(************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) (* LocalAssum (na,t) | Some b -> LocalDef (na,b,t) ) env let add_name_opt na b t (nenv, env) = match t with | None -> Termops.add_name na nenv, env | Some t -> add_name na b t (nenv, env) (****************************************************************************) (* Tools for printing of Cases *) let encode_inductive r = let indsp = global_inductive r in let constr_lengths = constructors_nrealargs indsp in (indsp,constr_lengths) (* Parameterization of the translation from constr to ast *) (* Tables for Cases printing under a "if" form, a "let" form, *) let has_two_constructors lc = Int.equal (Array.length lc) 2 (* & lc.(0) = 0 & lc.(1) = 0 *) let isomorphic_to_tuple lc = Int.equal (Array.length lc) 1 let encode_bool r = let (x,lc) = encode_inductive r in if not (has_two_constructors lc) then user_err_loc (loc_of_reference r,"encode_if", str "This type has not exactly two constructors."); x let encode_tuple r = let (x,lc) = encode_inductive r in if not (isomorphic_to_tuple lc) then user_err_loc (loc_of_reference r,"encode_tuple", str "This type cannot be seen as a tuple type."); x module PrintingInductiveMake = functor (Test : sig val encode : reference -> inductive val member_message : std_ppcmds -> bool -> std_ppcmds val field : string val title : string end) -> struct type t = inductive let compare = ind_ord let encode = Test.encode let subst subst obj = subst_ind subst obj let printer ind = pr_global_env Id.Set.empty (IndRef ind) let key = ["Printing";Test.field] let title = Test.title let member_message x = Test.member_message (printer x) let synchronous = true end module PrintingCasesIf = PrintingInductiveMake (struct let encode = encode_bool let field = "If" let title = "Types leading to pretty-printing of Cases using a `if' form:" let member_message s b = str "Cases on elements of " ++ s ++ str (if b then " are printed using a `if' form" else " are not printed using a `if' form") end) module PrintingCasesLet = PrintingInductiveMake (struct let encode = encode_tuple let field = "Let" let title = "Types leading to a pretty-printing of Cases using a `let' form:" let member_message s b = str "Cases on elements of " ++ s ++ str (if b then " are printed using a `let' form" else " are not printed using a `let' form") end) module PrintingIf = Goptions.MakeRefTable(PrintingCasesIf) module PrintingLet = Goptions.MakeRefTable(PrintingCasesLet) (* Flags.for printing or not wildcard and synthetisable types *) open Goptions let wildcard_value = ref true let force_wildcard () = !wildcard_value let _ = declare_bool_option { optsync = true; optdepr = false; optname = "forced wildcard"; optkey = ["Printing";"Wildcard"]; optread = force_wildcard; optwrite = (:=) wildcard_value } let synth_type_value = ref true let synthetize_type () = !synth_type_value let _ = declare_bool_option { optsync = true; optdepr = false; optname = "pattern matching return type synthesizability"; optkey = ["Printing";"Synth"]; optread = synthetize_type; optwrite = (:=) synth_type_value } let reverse_matching_value = ref true let reverse_matching () = !reverse_matching_value let _ = declare_bool_option { optsync = true; optdepr = false; optname = "pattern-matching reversibility"; optkey = ["Printing";"Matching"]; optread = reverse_matching; optwrite = (:=) reverse_matching_value } let print_primproj_params_value = ref true let print_primproj_params () = !print_primproj_params_value let _ = declare_bool_option { optsync = true; optdepr = false; optname = "printing of primitive projection parameters"; optkey = ["Printing";"Primitive";"Projection";"Parameters"]; optread = print_primproj_params; optwrite = (:=) print_primproj_params_value } let print_primproj_compatibility_value = ref true let