(************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) (* (match existential_opt_value sigma ev with | None -> raise (Uninstantiated_evar evk) | Some c -> flush_and_check_evars sigma c) | _ -> map_constr (flush_and_check_evars sigma) c (* let nf_evar_key = Profile.declare_profile "nf_evar" *) (* let nf_evar = Profile.profile2 nf_evar_key Reductionops.nf_evar *) let nf_evar = Reductionops.nf_evar let j_nf_evar sigma j = { uj_val = nf_evar sigma j.uj_val; uj_type = nf_evar sigma j.uj_type } let j_nf_betaiotaevar sigma j = { uj_val = nf_evar sigma j.uj_val; uj_type = Reductionops.nf_betaiota sigma j.uj_type } let jl_nf_evar sigma jl = List.map (j_nf_evar sigma) jl let jv_nf_betaiotaevar sigma jl = Array.map (j_nf_betaiotaevar sigma) jl let jv_nf_evar sigma = Array.map (j_nf_evar sigma) let tj_nf_evar sigma {utj_val=v;utj_type=t} = {utj_val=nf_evar sigma v;utj_type=t} let env_nf_evar sigma env = process_rel_context (fun d e -> push_rel (map_rel_declaration (nf_evar sigma) d) e) env let env_nf_betaiotaevar sigma env = process_rel_context (fun d e -> push_rel (map_rel_declaration (Reductionops.nf_betaiota sigma) d) e) env let nf_evars_universes evm = Universes.nf_evars_and_universes_opt_subst (Reductionops.safe_evar_value evm) (Evd.universe_subst evm) let nf_evars_and_universes evm = let evm = Evd.nf_constraints evm in evm, nf_evars_universes evm let e_nf_evars_and_universes evdref = evdref := Evd.nf_constraints !evdref; nf_evars_universes !evdref, Evd.universe_subst !evdref let nf_evar_map_universes evm = let evm = Evd.nf_constraints evm in let subst = Evd.universe_subst evm in if Univ.LMap.is_empty subst then evm, nf_evar evm else let f = nf_evars_universes evm in Evd.raw_map (fun _ -> map_evar_info f) evm, f let nf_named_context_evar sigma ctx = Context.map_named_context (nf_evar sigma) ctx let nf_rel_context_evar sigma ctx = Context.map_rel_context (nf_evar sigma) ctx let nf_env_evar sigma env = let nc' = nf_named_context_evar sigma (Environ.named_context env) in let rel' = nf_rel_context_evar sigma (Environ.rel_context env) in push_rel_context rel' (reset_with_named_context (val_of_named_context nc') env) let nf_evar_info evc info = map_evar_info (nf_evar evc) info let nf_evar_map evm = Evd.raw_map (fun _ evi -> nf_evar_info evm evi) evm let nf_evar_map_undefined evm = Evd.raw_map_undefined (fun _ evi -> nf_evar_info evm evi) evm (*-------------------*) (* Auxiliary functions for the conversion algorithms modulo evars *) let has_flexible_level evd l = let a = Univ.Instance.to_array l in Array.exists (fun l -> Evd.is_flexible_level evd l) a let has_undefined_evars or_sorts evd t = let rec has_ev t = match kind_of_term t with | Evar (ev,args) -> (match evar_body (Evd.find evd ev) with | Evar_defined c -> has_ev c; Array.iter has_ev args | Evar_empty -> raise NotInstantiatedEvar) | Ind (_,l) | Const (_,l) | Construct (_,l) when or_sorts && not (Univ.Instance.is_empty l) -> raise Not_found | _ -> iter_constr has_ev t in try let _ = has_ev t in false with (Not_found | NotInstantiatedEvar) -> true let is_ground_term evd t = not (has_undefined_evars true evd t) let is_ground_env evd env = let is_ground_decl = function (_,Some b,_) -> is_ground_term evd b | _ -> true in List.for_all is_ground_decl (rel_context env) && List.for_all is_ground_decl (named_context env) (* Memoization is safe since evar_map and environ are applicative structures *) let memo f = let m = ref None in fun x y -> match !m with | Some (x', y', r) when x == x' && y == y' -> r | _ -> let r = f x y in m := Some (x, y, r); r let is_ground_env = memo is_ground_env (* Return the head evar if any *) exception NoHeadEvar let head_evar = let rec hrec c = match kind_of_term c with | Evar (evk,_) -> evk | Case (_,_,c,_) -> hrec c | App (c,_) -> hrec c | Cast (c,_,_) -> hrec c | _ -> raise NoHeadEvar in hrec (* Expand head evar if any (currently consider only applications but I guess it should