(************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) (* inductive * int array val member_message : std_ppcmds -> bool -> std_ppcmds val field : string val title : string end) -> struct type t = inductive * int array let encode = Test.encode let subst subst ((kn,i), ints as obj) = let kn' = subst_kn subst kn in if kn' == kn then obj else (kn',i), ints let printer (ind,_) = pr_global_env Idset.empty (IndRef ind) let key = Goptions.SecondaryTable ("Printing",Test.field) let title = Test.title let member_message x = Test.member_message (printer x) let synchronous = true end module PrintingCasesIf = PrintingCasesMake (struct let encode = encode_bool let field = "If" let title = "Types leading to pretty-printing of Cases using a `if' form: " let member_message s b = str "Cases on elements of " ++ s ++ str (if b then " are printed using a `if' form" else " are not printed using a `if' form") end) module PrintingCasesLet = PrintingCasesMake (struct let encode = encode_tuple let field = "Let" let title = "Types leading to a pretty-printing of Cases using a `let' form:" let member_message s b = str "Cases on elements of " ++ s ++ str (if b then " are printed using a `let' form" else " are not printed using a `let' form") end) module PrintingIf = Goptions.MakeRefTable(PrintingCasesIf) module PrintingLet = Goptions.MakeRefTable(PrintingCasesLet) let force_let ci = let indsp = ci.ci_ind in let lc = mis_constr_nargs indsp in PrintingLet.active (indsp,lc) let force_if ci = let indsp = ci.ci_ind in let lc = mis_constr_nargs indsp in PrintingIf.active (indsp,lc) (* Options for printing or not wildcard and synthetisable types *) open Goptions let wildcard_value = ref true let force_wildcard () = !wildcard_value let _ = declare_bool_option { optsync = true; optname = "forced wildcard"; optkey = SecondaryTable ("Printing","Wildcard"); optread = force_wildcard; optwrite = (:=) wildcard_value } let synth_type_value = ref true let synthetize_type () = !synth_type_value let _ = declare_bool_option { optsync = true; optname = "pattern matching return type synthesizability"; optkey = SecondaryTable ("Printing","Synth"); optread = synthetize_type; optwrite = (:=) synth_type_value } let reverse_matching_value = ref true let reverse_matching () = !reverse_matching_value let _ = declare_bool_option { optsync = true; optname = "pattern-matching reversibility"; optkey = SecondaryTable ("Printing","Matching"); optread = reverse_matching; optwrite = (:=) reverse_matching_value } (* Auxiliary function for MutCase printing *) (* [computable] tries to tell if the predicate typing the result is inferable*) let computable p k = (* We first remove as many lambda as the arity, then we look if it remains a lambda for a dependent elimination. This function works for normal eta-expanded term. For non eta-expanded or non-normal terms, it may affirm the pred is synthetisable because of an undetected ultimate dependent variable in the second clause, or else, it may affirms the pred non synthetisable because of a non normal term in the fourth clause. A solution could be to store, in the MutCase, the eta-expanded normal form of pred to decide if it depends on its variables Lorsque le prédicat est dépendant de manière certaine, on ne déclare pas le prédicat synthétisable (même si la variable dépendante ne l'est pas effectivement) parce que sinon on perd la réciprocité de la