(***********************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) (* inductive * int array val member_message : std_ppcmds -> bool -> std_ppcmds val field : string val title : string end) -> struct type t = inductive * int array let encode = Test.encode let subst subst ((kn,i), ints as obj) = let kn' = subst_kn subst kn in if kn' == kn then obj else (kn',i), ints let printer (ind,_) = pr_global_env Idset.empty (IndRef ind) let key = Goptions.SecondaryTable ("Printing",Test.field) let title = Test.title let member_message x = Test.member_message (printer x) let synchronous = true end module PrintingCasesIf = PrintingCasesMake (struct let encode = encode_bool let field = "If" let title = "Types leading to pretty-printing of Cases using a `if' form: " let member_message s b = str "Cases on elements of " ++ s ++ str (if b then " are printed using a `if' form" else " are not printed using a `if' form") end) module PrintingCasesLet = PrintingCasesMake (struct let encode = encode_tuple let field = "Let" let title = "Types leading to a pretty-printing of Cases using a `let' form:" let member_message s b = str "Cases on elements of " ++ s ++ str (if b then " are printed using a `let' form" else " are not printed using a `let' form") end) module PrintingIf = Goptions.MakeRefTable(PrintingCasesIf) module PrintingLet = Goptions.MakeRefTable(PrintingCasesLet) let force_let ci = let indsp = ci.ci_ind in let lc = mis_constr_nargs indsp in PrintingLet.active (indsp,lc) let force_if ci = let indsp = ci.ci_ind in let lc = mis_constr_nargs indsp in PrintingIf.active (indsp,lc) (* Options for printing or not wildcard and synthetisable types *) open Goptions let wildcard_value = ref true let force_wildcard () = !wildcard_value let _ = declare_bool_option { optsync = true; optname = "forced wildcard"; optkey = SecondaryTable ("Printing","Wildcard"); optread = force_wildcard; optwrite = (:=) wildcard_value } let synth_type_value = ref true let synthetize_type () = !synth_type_value let _ = declare_bool_option { optsync = true; optname = "synthesizability"; optkey = SecondaryTable ("Printing","Synth"); optread = synthetize_type; optwrite = (:=) synth_type_value } (* Auxiliary function for MutCase printing *) (* [computable] tries to tell if the predicate typing the result is inferable*) let computable p k = (* We first remove as many lambda as the arity, then we look if it remains a lambda for a dependent elimination. This function works for normal eta-expanded term. For non eta-expanded or non-normal terms, it may affirm the pred is synthetisable because of an undetected ultimate dependent variable in the second clause, or else, it may affirms the pred non synthetisable because of a non normal term in the fourth clause. A solution could be to store, in the MutCase, the eta-expanded normal form of pred to decide if it depends on its variables Lorsque le prédicat est dépendant de manière certaine, on ne déclare pas le prédicat synthétisable (même si la variable dépendante ne l'est pas effectivement) parce que sinon on perd la réciprocité de la synthèse (qui, lui, engendrera un prédicat non dépendant) *) (nb_lam p = k+1) && let _,ccl = decompose_lam p in noccur_between 1 (k+1) ccl let lookup_name_as_renamed env t s = let rec lookup avoid env_names n c = match kind_of_term c with | Prod (name,_,c') -> (match concrete_name true avoid env_names name c' with | (Name