consider Case too) *) let whd_head_evar_stack sigma c = let rec whrec (c, l as s) = match kind_of_term c with | Evar (evk,args as ev) -> let v = try Some (existential_value sigma ev) with NotInstantiatedEvar | Not_found -> None in begin match v with | None -> s | Some c -> whrec (c, l) end | Cast (c,_,_) -> whrec (c, l) | App (f,args) -> whrec (f, args :: l) | _ -> s in whrec (c, []) let whd_head_evar sigma c = let (f, args) = whd_head_evar_stack sigma c in (** optim: don't reallocate if empty/singleton *) match args with | [] -> f | [arg] -> mkApp (f, arg) | _ -> mkApp (f, Array.concat args) (**********************) (* Creating new metas *) (**********************) (* Generator of metavariables *) let new_meta = let meta_ctr = Summary.ref 0 ~name:"meta counter" in fun () -> incr meta_ctr; !meta_ctr let mk_new_meta () = mkMeta(new_meta()) (* The list of non-instantiated existential declarations (order is important) *) let non_instantiated sigma = let listev = Evd.undefined_map sigma in Evar.Map.smartmap (fun evi -> nf_evar_info sigma evi) listev (************************) (* Manipulating filters *) (************************) let make_pure_subst evi args = snd (List.fold_right (fun (id,b,c) (args,l) -> match args with | a::rest -> (rest, (id,a)::l) | _ -> anomaly (Pp.str "Instance does not match its signature")) (evar_filtered_context evi) (Array.rev_to_list args,[])) (**********************) (* Creating new evars *) (**********************) (* Generator of existential names *) let new_untyped_evar = let evar_ctr = Summary.ref 0 ~name:"evar counter" in fun () -> incr evar_ctr; Evar.unsafe_of_int !evar_ctr (*------------------------------------* * functional operations on evar sets * *------------------------------------*) (* [push_rel_context_to_named_context] builds the defining context and the * initial instance of an evar. If the evar is to be used in context * * Gamma = a1 ... an xp ... x1 * \- named part -/ \- de Bruijn part -/ * * then the x1...xp are turned into variables so that the evar is declared in * context * * a1 ... an xp ... x1 * \----------- named part ------------/ * * but used applied to the initial instance "a1 ... an Rel(p) ... Rel(1)" * so that ev[a1:=a1 ... an:=an xp:=Rel(p) ... x1:=Rel(1)] is correctly typed * in context Gamma. * * Remark 1: The instance is reverted in practice (i.e. Rel(1) comes first) * Remark 2: If some of the ai or xj are definitions, we keep them in the * instance. This is necessary so that no unfolding of local definitions * happens when inferring implicit arguments (consider e.g. the problem * "x:nat; x':=x; f:forall y, y=y -> Prop |- f _ (refl_equal x')" which * produces the equation "?y[x,x']=?y[x,x']" =? "x'=x'": we want * the hole to be instantiated by x', not by x (which would have been * the case in [invert_definition] if x' had disappeared from the instance). * Note that at any time, if, in some context env, the instance of * declaration x:A is t and the instance of definition x':=phi(x) is u, then * we have the property that u and phi(t) are convertible in env. *) let subst2 subst vsubst c = substl subst (replace_vars vsubst c) let push_rel_context_to_named_context env typ = (* compute the instances relative to the named context and rel_context *) let ids = List.map pi1 (named_context env) in let inst_vars = List.map mkVar ids in let inst_rels = List.rev (rel_list 0 (nb_rel env)) in let replace_var_named_declaration id0 id (id',b,t) = let id' = if Id.equal id0 id' then id else id' in let vsubst = [id0 , mkVar id] in let b = match b with | None -> None | Some c -> Some (replace_vars vsubst c) in id', b, replace_vars vsubst t in let replace_var_named_context id0 id env = let nc = Environ.named_context env in let nc' = List.map (replace_var_named_declaration id0 id) nc in Environ.reset_with_named_context (val_of_named_context nc') env in let extract_if_neq id = function | Anonymous -> None | Name id' when id_ord id