synthèse (qui, lui, engendrera un prédicat non dépendant) *) (nb_lam p = k+1) && let _,ccl = decompose_lam p in noccur_between 1 (k+1) ccl let avoid_flag isgoal = if isgoal then Some true else None let lookup_name_as_renamed env t s = let rec lookup avoid env_names n c = match kind_of_term c with | Prod (name,_,c') -> (match concrete_name (Some true) avoid env_names name c' with | (Name id,avoid') -> if id=s then (Some n) else lookup avoid' (add_name (Name id) env_names) (n+1) c' | (Anonymous,avoid') -> lookup avoid' env_names (n+1) (pop c')) | LetIn (name,_,_,c') -> (match concrete_name (Some true) avoid env_names name c' with | (Name id,avoid') -> if id=s then (Some n) else lookup avoid' (add_name (Name id) env_names) (n+1) c' | (Anonymous,avoid') -> lookup avoid' env_names (n+1) (pop c')) | Cast (c,_,_) -> lookup avoid env_names n c | _ -> None in lookup (ids_of_named_context (named_context env)) empty_names_context 1 t let lookup_index_as_renamed env t n = let rec lookup n d c = match kind_of_term c with | Prod (name,_,c') -> (match concrete_name (Some true) [] empty_names_context name c' with (Name _,_) -> lookup n (d+1) c' | (Anonymous,_) -> if n=1 then Some d else lookup (n-1) (d+1) c') | LetIn (name,_,_,c') -> (match concrete_name (Some true) [] empty_names_context name c' with | (Name _,_) -> lookup n (d+1) c' | (Anonymous,_) -> if n=1 then Some d else lookup (n-1) (d+1) c') | Cast (c,_,_) -> lookup n d c | _ -> None in lookup n 1 t (**********************************************************************) (* Fragile algorithm to reverse pattern-matching compilation *) let update_name na ((_,e),c) = match na with | Name _ when force_wildcard () & noccurn (list_index na e) c -> Anonymous | _ -> na let rec decomp_branch n nal b (avoid,env as e) c = if n=0 then (List.rev nal,(e,c)) else let na,c,f = match kind_of_term (strip_outer_cast c) with | Lambda (na,_,c) -> na,c,concrete_let_name | LetIn (na,_,_,c) -> na,c,concrete_name | _ -> Name (id_of_string "x"),(applist (lift 1 c, [mkRel 1])), concrete_name in let na',avoid' = f (Some b) avoid env na c in decomp_branch (n-1) (na'::nal) b (avoid',add_name na' env) c let rec build_tree na isgoal e ci cl = let mkpat n rhs pl = PatCstr(dl,(ci.ci_ind,n+1),pl,update_name na rhs) in let cnl = ci.ci_cstr_nargs in List.flatten (list_tabulate (fun i -> contract_branch isgoal e (cnl.(i),mkpat i,cl.(i))) (Array.length cl)) and align_tree nal isgoal (e,c as rhs) = match nal with | [] -> [[],rhs] | na::nal -> match kind_of_term c with | Case (ci,p,c,cl) when c = mkRel (list_index na (snd e)) & (* don't contract if p dependent *) computable p (ci.ci_pp_info.ind_nargs) -> let clauses = build_tree na isgoal e ci cl in List.flatten (List.map (fun (pat,rhs) -> let lines = align_tree nal isgoal rhs in List.map (fun (hd,rest) -> pat::hd,rest) lines) clauses) | _ -> let pat = PatVar(dl,update_name na rhs) in let mat = align_tree nal isgoal rhs in List.map (fun (hd,rest) -> pat::hd,rest) mat and contract_branch isgoal e (cn,mkpat,b) = let nal,rhs = decomp_branch cn [] isgoal e b in let mat = align_tree nal isgoal rhs in List.map (fun (hd,rhs) -> (mkpat rhs hd,rhs)) mat (**********************************************************************) (* Transform internal representation of pattern-matching into list of *) (* clauses *) let is_nondep_branch c n = try let _,ccl = decompose_lam_n_assum n c in noccur_between 1 n ccl