(***********************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) (* MaybeFlexible (FConst c) | IsRel n -> MaybeFlexible (FRel n) | IsVar id -> MaybeFlexible (FVar id) | IsEvar ev -> Flexible ev | _ -> Rigid c let eval_flexible_term env = function | FConst c -> constant_opt_value env c | FRel n -> option_app (lift n) (lookup_rel_value n env) | FVar id -> lookup_named_value id env let evar_apprec env isevars stack c = let rec aux s = let (t,stack as s') = Reduction.apprec env (evars_of isevars) s in match kind_of_term t with | IsEvar (n,_ as ev) when Evd.is_defined (evars_of isevars) n -> aux (existential_value (evars_of isevars) ev, stack) | _ -> (t, list_of_stack stack) in aux (c, append_stack (Array.of_list stack) empty_stack) (* Precondition: one of the terms of the pb is an uninstanciated evar, * possibly applied to arguments. *) let rec evar_conv_x env isevars pbty term1 term2 = let sigma = evars_of isevars in let term1 = whd_castappevar sigma term1 in let term2 = whd_castappevar sigma term2 in (* if eq_constr term1 term2 then true else *) (* Maybe convertible but since reducing can erase evars which [evar_apprec]*) (* could have found, we do it only if the terms are free of evar *) (not (has_undefined_isevars isevars term1) & not (has_undefined_isevars isevars term2) & is_fconv pbty env (evars_of isevars) term1 term2) or if ise_undefined isevars term1 then solve_simple_eqn evar_conv_x env isevars (pbty,destEvar term1,term2) else if ise_undefined isevars term2 then solve_simple_eqn evar_conv_x env isevars (pbty,destEvar term2,term1) else let (t1,l1) = evar_apprec env isevars [] term1 in let (t2,l2) = evar_apprec env isevars [] term2 in if (head_is_embedded_evar isevars t1 & not(is_eliminator t2)) or (head_is_embedded_evar isevars t2 & not(is_eliminator t1)) then (add_conv_pb isevars (pbty,applist(t1,l1),applist(t2,l2)); true) else evar_eqappr_x env isevars pbty (t1,l1) (t2,l2) and evar_eqappr_x env isevars pbty (term1,l1 as appr1) (term2,l2 as appr2) = (* Evar must be undefined since we have whd_ised *) match (flex_kind_of_term term1, flex_kind_of_term term2) with | Flexible (sp1,al1 as ev1), Flexible (sp2,al2 as ev2) -> let f1 () = if List.length l1 > List.length l2 then let (deb1,rest1) = list_chop (List.length l1-List.length l2) l1 in solve_simple_eqn evar_conv_x env isevars (pbty,ev2,applist(term1,deb1)) & list_for_all2eq (evar_conv_x env isevars CONV) rest1 l2 else let (deb2,rest2) = list_chop (List.length l2-List.length l1) l2 in solve_simple_eqn evar_conv_x env isevars (pbty,ev1,applist(term2,deb2)) & list_for_all2eq (evar_conv_x env isevars CONV) l1 rest2 and f2 () = (sp1 = sp2) & (array_for_all2 (evar_conv_x env isevars CONV) al1 al2) & (list_for_all2eq (evar_conv_x env isevars CONV) l1 l2) in ise_try isevars [f1; f2] | Flexible ev1, MaybeFlexible flex2 -> let f1 () = (List.length l1 <= List.length l2) & let (deb2,rest2) = list_chop (List.length l2-List.length l1) l2 in solve_simple_eqn evar_conv_x env isevars (pbty,ev1,applist(term2,deb2)) & list_for_all2eq (evar_conv_x env isevars CONV) l1 rest2 and f4 () = match eval_flexible_term env flex2 with | Some v2 -> evar_eqappr_x env isevars pbty appr1 (evar_apprec env isevars l2 