id' = 0 -> None | Name id' -> Some id' in (* move the rel context to a named context and extend the named instance *) (* with vars of the rel context *) (* We do keep the instances corresponding to local definition (see above) *) let (subst, vsubst, _, env) = Context.fold_rel_context (fun (na,c,t) (subst, vsubst, avoid, env) -> let id = (* ppedrot: we want to infer nicer names for the refine tactic, but keeping at the same time backward compatibility in other code using this function. For now, we only attempt to preserve the old behaviour of Program, but ultimately, one should do something about this whole name generation problem. *) if Flags.is_program_mode () then next_name_away na avoid else next_ident_away (id_of_name_using_hdchar env t na) avoid in match extract_if_neq id na with | Some id0 when not (is_section_variable id0) -> (* spiwack: if [id<>id0], rather than introducing a new binding named [id], we will keep [id0] (the name given by the user) and rename [id0] into [id] in the named context. Unless [id] is a section variable. *) let subst = List.map (replace_vars [id0,mkVar id]) subst in let vsubst = (id0,mkVar id)::vsubst in let d = (id0, Option.map (subst2 subst vsubst) c, subst2 subst vsubst t) in let env = replace_var_named_context id0 id env in (mkVar id0 :: subst, vsubst, id::avoid, push_named d env) | _ -> (* spiwack: if [id0] is a section variable renaming it is incorrect. We revert to a less robust behaviour where the new binder has name [id]. Which amounts to the same behaviour than when [id=id0]. *) let d = (id,Option.map (subst2 subst vsubst) c,subst2 subst vsubst t) in (mkVar id :: subst, vsubst, id::avoid, push_named d env) ) (rel_context env) ~init:([], [], ids, env) in (named_context_val env, subst2 subst vsubst typ, inst_rels@inst_vars, subst, vsubst) (*------------------------------------* * Entry points to define new evars * *------------------------------------*) let default_source = (Loc.ghost,Evar_kinds.InternalHole) let new_pure_evar_full evd evi = let evk = new_untyped_evar () in let evd = Evd.add evd evk evi in (evd, evk) let new_pure_evar evd sign ?(src=default_source) ?filter ?candidates ?store typ = let newevk = new_untyped_evar() in let evd = evar_declare sign newevk typ ~src ?filter ?candidates ?store evd in (evd,newevk) let new_evar_instance sign evd typ ?src ?filter ?candidates ?store instance = assert (not !Flags.debug || List.distinct (ids_of_named_context (named_context_of_val sign))); let evd,newevk = new_pure_evar evd sign ?src ?filter ?candidates ?store typ in (evd,mkEvar (newevk,Array.of_list instance)) (* [new_evar] declares a new existential in an env env with type typ *) (* Converting the env into the sign of the evar to define *) let new_evar evd env ?src ?filter ?candidates ?store typ = let sign,typ',instance,subst,vsubst = push_rel_context_to_named_context env typ in let candidates = Option.map (List.map (subst2 subst vsubst)) candidates in let instance = match filter with | None -> instance | Some filter -> Filter.filter_list filter instance in new_evar_instance sign evd typ' ?src ?filter ?candidates ?store instance let new_type_evar ?src ?filter rigid evd env = let evd', s = new_sort_variable rigid evd in let evd', e = new_evar evd' env ?src ?filter (mkSort s) in evd', (e, s) let e_new_type_evar evdref ?src ?filter rigid env = let evd', c = new_type_evar ?src ?filter rigid !evdref env in evdref := evd'; c (* The same using side-effect *) let e_new_evar evdref env ?