with _ -> (* Not eta-expanded or not reduced *) false let extract_nondep_branches test c b n = let rec strip n r = if n=0 then r else match r with | RLambda (_,_,_,t) -> strip (n-1) t | RLetIn (_,_,_,t) -> strip (n-1) t | _ -> assert false in if test c n then Some (strip n b) else None let it_destRLambda_or_LetIn_names n c = let rec aux n nal c = if n=0 then (List.rev nal,c) else match c with | RLambda (_,na,_,c) -> aux (n-1) (na::nal) c | RLetIn (_,na,_,c) -> aux (n-1) (na::nal) c | _ -> (* eta-expansion *) let rec next l = let x = Nameops.next_ident_away (id_of_string "x") l in (* Not efficient but unusual and no function to get free rawvars *) (* if occur_rawconstr x c then next (x::l) else x in *) x in let x = next (free_rawvars c) in let a = RVar (dl,x) in aux (n-1) (Name x :: nal) (match c with | RApp (loc,p,l) -> RApp (loc,c,l@[a]) | _ -> (RApp (dl,c,[a]))) in aux n [] c let detype_case computable detype detype_eqns testdep avoid data p c bl = let (indsp,st,nparams,consnargsl,k) = data in let synth_type = synthetize_type () in let tomatch = detype c in let alias, aliastyp, pred= if (not !Options.raw_print) & synth_type & computable & Array.length bl<>0 then Anonymous, None, None else match option_map detype p with | None -> Anonymous, None, None | Some p -> let nl,typ = it_destRLambda_or_LetIn_names k p in let n,typ = match typ with | RLambda (_,x,t,c) -> x, c | _ -> Anonymous, typ in let aliastyp = if List.for_all ((=) Anonymous) nl then None else Some (dl,indsp,nparams,nl) in n, aliastyp, Some typ in let constructs = Array.init (Array.length bl) (fun i -> (indsp,i+1)) in let eqnl = detype_eqns constructs consnargsl bl in let tag = try if !Options.raw_print then RegularStyle else if PrintingLet.active (indsp,consnargsl) then LetStyle else if PrintingIf.active (indsp,consnargsl) then IfStyle else st with Not_found -> st in match tag with | LetStyle when aliastyp = None -> let bl' = Array.map detype bl in let (nal,d) = it_destRLambda_or_LetIn_names consnargsl.(0) bl'.(0) in RLetTuple (dl,nal,(alias,pred),tomatch,d) | IfStyle when aliastyp = None -> let bl' = Array.map detype bl in let nondepbrs = array_map3 (extract_nondep_branches testdep) bl bl' consnargsl in if array_for_all ((<>) None) nondepbrs then RIf (dl,tomatch,(alias,pred), out_some nondepbrs.(0),out_some nondepbrs.(1)) else RCases (dl,pred,[tomatch,(alias,aliastyp)],eqnl) | _ -> RCases (dl,pred,[tomatch,(alias,aliastyp)],eqnl) let detype_sort = function | Prop c -> RProp c | Type u -> RType (Some u) (**********************************************************************) (* Main detyping function *) let detype_anonymous = ref (fun loc n -> anomaly "detype: index to an anonymous variable") let set_detype_anonymous f = detype_anonymous := f let rec detype (isgoal:bool) avoid env t = match kind_of_term (collapse_appl t) with | Rel n -> (try match lookup_name_of_rel n env with | Name id -> RVar (dl, id) | Anonymous -> !detype_anonymous dl n with Not_found -> let s = "_UNBOUND_REL_"^(string_of_int n) in RVar (dl, id_of_string s)) | Meta n -> (* Meta in constr are not user-parsable and are mapped to Evar *) REvar (dl, n, None) | Var id -> (try let _ = Global.lookup_named id in RRef (dl, VarRef id) with _ -> RVar (dl, id)) | Sort s -> RSort (dl,detype_sort s) | Cast (c1,k,c2) -> RCast(dl,detype isgoal avoid env c1, CastConv (k, detype isgoal avoid env c2)) | Prod (na,ty,c) -> detype_binder