id,avoid') -> if id=s then (Some n) else lookup avoid' (add_name (Name id) env_names) (n+1) c' | (Anonymous,avoid') -> lookup avoid' env_names (n+1) (pop c')) | LetIn (name,_,_,c') -> (match concrete_name true avoid env_names name c' with | (Name id,avoid') -> if id=s then (Some n) else lookup avoid' (add_name (Name id) env_names) (n+1) c' | (Anonymous,avoid') -> lookup avoid' env_names (n+1) (pop c')) | Cast (c,_) -> lookup avoid env_names n c | _ -> None in lookup (ids_of_named_context (named_context env)) empty_names_context 1 t let lookup_index_as_renamed env t n = let rec lookup n d c = match kind_of_term c with | Prod (name,_,c') -> (match concrete_name true [] empty_names_context name c' with (Name _,_) -> lookup n (d+1) c' | (Anonymous,_) -> if n=1 then Some d else lookup (n-1) (d+1) c') | LetIn (name,_,_,c') -> (match concrete_name true [] empty_names_context name c' with | (Name _,_) -> lookup n (d+1) c' | (Anonymous,_) -> if n=1 then Some d else lookup (n-1) (d+1) c') | Cast (c,_) -> lookup n d c | _ -> None in lookup n 1 t let detype_case computable detype detype_eqn tenv avoid indsp st p k c bl = let synth_type = synthetize_type () in let tomatch = detype c in (* Find constructors arity *) let (mib,mip) = Inductive.lookup_mind_specif tenv indsp in let get_consnarg j = let typi = mis_nf_constructor_type (indsp,mib,mip) (j+1) in let _,t = decompose_prod_n_assum (List.length mip.mind_params_ctxt) typi in List.rev (fst (decompose_prod_assum t)) in let consnargs = Array.init (Array.length mip.mind_consnames) get_consnarg in let consnargsl = Array.map List.length consnargs in let alias, aliastyp, newpred, pred = if synth_type & computable & bl <> [||] then Anonymous, None, None, None else let p = option_app detype p in match p with | None -> Anonymous, None, None, None | Some p -> let decompose_lam k c = let rec lamdec_rec l avoid k c = if k = 0 then l,c else match c with | RLambda (_,x,t,c) -> lamdec_rec (x::l) (name_cons x avoid) (k-1) c | c -> let x = next_ident_away (id_of_string "xx") avoid in lamdec_rec ((Name x)::l) (x::avoid) (k-1) (let a = RVar (dummy_loc,x) in match c with | RApp (loc,p,l) -> RApp (loc,p,l@[a]) | _ -> (RApp (dummy_loc,c,[a]))) in lamdec_rec [] [] k c in let nl,typ = decompose_lam k p in let n,typ = match typ with | RLambda (_,x,t,c) -> x, c | _ -> Anonymous, typ in let aliastyp = if List.for_all ((=) Anonymous) nl then None else let pars = list_tabulate (fun _ -> Anonymous) mip.mind_nparams in Some (dummy_loc,indsp,pars@nl) in n, aliastyp, Some typ, Some p in let constructs = Array.init (Array.length bl) (fun i -> (indsp,i+1)) in let eqnv = array_map3 detype_eqn constructs consnargsl bl in let eqnl = Array.to_list eqnv in let tag = try if PrintingLet.active (indsp,consnargsl) then LetStyle else if PrintingIf.active (indsp,consnargsl) then IfStyle else st with Not_found -> st in if tag = RegularStyle then RCases (dummy_loc,(pred,ref newpred),[tomatch,ref (alias,aliastyp)],eqnl) else let bl = Array.map detype bl in if not !Options.v7 && tag = LetStyle && aliastyp = None then let rec decomp_lam_force n avoid l p = if n = 0 then (List.rev l,p) else match p with | RLambda (_,(Name id as na),_,c) -> decomp_lam_force (n-1) (id::avoid) (na::l) c | RLambda (_,(Anonymous as na),_,c) -> decomp_lam_force (n-1) avoid (na::l) c | _ -> let x = Nameops.next_ident_away (id_of_string "x") avoid in decomp_lam_force (n-1) (x::avoid) (Name x :: l) (* eta-expansion *) (let a = RVar (dummy_loc,x) in match p with | RApp (loc,p,l) -> RApp (loc,p,l@[a]) | _ -> (RApp (dummy_loc,p,[a]))) in let (nal,d) = decomp_lam_force consnargsl.