(src=default_source) ?filter ?candidates ?store ty = let (evd',ev) = new_evar !evdref env ~src:src ?filter ?candidates ?store ty in evdref := evd'; ev (* This assumes an evar with identity instance and generalizes it over only the De Bruijn part of the context *) let generalize_evar_over_rels sigma (ev,args) = let evi = Evd.find sigma ev in let sign = named_context_of_val evi.evar_hyps in List.fold_left2 (fun (c,inst as x) a d -> if isRel a then (mkNamedProd_or_LetIn d c,a::inst) else x) (evi.evar_concl,[]) (Array.to_list args) sign (************************************) (* Removing a dependency in an evar *) (************************************) type clear_dependency_error = | OccurHypInSimpleClause of Id.t option | EvarTypingBreak of existential exception ClearDependencyError of Id.t * clear_dependency_error let cleared = Store.field () exception Depends of Id.t let rec check_and_clear_in_constr evdref err ids c = (* returns a new constr where all the evars have been 'cleaned' (ie the hypotheses ids have been removed from the contexts of evars) *) let check id' = if Id.Set.mem id' ids then raise (ClearDependencyError (id',err)) in match kind_of_term c with | Var id' -> check id'; c | ( Const _ | Ind _ | Construct _ ) -> let vars = Environ.vars_of_global (Global.env()) c in Id.Set.iter check vars; c | Evar (evk,l as ev) -> if Evd.is_defined !evdref evk then (* If evk is already defined we replace it by its definition *) let nc = whd_evar !evdref c in (check_and_clear_in_constr evdref err ids nc) else (* We check for dependencies to elements of ids in the evar_info corresponding to e and in the instance of arguments. Concurrently, we build a new evar corresponding to e where hypotheses of ids have been removed *) let evi = Evd.find_undefined !evdref evk in let ctxt = Evd.evar_filtered_context evi in let (nhyps,nargs,rids) = List.fold_right2 (fun (rid, ob,c as h) a (hy,ar,ri) -> try (* Check if some id to clear occurs in the instance a of rid in ev and remember the dependency *) let check id = if Id.Set.mem id ids then raise (Depends id) in let () = Id.Set.iter check (collect_vars a) in (* Check if some rid to clear in the context of ev has dependencies in another hyp of the context of ev and transitively remember the dependency *) let check id _ = if occur_var_in_decl (Global.env ()) id h then raise (Depends id) in let () = Id.Map.iter check ri in (* No dependency at all, we can keep this ev's context hyp *) (h::hy, a::ar, ri) with Depends id -> (hy, ar, Id.Map.add rid id ri)) ctxt (Array.to_list l) ([],[],Id.Map.empty) in (* Check if some rid to clear in the context of ev has dependencies in the type of ev and adjust the source of the dependency *) let nconcl = try let nids = Id.Map.domain rids in check_and_clear_in_constr evdref (EvarTypingBreak ev) nids (evar_concl evi) with ClearDependencyError (rid,err) -> raise (ClearDependencyError (Id.Map.find rid rids,err)) in if Id.Map.is_empty rids then c else let env = Context.fold_named_context push_named nhyps ~init:(empty_env) in let ev'= e_new_evar evdref env ~src:(evar_source evk !evdref) nconcl in evdref := Evd.define evk ev' !evdref; let (evk',_) = destEvar ev' in (* spiwack: hacking session to mark the old [evk] as having been "cleared" *) let evi = Evd.find !evdref evk in let extra = evi.evar_extra in let extra' = Store.set extra cleared true in let evi' = { evi with evar_extra = extra' } in evdref := Evd.add !evdref evk evi' ; (* spiwack: /hacking session *) mkEvar(evk', Array.of_list nargs) | _ -> map_constr (check_and_clear_in_constr evdref err ids) c let clear_hyps_in_evi evdref hyps concl ids = (* clear_hyps_in_evi erases hypotheses ids in hyps, checking if some hypothesis does not depend on a element of ids, and erases ids in the contexts of the evars occuring in evi *) let nconcl = check_and_clear_in_constr evdref (OccurHypInSimpleClause None) ids concl in let nhyps = let check_context ((id,ob,c) as decl) = let err = OccurHypInSimpleClause (Some id) in let ob' = Option.smartmap (fun c -> check_and_clear_in_constr evdref err ids c) ob in let c' = check_and_clear_in_constr evdref err ids c in if ob == ob' && c == c' then decl else (id, ob', c') in let check_value vk = match force_lazy_val vk with | None -> vk | Some (_, d) -> if (Id.Set.for_all (fun e -> not (Id.Set.mem e d)) ids) then (* v does depend on any of ids, it's ok *) vk else (* v depends