isgoal BProd avoid env na ty c | Lambda (na,ty,c) -> detype_binder isgoal BLambda avoid env na ty c | LetIn (na,b,_,c) -> detype_binder isgoal BLetIn avoid env na b c | App (f,args) -> RApp (dl,detype isgoal avoid env f, array_map_to_list (detype isgoal avoid env) args) | Const sp -> RRef (dl, ConstRef sp) | Evar (ev,cl) -> REvar (dl, ev, Some (List.map (detype isgoal avoid env) (Array.to_list cl))) | Ind ind_sp -> RRef (dl, IndRef ind_sp) | Construct cstr_sp -> RRef (dl, ConstructRef cstr_sp) | Case (ci,p,c,bl) -> let comp = computable p (ci.ci_pp_info.ind_nargs) in detype_case comp (detype isgoal avoid env) (detype_eqns isgoal avoid env ci comp) is_nondep_branch avoid (ci.ci_ind,ci.ci_pp_info.style,ci.ci_npar, ci.ci_cstr_nargs,ci.ci_pp_info.ind_nargs) (Some p) c bl | Fix (nvn,recdef) -> detype_fix isgoal avoid env nvn recdef | CoFix (n,recdef) -> detype_cofix isgoal avoid env n recdef and detype_fix isgoal avoid env (vn,_ as nvn) (names,tys,bodies) = let def_avoid, def_env, lfi = Array.fold_left (fun (avoid, env, l) na -> let id = next_name_away na avoid in (id::avoid, add_name (Name id) env, id::l)) (avoid, env, []) names in let n = Array.length tys in let v = array_map3 (fun c t i -> share_names isgoal (i+1) [] def_avoid def_env c (lift n t)) bodies tys vn in RRec(dl,RFix (Array.map (fun i -> Some i, RStructRec) (fst nvn), snd nvn),Array.of_list (List.rev lfi), Array.map (fun (bl,_,_) -> bl) v, Array.map (fun (_,_,ty) -> ty) v, Array.map (fun (_,bd,_) -> bd) v) and detype_cofix isgoal avoid env n (names,tys,bodies) = let def_avoid, def_env, lfi = Array.fold_left (fun (avoid, env, l) na -> let id = next_name_away na avoid in (id::avoid, add_name (Name id) env, id::l)) (avoid, env, []) names in let ntys = Array.length tys in let v = array_map2 (fun c t -> share_names isgoal 0 [] def_avoid def_env c (lift ntys t)) bodies tys in RRec(dl,RCoFix n,Array.of_list (List.rev lfi), Array.map (fun (bl,_,_) -> bl) v, Array.map (fun (_,_,ty) -> ty) v, Array.map (fun (_,bd,_) -> bd) v) and share_names isgoal n l avoid env c t = match kind_of_term c, kind_of_term t with (* factorize even when not necessary to have better presentation *) | Lambda (na,t,c), Prod (na',t',c') -> let na = match (na,na') with Name _, _ -> na | _, Name _ -> na' | _ -> na in let t = detype isgoal avoid env t in let id = next_name_away na avoid in let avoid = id::avoid and env = add_name (Name id) env in share_names isgoal (n-1) ((Name id,None,t)::l) avoid env c c' (* May occur for fix built interactively *) | LetIn (na,b,t',c), _ when n > 0 -> let t' = detype isgoal avoid env t' in let b = detype isgoal avoid env b in let id = next_name_away na avoid in let avoid = id::avoid and env = add_name (Name id) env in share_names isgoal n ((Name id,Some b,t')::l) avoid env c t (* Only if built with the f/n notation or w/o let-expansion in types *) | _, LetIn (_,b,_,t) when n > 0 -> share_names isgoal n l avoid env c (subst1 b t) (* If it is an open proof: we cheat and eta-expand *) | _, Prod (na',t',c') when n > 0 -> let t' = detype isgoal avoid env t' in let id = next_name_away na' avoid in let avoid = id::avoid and env = add_name (Name id) env in let appc = mkApp (lift 1 c,[|mkRel 1|]) in share_names isgoal (n-1) ((Name id,None,t')::l) avoid env appc c' (* If built with the f/n notation: we renounce to share names *) | _ -> if n>0 then warning "Detyping.detype: cannot factorize