print_primproj_compatibility () = !print_primproj_compatibility_value let _ = declare_bool_option { optsync = true; optdepr = false; optname = "backwards-compatible printing of primitive projections"; optkey = ["Printing";"Primitive";"Projection";"Compatibility"]; optread = print_primproj_compatibility; optwrite = (:=) print_primproj_compatibility_value } (* Auxiliary function for MutCase printing *) (* [computable] tries to tell if the predicate typing the result is inferable*) let computable p k = (* We first remove as many lambda as the arity, then we look if it remains a lambda for a dependent elimination. This function works for normal eta-expanded term. For non eta-expanded or non-normal terms, it may affirm the pred is synthetisable because of an undetected ultimate dependent variable in the second clause, or else, it may affirm the pred non synthetisable because of a non normal term in the fourth clause. A solution could be to store, in the MutCase, the eta-expanded normal form of pred to decide if it depends on its variables Lorsque le prédicat est dépendant de manière certaine, on ne déclare pas le prédicat synthétisable (même si la variable dépendante ne l'est pas effectivement) parce que sinon on perd la réciprocité de la synthèse (qui, lui, engendrera un prédicat non dépendant) *) let sign,ccl = decompose_lam_assum p in Int.equal (Context.Rel.length sign) (k + 1) && noccur_between 1 (k+1) ccl let lookup_name_as_displayed env t s = let rec lookup avoid n c = match kind_of_term c with | Prod (name,_,c') -> (match compute_displayed_name_in RenamingForGoal avoid name c' with | (Name id,avoid') -> if Id.equal id s then Some n else lookup avoid' (n+1) c' | (Anonymous,avoid') -> lookup avoid' (n+1) (pop c')) | LetIn (name,_,_,c') -> (match compute_displayed_name_in RenamingForGoal avoid name c' with | (Name id,avoid') -> if Id.equal id s then Some n else lookup avoid' (n+1) c' | (Anonymous,avoid') -> lookup avoid' (n+1) (pop c')) | Cast (c,_,_) -> lookup avoid n c | _ -> None in lookup (ids_of_named_context (named_context env)) 1 t let lookup_index_as_renamed env t n = let rec lookup n d c = match kind_of_term c with | Prod (name,_,c') -> (match compute_displayed_name_in RenamingForGoal [] name c' with (Name _,_) -> lookup n (d+1) c' | (Anonymous,_) -> if Int.equal n 0 then Some (d-1) else if Int.equal n 1 then Some d else lookup (n-1) (d+1) c') | LetIn (name,_,_,c') -> (match compute_displayed_name_in RenamingForGoal [] name c' with | (Name _,_) -> lookup n (d+1) c' | (Anonymous,_) -> if Int.equal n 0 then Some (d-1) else if Int.equal n 1 then Some d else lookup (n-1) (d+1) c' ) | Cast (c,_,_) -> lookup n d c | _ -> if Int.equal n 0 then Some (d-1) else None in lookup n 1 t (**********************************************************************) (* Fragile algorithm to reverse pattern-matching compilation *) let update_name na ((_,(e,_)),c) = match na with | Name _ when force_wildcard () && noccurn (List.index Name.equal na e) c -> Anonymous | _ -> na let rec decomp_branch tags nal b (avoid,env as e) c = let flag = if b then RenamingForGoal else RenamingForCasesPattern (fst env,c) in match tags with | [] -> (List.rev nal,(e,c)) | b::tags -> let na,c,f,body,t = match kind_of_term (strip_outer_cast c), b with | Lambda (na,t,c),false -> na,c,compute_displayed_let_name_in,None,Some t | LetIn (na,b,t,c),true -> na,c,compute_displayed_name_in,Some b,Some t | _, false -> Name default_dependent_ident,(applist (lift 1 c, [mkRel 1])), compute_displayed_name_in,None,None | _, true -> Anonymous,lift 1 c,compute_displayed_name_in,None,None in let na',avoid' = f flag avoid na c in decomp_branch tags (na'::nal) b (avoid', add_name_opt na' body t env) c let rec build_tree na isgoal e ci cl = let mkpat n rhs pl = PatCstr(dl,(ci.ci_ind,n+1),pl,update_name na rhs) in let cnl = ci.ci_pp_info.cstr_tags in let cna = ci.ci_cstr_nargs in List.flatten (List.init (Array.length cl) (fun i -> contract_branch isgoal e (cnl.