on one of the cleared hyps: we forget the computed value *) dummy_lazy_val () in remove_hyps ids check_context check_value hyps in (nhyps,nconcl) (** The following functions return the set of evars immediately contained in the object, including defined evars *) let evars_of_term c = let rec evrec acc c = match kind_of_term c with | Evar (n, l) -> Evar.Set.add n (Array.fold_left evrec acc l) | _ -> fold_constr evrec acc c in evrec Evar.Set.empty c (* spiwack: a few functions to gather evars on which goals depend. *) let queue_set q is_dependent set = Evar.Set.iter (fun a -> Queue.push (is_dependent,a) q) set let queue_term q is_dependent c = queue_set q is_dependent (evars_of_term c) let process_dependent_evar q acc evm is_dependent e = let evi = Evd.find evm e in (* Queues evars appearing in the types of the goal (conclusion, then hypotheses), they are all dependent. *) queue_term q true evi.evar_concl; List.iter begin fun (_,b,t) -> queue_term q true t; match b with | None -> () | Some b -> queue_term q true b end (Environ.named_context_of_val evi.evar_hyps); match evi.evar_body with | Evar_empty -> if is_dependent then Evar.Map.add e None acc else acc | Evar_defined b -> let subevars = evars_of_term b in (* evars appearing in the definition of an evar [e] are marked as dependent when [e] is dependent itself: if [e] is a non-dependent goal, then, unless they are reach from another path, these evars are just other non-dependent goals. *) queue_set q is_dependent subevars; if is_dependent then Evar.Map.add e (Some subevars) acc else acc let gather_dependent_evars q evm = let acc = ref Evar.Map.empty in while not (Queue.is_empty q) do let (is_dependent,e) = Queue.pop q in (* checks if [e] has already been added to [!acc] *) begin if not (Evar.Map.mem e !acc) then acc := process_dependent_evar q !acc evm is_dependent e end done; !acc let gather_dependent_evars evm l = let q = Queue.create () in List.iter (fun a -> Queue.add (false,a) q) l; gather_dependent_evars q evm (* /spiwack *) let evars_of_named_context nc = List.fold_right (fun (_, b, t) s -> Option.fold_left (fun s t -> Evar.Set.union s (evars_of_term t)) (Evar.Set.union s (evars_of_term t)) b) nc Evar.Set.empty let evars_of_evar_info evi = Evar.Set.union (evars_of_term evi.evar_concl) (Evar.Set.union (match evi.evar_body with | Evar_empty -> Evar.Set.empty | Evar_defined b -> evars_of_term b) (evars_of_named_context (named_context_of_val evi.evar_hyps))) (** The following functions return the set of undefined evars contained in the object, the defined evars being traversed. This is roughly a combination of the previous functions and [nf_evar]. *) let undefined_evars_of_term evd t = let rec evrec acc c = match kind_of_term c with | Evar (n, l) -> let acc = Array.fold_left evrec acc l in (try match (Evd.find evd n).evar_body with | Evar_empty -> Evar.Set.add n acc | Evar_defined c -> evrec acc c with Not_found -> anomaly ~label:"undefined_evars_of_term" (Pp.str "evar not found")) | _ -> fold_constr evrec acc c in evrec Evar.Set.empty t let undefined_evars_of_named_context evd nc = List.fold_right (fun (_, b, t) s -> Option.fold_left (fun s t -> Evar.Set.union s (undefined_evars_of_term evd t)) (Evar.Set.union s (undefined_evars_of_term evd t)) b) nc Evar.Set.empty let undefined_evars_of_evar_info evd evi = Evar.Set.union (undefined_evars_of_term evd evi.evar_concl) (Evar.Set.union (match evi.evar_body with | Evar_empty -> Evar.Set.empty | Evar_defined b -> undefined_evars_of_term evd b) (undefined_evars_of_named_context evd (named_context_of_val evi.evar_hyps))) (* [check_evars] fails if some unresolved evar remains *) let check_evars env initial_sigma sigma c = let rec proc_rec c = match kind_of_term c with | Evar (evk,_ as ev) -> (match existential_opt_value sigma ev with | Some c -> proc_rec c | None -> if not (Evd.mem initial_sigma evk) then let (loc,k) = evar_source evk sigma in match k with | Evar_kinds.ImplicitArg (gr, (i, id), false) -> () | _ -> let evi = nf_evar_info sigma (Evd.find_undefined sigma evk) in error_unsolvable_implicit loc env sigma evi k None) | _ -> iter_constr proc_rec c in proc_rec c (****************************************) (* Operations on value/type constraints *) (****************************************) type type_constraint = types option type val_constraint = constr option (* Old comment... * Basically, we have the following kind of constraints (in increasing * strength order): * (false,(None,None)) -> no constraint at all * (true,(None,None)) -> we must build a judgement which _TYPE is a kind * (_,(None,Some ty)) -> we must build a judgement which _TYPE is ty * (_,(Some v,_)) -> we must build a judgement which _VAL is v * Maybe a concrete datatype would be easier to understand. * We differentiate (true,(None,None)) from (_,(None,Some Type)) * because otherwise Case(s) would be misled, as in * (n:nat) Case n of bool [_]nat end would infer the predicate Type instead * of Set. *) (* The empty type constraint *) let empty_tycon = None (* Builds a type constraint *) let mk_tycon ty = Some ty (* Constrains the value of a type *) let empty_valcon = None (* Builds a value constraint *) let mk_valcon c = Some c let idx = Namegen.default_dependent_ident (* Refining an evar to a product *) let define_pure_evar_as_product evd evk = let evi = Evd.find_undefined evd evk in let evenv = evar_env evi in let id = next_ident_away idx (ids_of_named_context (evar_context evi)) in let s = destSort evi.evar_concl in let evd1,(dom,u1) = new_type_evar univ_flexible_alg evd evenv ~filter:(evar_filter evi) in let evd2,rng = let newenv = push_named (id, None, dom) evenv in let src = evar_source evk evd1 in let filter = Filter.extend 1 (evar_filter evi) in if is_prop_sort s then (* Impredicative product, conclusion must fall in [Prop]. *) new_evar evd1 newenv evi.evar_concl ~src ~filter else let evd3, (rng, srng) = new_type_evar univ_flexible_alg evd1 newenv ~src ~filter in let prods = Univ.sup (univ_of_sort u1) (univ_of_sort srng) in let evd3 = Evd.set_leq_sort evd3 (Type prods) s in evd3, rng in let prod = mkProd (Name id, dom, subst_var id rng) in let evd3 = Evd.define evk prod evd2 in evd3,prod (* Refine an applied evar to a product and returns its instantiation *) let define_evar_as_product evd (evk,args) = let evd,prod = define_pure_evar_as_product evd evk in (* Quick way to compute the instantiation of evk with args *) let na,dom,rng = destProd prod in let evdom = mkEvar (fst (destEvar dom), args) in let evrngargs = Array.cons (mkRel 1) (Array.map (lift 1) args) in let evrng = mkEvar (fst (destEvar rng), evrngargs) in evd,mkProd (na, evdom, evrng) (* Refine an evar with an abstraction I.e., solve x1..xq |- ?e:T(x1..xq) with e:=λy:A.?e'[x1..xq,y] where: - either T(x1..xq) = πy:A(x1..xq).B(x1..xq,y) or T(x1..xq) = ?d[x1..xq] and we define ?d := πy:?A.?B with x1..xq |- ?A:Type and x1..xq,y |- ?B:Type - x1..xq,y:A |- ?e':B *) let define_pure_evar_as_lambda env evd evk = let evi = Evd.find_undefined evd evk in let evenv = evar_env evi in let typ = whd_betadeltaiota env evd (evar_concl evi) in let evd1,(na,dom,rng) = match kind_of_term typ with | Prod (na,dom,rng) -> (evd,(na,dom,rng)) | Evar ev' -> let evd,typ = define_evar_as_product evd ev' in evd,destProd typ | _ -> error_not_product_loc Loc.ghost env evd typ in let avoid = ids_of_named_context (evar_context evi) in let id = next_name_away_with_default_using_types "x" na avoid (whd_evar evd dom) in let newenv = push_named (id, None, dom) evenv in let filter = Filter.extend 1 (evar_filter evi) in let src = evar_source evk evd1 in let evd2,body = new_evar evd1 newenv ~src (subst1 (mkVar id) rng) ~filter in let lam = mkLambda (Name id, dom, subst_var id body) in Evd.define evk lam evd2, lam let define_evar_as_lambda env evd (evk,args) = let evd,lam = define_pure_evar_as_lambda env evd evk in (* Quick way