs then it_mkLambda_or_LetIn_name env (put_arity env' 0 listdepkind) lnamespar else mis_make_case_com (Some dep) env sigma (indi,mibi,mipi) kind in list_tabulate make_one_rec nrec (**********************************************************************) (* This builds elimination predicate for Case tactic *) let make_case_com depopt env sigma ity kind = let (mib,mip) = lookup_mind_specif env ity in mis_make_case_com depopt env sigma (ity,mib,mip) kind let make_case_dep env = make_case_com (Some true) env let make_case_nodep env = make_case_com (Some false) env let make_case_gen env = make_case_com None env (**********************************************************************) (* [instanciate_indrec_scheme s rec] replace the sort of the scheme [rec] by [s] *) let change_sort_arity sort = let rec drec a = match kind_of_term a with | Cast (c,t) -> drec c | Prod (n,t,c) -> mkProd (n, t, drec c) | Sort _ -> mkSort sort | _ -> assert false in drec (* [npar] is the number of expected arguments (then excluding letin's) *) let instanciate_indrec_scheme sort = let rec drec npar elim = match kind_of_term elim with | Lambda (n,t,c) -> if npar = 0 then mkLambda (n, change_sort_arity sort t, c) else mkLambda (n, t, drec (npar-1) c) | LetIn (n,b,t,c) -> mkLetIn (n,b,t,drec npar c) | _ -> anomaly "instanciate_indrec_scheme: wrong elimination type" in drec (* Change the sort in the type of an inductive definition, builds the corresponding eta-expanded term *) let instanciate_type_indrec_scheme sort npars term = let rec drec np elim = match kind_of_term elim with | Prod (n,t,c) -> if np = 0 then let t' = change_sort_arity sort t in mkProd (n, t', c), mkLambda (n, t', mkApp(term,Termops.rel_vect 0 (npars+1))) else let c',term' = drec (np-1) c in mkProd (n, t, c'), mkLambda (n, t, term') | LetIn (n,b,t,c) -> let c',term' = drec np c in mkLetIn (n,b,t,c'), mkLetIn (n,b,t,term') | _ -> anomaly "instanciate_type_indrec_scheme: wrong elimination type" in drec npars (**********************************************************************) (* Interface to build complex Scheme *) let check_arities listdepkind = List.iter (function (indi,mibi,mipi,dep,kind) -> let id = mipi.mind_typename in let kelim = mipi.mind_kelim in if not (List.exists ((=) kind) kelim) then raise (InductiveError (BadInduction (dep, id, new_sort_in_family kind)))) listdepkind let build_mutual_indrec env sigma = function | (mind,mib,mip,dep,s)::lrecspec -> let (sp,tyi) = mind in let listdepkind = (mind,mib,mip, dep,s):: (List.map (function (mind',mibi',mipi',dep',s') -> let (sp',_) = mind' in if sp=sp' then let (mibi',mipi') = lookup_mind_specif env mind' in (mind',mibi',mipi',dep',s') else raise (InductiveError NotMutualInScheme)) lrecspec) in let _ = check_arities listdepkind in mis_make_indrec env sigma listdepkind (mind,mib,mip) | _ -> anomaly "build_indrec expects a non empty list of inductive types" let build_indrec env sigma ind = let (mib,mip) = lookup_mind_specif env ind in let kind = family_of_sort mip.mind_sort in let dep = kind <> InProp in List.hd (mis_make_indrec env sigma [(ind,mib,mip,dep,kind)] (ind,mib,mip)) (**********************************************************************) (* To handle old Case/Match syntax in Pretyping *) (***********************************) (* To interpret Case and Match operators *) let type_rec_branches recursive env sigma indt pj c = let IndType (indf,realargs) = indt in let p = pj.uj_val in let (ind,params) = dest_ind_family indf in let (mib,mip) = lookup_mind_specif env ind in let recargs = mip.mind_recargs in let tyi = snd ind in let is_rec = recursive && mis_is_recursive_subset [tyi] recargs in let dep = is_dependent_elimination env pj.uj_type indf in let init_depPvec i = if i = tyi then Some(dep,p) else None in let depPvec = Array.init mib.mind_ntypes init_depPvec in let vargs = Array.of_list params in let constructors = get_constructors env indf in let lft = array_map2 (type_rec_branch recursive dep env sigma (params,depPvec,0) tyi) constructors (dest_subterms recargs) in (lft, if dep then Reduction.beta_appvect p (Array.of_list (realargs@[c])) else Reduction.beta_appvect p (Array.of_list realargs)) (* Non recursive case. Pb: does not deal with unification let (p,ra,_) = type_case_branches env (ind,params@realargs) pj c in (p,ra) *) (*s Eliminations. *) let type_suff = "_rect" let non_type_eliminations = [ (InProp,"_ind") ; (InSet,"_rec")] let elimination_suffix = function | InProp -> "_ind" | InSet -> "_rec" | InType -> "_rect" let make_elimination_ident id s = add_suffix id (elimination_suffix s) let declare_one_elimination ind = let (mib,mip) = Global.lookup_inductive ind in let mindstr = string_of_id mip.mind_typename in let declare na c t = let kn = Declare.declare_constant (id_of_string na) (DefinitionEntry { const_entry_body = c; const_entry_type = t; const_entry_opaque = false }, NeverDischarge) in Options.if_verbose ppnl (str na ++ str " is defined"); kn in let env = Global.env () in let sigma = Evd.empty in let elim_scheme = build_indrec env sigma ind in let npars = mip.mind_nparams in let make_elim s = instanciate_indrec_scheme s npars elim_scheme in let kelim = mip.mind_kelim in (* in case the inductive has a type elimination, generates only one induction scheme, the other ones share the same code with the apropriate type *) if List.mem InType kelim then let cte = declare (mindstr^type_suff) (make_elim (new_sort_in_family InType)) None in let c = mkConst (snd cte) and t = constant_type (Global.env ()) (snd cte) in List.iter (fun (sort,suff) -> let (t',c') = instanciate_type_indrec_scheme (new_sort_in_family sort) npars c t in let _ = declare (mindstr^suff) c' (Some t') in ()) non_type_eliminations else (* Impredicative or logical inductive definition *) List.iter (fun (sort,suff) -> if List.mem sort kelim then let _ = declare (mindstr^suff) (make_elim (new_sort_in_family sort)) None in ()) non_type_eliminations let declare_eliminations sp = let mib = Global.lookup_mind sp in (* let ids = ids_of_named_context mib.mind_hyps in if not (list_subset ids (ids_of_named_context (Global.named_context ()))) then error ("Declarations of elimination scheme outside the section "^ "of the inductive definition is not implemented"); *) if mib.mind_finite then for i = 0 to Array.length mib.mind_packets - 1 do declare_one_elimination (sp,i) done (* Look up function for the default elimination constant *) let lookup_eliminator ind_sp s = let kn,i = ind_sp in let mp,dp,l = repr_kn kn in let ind_id = (Global.lookup_mind kn).mind_packets.(i).mind_typename in let id = add_suffix ind_id (elimination_suffix s) in (* Try first to get an eliminator defined in the same section as the *) (* inductive type *) let ref = ConstRef (make_kn mp dp (label_of_id id)) in try let _ = full_name ref in constr_of_reference ref with Not_found -> (* Then try to get a user-defined eliminator in some other places *) (* using short name (e.g. for "eq_rec") *) try construct_reference None id with Not_found -> errorlabstrm "default_elim" (str "Cannot find the elimination combinator " ++ pr_id id ++ spc () ++ str "The elimination of the inductive definition " ++ pr_id id ++ spc () ++ str "on sort " ++ spc () ++ print_sort_family s ++ str " is probably not allowed") (* let env = Global.env() in let path = sp_of_global None (IndRef ind_sp) in let dir, base = repr_path path in let id = add_suffix base (elimination_suffix s) in (* Try first to get an eliminator defined in the same section as the *) (* inductive type *) try construct_absolute_reference (Names.make_path dir id) with Not_found -> (* Then try to get a user-defined eliminator in some other places *) (* using short name (e.g. for "eq_rec") *) try construct_reference None id with Not_found -> errorlabstrm "default_elim" (str "Cannot find the elimination combinator " ++ pr_id id ++ spc () ++ str "The elimination of the inductive definition " ++ pr_id base ++ spc () ++ str "on sort " ++ spc () ++ print_sort_family s ++ str " is probably not allowed") *)