v2) | None -> false in ise_try isevars [f1; f4] | MaybeFlexible flex1, Flexible ev2 -> let f1 () = (List.length l2 <= List.length l1) & let (deb1,rest1) = list_chop (List.length l1-List.length l2) l1 in solve_simple_eqn evar_conv_x env isevars (pbty,ev2,applist(term1,deb1)) & list_for_all2eq (evar_conv_x env isevars CONV) rest1 l2 and f4 () = match eval_flexible_term env flex1 with | Some v1 -> evar_eqappr_x env isevars pbty (evar_apprec env isevars l1 v1) appr2 | None -> false in ise_try isevars [f1; f4] | MaybeFlexible flex1, MaybeFlexible flex2 -> let f2 () = (flex1 = flex2) & (list_for_all2eq (evar_conv_x env isevars CONV) l1 l2) and f3 () = (try conv_record env isevars (try check_conv_record appr1 appr2 with Not_found -> check_conv_record appr2 appr1) with _ -> false) and f4 () = match eval_flexible_term env flex2 with | Some v2 -> evar_eqappr_x env isevars pbty appr1 (evar_apprec env isevars l2 v2) | None -> match eval_flexible_term env flex1 with | Some v1 -> evar_eqappr_x env isevars pbty (evar_apprec env isevars l1 v1) appr2 | None -> false in ise_try isevars [f2; f3; f4] | Flexible ev1, Rigid _ -> (List.length l1 <= List.length l2) & let (deb2,rest2) = list_chop (List.length l2-List.length l1) l2 in solve_simple_eqn evar_conv_x env isevars (pbty,ev1,applist(term2,deb2)) & list_for_all2eq (evar_conv_x env isevars CONV) l1 rest2 | Rigid _, Flexible ev2 -> (List.length l2 <= List.length l1) & let (deb1,rest1) = list_chop (List.length l1-List.length l2) l1 in solve_simple_eqn evar_conv_x env isevars (pbty,ev2,applist(term1,deb1)) & list_for_all2eq (evar_conv_x env isevars CONV) rest1 l2 | MaybeFlexible flex1, Rigid _ -> let f3 () = (try conv_record env isevars (check_conv_record appr1 appr2) with _ -> false) and f4 () = match eval_flexible_term env flex1 with | Some v1 -> evar_eqappr_x env isevars pbty (evar_apprec env isevars l1 v1) appr2 | None -> false in ise_try isevars [f3; f4] | Rigid _ , MaybeFlexible flex2 -> let f3 () = (try (conv_record env isevars (check_conv_record appr2 appr1)) with _ -> false) and f4 () = match eval_flexible_term env flex2 with | Some v2 -> evar_eqappr_x env isevars pbty appr1 (evar_apprec env isevars l2 v2) | None -> false in ise_try isevars [f3; f4] | Rigid c1, Rigid c2 -> match kind_of_term c1, kind_of_term c2 with | IsCast (c1,_), _ -> evar_eqappr_x env isevars pbty (c1,l1) appr2 | _, IsCast (c2,_) -> evar_eqappr_x env isevars pbty appr1 (c2,l2) | IsSort s1, IsSort s2 when l1=[] & l2=[] -> base_sort_cmp pbty s1 s2 | IsLambda (na,c1,c'1), IsLambda (_,c2,c'2) when l1=[] & l2=[] -> evar_conv_x env isevars CONV c1 c2 & (let c = nf_evar (evars_of isevars) c1 in evar_conv_x (push_rel_assum (na,c) env) isevars CONV c'1 c'2) | IsLetIn (na,b1,t1,c'1), IsLetIn (_,b2,_,c'2) -> let f1 () = evar_conv_x env isevars CONV b1 b2 & (let b = nf_evar (evars_of isevars) b1 in let t = nf_evar (evars_of isevars) t1 in evar_conv_x (push_rel_def (na,b,t) env) isevars pbty c'1 c'2) & (List.length l1 = List.length l2) & (List.for_all2 (evar_conv_x env isevars CONV) l1 l2) and f2 () = let appr1 = evar_apprec env isevars l1 (subst1 b1 c'1) and appr2 = evar_apprec env isevars l2 (subst1 b2 c'2) in evar_eqappr_x env isevars pbty appr1 appr2 in