fix enough"; let c = detype isgoal avoid env c in let t = detype isgoal avoid env t in (List.rev l,c,t) and detype_eqns isgoal avoid env ci computable constructs consnargsl bl = try if !Options.raw_print or not (reverse_matching ()) then raise Exit; let mat = build_tree Anonymous isgoal (avoid,env) ci bl in List.map (fun (pat,((avoid,env),c)) -> (dl,[],[pat],detype isgoal avoid env c)) mat with _ -> Array.to_list (array_map3 (detype_eqn isgoal avoid env) constructs consnargsl bl) and detype_eqn isgoal avoid env constr construct_nargs branch = let make_pat x avoid env b ids = if force_wildcard () & noccurn 1 b then PatVar (dl,Anonymous),avoid,(add_name Anonymous env),ids else let id = next_name_away_in_cases_pattern x avoid in PatVar (dl,Name id),id::avoid,(add_name (Name id) env),id::ids in let rec buildrec ids patlist avoid env n b = if n=0 then (dl, ids, [PatCstr(dl, constr, List.rev patlist,Anonymous)], detype isgoal avoid env b) else match kind_of_term b with | Lambda (x,_,b) -> let pat,new_avoid,new_env,new_ids = make_pat x avoid env b ids in buildrec new_ids (pat::patlist) new_avoid new_env (n-1) b | LetIn (x,_,_,b) -> let pat,new_avoid,new_env,new_ids = make_pat x avoid env b ids in buildrec new_ids (pat::patlist) new_avoid new_env (n-1) b | Cast (c,_,_) -> (* Oui, il y a parfois des cast *) buildrec ids patlist avoid env n c | _ -> (* eta-expansion : n'arrivera plus lorsque tous les termes seront construits à partir de la syntaxe Cases *) (* nommage de la nouvelle variable *) let new_b = applist (lift 1 b, [mkRel 1]) in let pat,new_avoid,new_env,new_ids = make_pat Anonymous avoid env new_b ids in buildrec new_ids (pat::patlist) new_avoid new_env (n-1) new_b in buildrec [] [] avoid env construct_nargs branch and detype_binder isgoal bk avoid env na ty c = let na',avoid' = if bk = BLetIn then concrete_let_name (avoid_flag isgoal) avoid env na c else concrete_name (avoid_flag isgoal) avoid env na c in let r = detype isgoal avoid' (add_name na' env) c in match bk with | BProd -> RProd (dl, na',detype isgoal avoid env ty, r) | BLambda -> RLambda (dl, na',detype isgoal avoid env ty, r) | BLetIn -> RLetIn (dl, na',detype isgoal avoid env ty, r) let rec detype_rel_context where avoid env sign = let where = option_map (fun c -> it_mkLambda_or_LetIn c sign) where in let rec aux avoid env = function | [] -> [] | (na,b,t)::rest -> let na',avoid' = match where with | None -> na,avoid | Some c -> if b<>None then concrete_let_name None avoid env na c else concrete_name None avoid env na c in let b = option_map (detype false avoid env) b in let t = detype false avoid env t in (na',b,t) :: aux avoid' (add_name na' env) rest in aux avoid env (List.rev sign) (**********************************************************************) (* Module substitution: relies on detyping *) let rec subst_cases_pattern subst pat = match pat with | PatVar _ -> pat | PatCstr (loc,((kn,i),j),cpl,n) -> let kn' = subst_kn subst kn and cpl' = list_smartmap (subst_cases_pattern subst) cpl in if kn' == kn && cpl' == cpl then pat else PatCstr (loc,((kn',i),j),cpl',n) let rec subst_rawconstr subst raw = match raw with | RRef (loc,ref) -> let ref',t = subst_global subst ref in if ref' == ref then raw else detype false [] [] t | RVar _ -> raw | REvar _ -> raw | RPatVar _ -> raw | RApp (loc,r,rl) -> let r' = subst_rawconstr subst r and rl' = list_smartmap (subst_rawconstr subst) rl in