(0) avoid [] bl.(0) in RLetTuple (dummy_loc,nal,(alias,newpred),tomatch,d) else if not !Options.v7 && tag = IfStyle && aliastyp = None then RIf (dummy_loc,tomatch,(alias,newpred),bl.(0),bl.(1)) else let rec remove_type avoid args c = match c,args with | RLambda (loc,na,t,c), _::args -> let h = RHole (dummy_loc,BinderType na) in RLambda (loc,na,h,remove_type avoid args c) | RLetIn (loc,na,b,c), _::args -> RLetIn (loc,na,b,remove_type avoid args c) | c, (na,None,t)::args -> let id = next_name_away_with_default "x" na avoid in let h = RHole (dummy_loc,BinderType na) in let c = remove_type (id::avoid) args (RApp (dummy_loc,c,[RVar (dummy_loc,id)])) in RLambda (dummy_loc,Name id,h,c) | c, (na,Some b,t)::args -> let h = RHole (dummy_loc,BinderType na) in let avoid = name_fold (fun x l -> x::l) na avoid in RLetIn (dummy_loc,na,h,remove_type avoid args c) | c, [] -> c in let bl = array_map2 (remove_type avoid) consnargs bl in ROrderedCase (dummy_loc,tag,pred,tomatch,bl,ref None) let rec detype tenv avoid env t = match kind_of_term (collapse_appl t) with | Rel n -> (try match lookup_name_of_rel n env with | Name id -> RVar (dummy_loc, id) | Anonymous -> anomaly "detype: index to an anonymous variable" with Not_found -> let s = "_UNBOUND_REL_"^(string_of_int n) in RVar (dummy_loc, id_of_string s)) | Meta n -> (* Meta in constr are not user-parsable and are mapped to Evar *) REvar (dummy_loc, n, None) | Var id -> (try let _ = Global.lookup_named id in RRef (dummy_loc, VarRef id) with _ -> RVar (dummy_loc, id)) | Sort (Prop c) -> RSort (dummy_loc,RProp c) | Sort (Type u) -> RSort (dummy_loc,RType (Some u)) | Cast (c1,c2) -> RCast(dummy_loc,detype tenv avoid env c1, detype tenv avoid env c2) | Prod (na,ty,c) -> detype_binder tenv BProd avoid env na ty c | Lambda (na,ty,c) -> detype_binder tenv BLambda avoid env na ty c | LetIn (na,b,_,c) -> detype_binder tenv BLetIn avoid env na b c | App (f,args) -> RApp (dummy_loc,detype tenv avoid env f, array_map_to_list (detype tenv avoid env) args) | Const sp -> RRef (dummy_loc, ConstRef sp) | Evar (ev,cl) -> REvar (dummy_loc, ev, Some (List.map (detype tenv avoid env) (Array.to_list cl))) | Ind ind_sp -> RRef (dummy_loc, IndRef ind_sp) | Construct cstr_sp -> RRef (dummy_loc, ConstructRef cstr_sp) | Case (annot,p,c,bl) -> let comp = computable p (annot.ci_pp_info.ind_nargs) in let ind = annot.ci_ind in let st = annot.ci_pp_info.style in detype_case comp (detype tenv avoid env) (detype_eqn tenv avoid env) (snd tenv) avoid ind st (Some p) annot.ci_pp_info.ind_nargs c bl | Fix (nvn,recdef) -> detype_fix tenv avoid env nvn recdef | CoFix (n,recdef) -> detype_cofix tenv avoid env n recdef and detype_fix tenv avoid env (vn,_ as nvn) (names,tys,bodies) = let def_avoid, def_env, lfi = Array.fold_left (fun (avoid, env, l) na -> let id = next_name_away na avoid in (id::avoid, add_name (Name id) env, id::l)) (avoid, env, []) names in (* Be sure that bodies and types share the same names *) let rec share_names n l avoid env c t = if n = 0 then let c = detype tenv avoid env c in let t = detype tenv avoid env t in List.fold_left (fun (c,typ) (na,body,t) -> match body with | None -> (RLambda (dummy_loc,na,t,c),RProd (dummy_loc,na,t,typ)) | Some b -> (RLetIn (dummy_loc,na,b,c),RLetIn (dummy_loc,na,b,typ))) (c,t) l else match kind_of_term c, kind_of_term t with | Lambda (na,t,c), Prod (_,t',c') -> let t = detype tenv avoid env t in let id = next_name_away na avoid in let avoid = id::avoid and env = add_name (Name id) env in share_names (n-1) ((Name id,None,t)::l) avoid env c c' (* May occur for fix built interactively *) | LetIn (na,b,t',c), _ -> let t' = detype tenv avoid env t' in let b = detype tenv avoid env b in let id = next_name_away na avoid in let avoid = id::avoid and env = add_name (Name id) env in share_names n ((Name id,Some b,t')::l) avoid env c t (* Only if built with the f/n notation or w/o let-expansion in types *) | _, LetIn (_,b,_,t) -> share_names n l avoid env c (subst1 b t) (* If it is an open proof: we cheat and eta-expand *) | _, Prod (na',t',c') -> let t' = detype tenv avoid env t' in let avoid = name_cons na' avoid and env = add_name na' env in let appc = mkApp (lift 1 c,[|mkRel 1|]) in share_names (n-1) ((na',None,t')::l) avoid env appc c' (* If built with the f/n notation: we renounce to share names *) | _ -> share_names 0 l avoid env c t in let n = Array.length tys in let v = array_map3 (fun c t i -> share_names (i+1) [] def_avoid def_env c (lift n t)) bodies tys vn in RRec(dummy_loc,RFix nvn,Array.of_list (List.rev lfi), Array.map snd v, Array.map fst v) and detype_cofix tenv avoid env n (names,tys,bodies) = let def_avoid, def_env, lfi = Array.fold_left (fun (avoid, env, l) na -> let id = next_name_away na avoid in (id::avoid, add_name (Name id) env, id::l)) (avoid, env, []) names in RRec(dummy_loc,RCoFix n,Array.of_list (List.rev lfi), Array.map (detype tenv avoid env) tys, Array.map (detype tenv def_avoid def_env) bodies) and detype_eqn tenv avoid env constr construct_nargs branch = let make_pat x avoid env b ids = if force_wildcard () & noccurn 1 b then PatVar (dummy_loc,Anonymous),avoid,(add_name Anonymous env),ids else let id = next_name_away_with_default "x" x avoid in PatVar (dummy_loc,Name id),id::avoid,(add_name (Name id) env),id::ids in let rec buildrec ids patlist avoid env n b = if n=0 then (dummy_loc, ids, [PatCstr(dummy_loc, constr, List.rev patlist,Anonymous)], detype tenv avoid env b) else match kind_of_term b with | Lambda (x,_,b) -> let pat,new_avoid,new_env,new_ids = make_pat x avoid env b ids in buildrec new_ids (pat::patlist) new_avoid new_env (n-1) b | LetIn (x,_,_,b) -> let pat,new_avoid,new_env,new_ids = make_pat x avoid env b ids in buildrec new_ids (pat::patlist) new_avoid new_env (n-1) b | Cast (c,_) -> (* Oui, il y a parfois des cast *) buildrec ids patlist avoid env n c | _ -> (* eta-expansion : n'arrivera plus lorsque tous les termes seront construits à partir de la syntaxe Cases *) (* nommage de la nouvelle variable *) let new_b = applist (lift 1 b, [mkRel 1]) in let pat,new_avoid,new_env,new_ids = make_pat Anonymous avoid env new_b ids in buildrec new_ids (pat::patlist) new_avoid new_env (n-1) new_b in buildrec [] [] avoid env construct_nargs branch and detype_binder tenv bk avoid env na ty c = let na',avoid' = if bk = BLetIn then concrete_let_name (fst tenv) avoid env na c else concrete_name (fst tenv) avoid env na c in let r = detype tenv avoid' (add_name na' env) c in match bk with | BProd -> RProd (dummy_loc, na',detype tenv [] env ty, r) | BLambda -> RLambda (dummy_loc, na',detype tenv [] env ty, r) | BLetIn -> RLetIn (dummy_loc, na',detype tenv [] env ty, r)