ise_try isevars [f1; f2] | IsLetIn (_,b1,_,c'1), _ ->(* On fait commuter les args avec le Let *) let appr1 = evar_apprec env isevars l1 (subst1 b1 c'1) in evar_eqappr_x env isevars pbty appr1 appr2 | _, IsLetIn (_,b2,_,c'2) -> let appr2 = evar_apprec env isevars l2 (subst1 b2 c'2) in evar_eqappr_x env isevars pbty appr1 appr2 | IsProd (n,c1,c'1), IsProd (_,c2,c'2) when l1=[] & l2=[] -> evar_conv_x env isevars CONV c1 c2 & (let c = nf_evar (evars_of isevars) c1 in evar_conv_x (push_rel_assum (n,c) env) isevars pbty c'1 c'2) | IsMutInd (sp1,cl1), IsMutInd (sp2,cl2) -> sp1=sp2 & array_for_all2 (evar_conv_x env isevars CONV) cl1 cl2 & list_for_all2eq (evar_conv_x env isevars CONV) l1 l2 | IsMutConstruct (sp1,cl1), IsMutConstruct (sp2,cl2) -> sp1=sp2 & array_for_all2 (evar_conv_x env isevars CONV) cl1 cl2 & list_for_all2eq (evar_conv_x env isevars CONV) l1 l2 | IsMutCase (_,p1,c1,cl1), IsMutCase (_,p2,c2,cl2) -> evar_conv_x env isevars CONV p1 p2 & evar_conv_x env isevars CONV c1 c2 & (array_for_all2 (evar_conv_x env isevars CONV) cl1 cl2) & (list_for_all2eq (evar_conv_x env isevars CONV) l1 l2) | IsFix (li1,(_,tys1,bds1 as recdef1)), IsFix (li2,(_,tys2,bds2)) -> li1=li2 & (array_for_all2 (evar_conv_x env isevars CONV) tys1 tys2) & (array_for_all2 (evar_conv_x (push_rec_types recdef1 env) isevars CONV) bds1 bds2) & (list_for_all2eq (evar_conv_x env isevars CONV) l1 l2) | IsCoFix (i1,(_,tys1,bds1 as recdef1)), IsCoFix (i2,(_,tys2,bds2)) -> i1=i2 & (array_for_all2 (evar_conv_x env isevars CONV) tys1 tys2) & (array_for_all2 (evar_conv_x (push_rec_types recdef1 env) isevars CONV) bds1 bds2) & (list_for_all2eq (evar_conv_x env isevars CONV) l1 l2) | (IsMeta _ | IsLambda _), _ -> false | _, (IsMeta _ | IsLambda _) -> false | (IsMutInd _ | IsMutConstruct _ | IsSort _ | IsProd _), _ -> false | _, (IsMutInd _ | IsMutConstruct _ | IsSort _ | IsProd _) -> false | (IsApp _ | IsMutCase _ | IsFix _ | IsCoFix _), (IsApp _ | IsMutCase _ | IsFix _ | IsCoFix _) -> false | (IsRel _ | IsVar _ | IsConst _ | IsEvar _), _ -> assert false | _, (IsRel _ | IsVar _ | IsConst _ | IsEvar _) -> assert false and conv_record env isevars (c,bs,(xs,xs1),(us,us1),(ts,ts1),t) = let ks = List.fold_left (fun ks b -> (new_isevar isevars env (substl ks b) CCI)::ks) [] bs in if (list_for_all2eq (fun u1 u -> evar_conv_x env isevars CONV u1 (substl ks u)) us1 us) & (list_for_all2eq (fun x1 x -> evar_conv_x env isevars CONV x1 (substl ks x)) xs1 xs) & (list_for_all2eq (evar_conv_x env isevars CONV) ts ts1) & (evar_conv_x env isevars CONV t (if ks=[] then c else applist (c,(List.rev ks)))) then (*TR*) (if !compter then (nbstruc:=!nbstruc+1; nbimplstruc:=!nbimplstruc+(List.length ks);true) else true) else false and check_conv_record (t1,l1) (t2,l2) = try let {o_DEF=c;o_TABS=bs;o_TPARAMS=xs;o_TCOMPS=us} = objdef_info (cte_of_constr t1,cte_of_constr t2) in let xs1,t,ts = match list_chop (List.length xs) l1 with | xs1,t::ts -> xs1,t,ts | _ -> assert false in let us1,ts1 = list_chop (List.length us) l2 in c,bs,(xs,xs1),(us,us1),(ts,ts1),t with _ -> raise Not_found let the_conv_x env isevars t1 t2 = evar_conv_x env isevars CONV t1 t2 let the_conv_x_leq env isevars t1 t2 = evar_conv_x env isevars CUMUL t1 t2