to compute the instantiation of evk with args *) let na,dom,body = destLambda lam in let evbodyargs = Array.cons (mkRel 1) (Array.map (lift 1) args) in let evbody = mkEvar (fst (destEvar body), evbodyargs) in evd,mkLambda (na, dom, evbody) let rec evar_absorb_arguments env evd (evk,args as ev) = function | [] -> evd,ev | a::l -> (* TODO: optimize and avoid introducing intermediate evars *) let evd,lam = define_pure_evar_as_lambda env evd evk in let _,_,body = destLambda lam in let evk = fst (destEvar body) in evar_absorb_arguments env evd (evk, Array.cons a args) l (* Refining an evar to a sort *) let define_evar_as_sort evd (ev,args) = let evd, u = new_univ_variable univ_rigid evd in let evi = Evd.find_undefined evd ev in let s = Type u in let evd' = Evd.define ev (mkSort s) evd in Evd.set_leq_sort evd' (Type (Univ.super u)) (destSort evi.evar_concl), s (* We don't try to guess in which sort the type should be defined, since any type has type Type. May cause some trouble, but not so far... *) let judge_of_new_Type evd = let evd', s = new_univ_variable univ_rigid evd in evd', { uj_val = mkSort (Type s); uj_type = mkSort (Type (Univ.super s)) } (* Propagation of constraints through application and abstraction: Given a type constraint on a functional term, returns the type constraint on its domain and codomain. If the input constraint is an evar instantiate it with the product of 2 new evars. *) let split_tycon loc env evd tycon = let rec real_split evd c = let t = whd_betadeltaiota env evd c in match kind_of_term t with | Prod (na,dom,rng) -> evd, (na, dom, rng) | Evar ev (* ev is undefined because of whd_betadeltaiota *) -> let (evd',prod) = define_evar_as_product evd ev in let (_,dom,rng) = destProd prod in evd',(Anonymous, dom, rng) | App (c,args) when isEvar c -> let (evd',lam) = define_evar_as_lambda env evd (destEvar c) in real_split evd' (mkApp (lam,args)) | _ -> error_not_product_loc loc env evd c in match tycon with | None -> evd,(Anonymous,None,None) | Some c -> let evd', (n, dom, rng) = real_split evd c in evd', (n, mk_tycon dom, mk_tycon rng) let valcon_of_tycon x = x let lift_tycon n = Option.map (lift n) let pr_tycon env = function None -> str "None" | Some t -> Termops.print_constr_env env t open Declarations let get_template_constructor_type evdref (ind, i) n = let mib,oib = Global.lookup_inductive ind in let ar = match oib.mind_arity with | RegularArity _ -> assert false | TemplateArity templ -> templ in let ty = oib.mind_user_lc.(pred i) in let subst = Inductive.ind_subst (fst ind) mib Univ.Instance.empty in let ty = substl subst ty in let rec aux l ty n = match l, kind_of_term ty with | None :: l, Prod (na, t, t') -> mkProd (na, t, aux l t' (pred n)) | Some u :: l, Prod (na, t, t') -> let u' = evd_comb0 (new_univ_variable Evd.univ_flexible) evdref in (* evdref := set_leq_sort !evdref u'l (Type u); *) let s = Univ.LMap.add u (Option.get (Univ.Universe.level u')) Univ.LMap.empty in let dom = subst_univs_level_constr s t in (* let codom = subst_univs_level_constr s t' in *) mkProd (na, dom, aux l t' (pred n)) | l, LetIn (na, t, b, t') -> mkLetIn (na, t, b, aux l t' n) | _ :: _, _ -> assert false (* All params should be abstracted by a forall or a let-in *) | [], _ -> ty in aux ar.template_param_levels ty n let get_template_constructor_type evdref (ind, i) n = let mib,oib = Global.lookup_inductive ind in let ar = match oib.mind_arity with | RegularArity _ -> assert false | TemplateArity templ -> templ in let ty = oib.mind_user_lc.(pred i) in let subst = Inductive.ind_subst (fst ind) mib Univ.Instance.empty in let ty = substl subst ty in ar.template_param_levels, ty let get_template_inductive_type evdref ind n = let mib,oib = Global.lookup_inductive ind in let ar = match oib.mind_arity with | RegularArity _ -> assert false | TemplateArity templ -> templ in let ctx = oib.mind_arity_ctxt in ar.template_param_levels, mkArity(ctx, Type ar.template_level)