if r' == r && rl' == rl then raw else RApp(loc,r',rl') | RLambda (loc,n,r1,r2) -> let r1' = subst_rawconstr subst r1 and r2' = subst_rawconstr subst r2 in if r1' == r1 && r2' == r2 then raw else RLambda (loc,n,r1',r2') | RProd (loc,n,r1,r2) -> let r1' = subst_rawconstr subst r1 and r2' = subst_rawconstr subst r2 in if r1' == r1 && r2' == r2 then raw else RProd (loc,n,r1',r2') | RLetIn (loc,n,r1,r2) -> let r1' = subst_rawconstr subst r1 and r2' = subst_rawconstr subst r2 in if r1' == r1 && r2' == r2 then raw else RLetIn (loc,n,r1',r2') | RCases (loc,rtno,rl,branches) -> let rtno' = option_smartmap (subst_rawconstr subst) rtno and rl' = list_smartmap (fun (a,x as y) -> let a' = subst_rawconstr subst a in let (n,topt) = x in let topt' = option_smartmap (fun (loc,(sp,i),x,y as t) -> let sp' = subst_kn subst sp in if sp == sp' then t else (loc,(sp',i),x,y)) topt in if a == a' && topt == topt' then y else (a',(n,topt'))) rl and branches' = list_smartmap (fun (loc,idl,cpl,r as branch) -> let cpl' = list_smartmap (subst_cases_pattern subst) cpl and r' = subst_rawconstr subst r in if cpl' == cpl && r' == r then branch else (loc,idl,cpl',r')) branches in if rtno' == rtno && rl' == rl && branches' == branches then raw else RCases (loc,rtno',rl',branches') | RLetTuple (loc,nal,(na,po),b,c) -> let po' = option_smartmap (subst_rawconstr subst) po and b' = subst_rawconstr subst b and c' = subst_rawconstr subst c in if po' == po && b' == b && c' == c then raw else RLetTuple (loc,nal,(na,po'),b',c') | RIf (loc,c,(na,po),b1,b2) -> let po' = option_smartmap (subst_rawconstr subst) po and b1' = subst_rawconstr subst b1 and b2' = subst_rawconstr subst b2 and c' = subst_rawconstr subst c in if c' == c & po' == po && b1' == b1 && b2' == b2 then raw else RIf (loc,c',(na,po'),b1',b2') | RRec (loc,fix,ida,bl,ra1,ra2) -> let ra1' = array_smartmap (subst_rawconstr subst) ra1 and ra2' = array_smartmap (subst_rawconstr subst) ra2 in let bl' = array_smartmap (list_smartmap (fun (na,obd,ty as dcl) -> let ty' = subst_rawconstr subst ty in let obd' = option_smartmap (subst_rawconstr subst) obd in if ty'==ty & obd'==obd then dcl else (na,obd',ty'))) bl in if ra1' == ra1 && ra2' == ra2 && bl'==bl then raw else RRec (loc,fix,ida,bl',ra1',ra2') | RSort _ -> raw | RHole (loc,ImplicitArg (ref,i)) -> let ref',_ = subst_global subst ref in if ref' == ref then raw else RHole (loc,InternalHole) | RHole (loc, (BinderType _ | QuestionMark _ | CasesType | InternalHole | TomatchTypeParameter _ | GoalEvar)) -> raw | RCast (loc,r1,k) -> (match k with CastConv (k,r2) -> let r1' = subst_rawconstr subst r1 and r2' = subst_rawconstr subst r2 in if r1' == r1 && r2' == r2 then raw else RCast (loc,r1', CastConv (k,r2')) | CastCoerce -> let r1' = subst_rawconstr subst r1 in if r1' == r1 then raw else RCast (loc,r1',k)) | RDynamic _ -> raw (* Utilities to transform kernel cases to simple pattern-matching problem *) let simple_cases_matrix_of_branches ind brns brs = list_map2_i (fun i n b -> let nal,c = it_destRLambda_or_LetIn_names n b in let mkPatVar na = PatVar (dummy_loc,na) in let p = PatCstr (dummy_loc,(ind,i+1),List.map mkPatVar nal,Anonymous) in let ids = map_succeed Nameops.out_name nal in (dummy_loc,ids,[p],c)) 0 brns brs let return_type_of_predicate ind nparams n pred = let nal,p = it_destRLambda_or_LetIn_names (n+1) pred in (List.hd nal, Some (dummy_loc, ind, nparams, List.tl nal)), Some p