(i),cna.(i),mkpat i,cl.(i)))) and align_tree nal isgoal (e,c as rhs) = match nal with | [] -> [[],rhs] | na::nal -> match kind_of_term c with | Case (ci,p,c,cl) when eq_constr c (mkRel (List.index Name.equal na (fst (snd e)))) && not (Int.equal (Array.length cl) 0) && (* don't contract if p dependent *) computable p (List.length ci.ci_pp_info.ind_tags) (* FIXME: can do better *) -> let clauses = build_tree na isgoal e ci cl in List.flatten (List.map (fun (pat,rhs) -> let lines = align_tree nal isgoal rhs in List.map (fun (hd,rest) -> pat::hd,rest) lines) clauses) | _ -> let pat = PatVar(dl,update_name na rhs) in let mat = align_tree nal isgoal rhs in List.map (fun (hd,rest) -> pat::hd,rest) mat and contract_branch isgoal e (cdn,can,mkpat,b) = let nal,rhs = decomp_branch cdn [] isgoal e b in let mat = align_tree nal isgoal rhs in List.map (fun (hd,rhs) -> (mkpat rhs hd,rhs)) mat (**********************************************************************) (* Transform internal representation of pattern-matching into list of *) (* clauses *) let is_nondep_branch c l = try (* FIXME: do better using tags from l *) let sign,ccl = decompose_lam_n_decls (List.length l) c in noccur_between 1 (Context.Rel.length sign) ccl with e when Errors.noncritical e -> (* Not eta-expanded or not reduced *) false let extract_nondep_branches test c b l = let rec strip l r = match r,l with | r, [] -> r | GLambda (_,_,_,_,t), false::l -> strip l t | GLetIn (_,_,_,t), true::l -> strip l t (* FIXME: do we need adjustment? *) | _,_ -> assert false in if test c l then Some (strip l b) else None let it_destRLambda_or_LetIn_names l c = let rec aux l nal c = match c, l with | _, [] -> (List.rev nal,c) | GLambda (_,na,_,_,c), false::l -> aux l (na::nal) c | GLetIn (_,na,_,c), true::l -> aux l (na::nal) c | _, true::l -> (* let-expansion *) aux l (Anonymous :: nal) c | _, false::l -> (* eta-expansion *) let next l = let x = next_ident_away default_dependent_ident l in (* Not efficient but unusual and no function to get free glob_vars *) (* if occur_glob_constr x c then next (x::l) else x in *) x in let x = next (free_glob_vars c) in let a = GVar (dl,x) in aux l (Name x :: nal) (match c with | GApp (loc,p,l) -> GApp (loc,p,l@[a]) | _ -> (GApp (dl,c,[a]))) in aux l [] c let detype_case computable detype detype_eqns testdep avoid data p c bl = let (indsp,st,constagsl,k) = data in let synth_type = synthetize_type () in let tomatch = detype c in let alias, aliastyp, pred= if (not !Flags.raw_print) && synth_type && computable && not (Int.equal (Array.length bl) 0) then Anonymous, None, None else match Option.map detype p with | None -> Anonymous, None, None | Some p -> let nl,typ = it_destRLambda_or_LetIn_names k p in let n,typ = match typ with | GLambda (_,x,_,t,c) -> x, c | _ -> Anonymous, typ in let aliastyp = if List.for_all (Name.equal Anonymous) nl then None else Some (dl,indsp,nl) in n, aliastyp, Some typ in let constructs = Array.init (Array.length bl) (fun i -> (indsp,i+1)) in let tag = try if !Flags.raw_print then RegularStyle else if st == LetPatternStyle then st else if PrintingLet.active indsp then LetStyle else if PrintingIf.active indsp then IfStyle else st with Not_found -> st in match tag, aliastyp with | LetStyle, None -> let bl' = Array.map detype bl in let (nal,d) = it_destRLambda_or_LetIn_names constagsl.(0) bl'.(0) in GLetTuple (dl,nal,(alias,pred),tomatch,d) | IfStyle, None -> let bl' = Array.map detype bl in let nondepbrs = Array.map3 (extract_nondep_branches testdep) bl bl' constagsl in if Array.for_all ((!=) None) nondepbrs then GIf (dl,tomatch,(alias,pred), Option.get nondepbrs.(0),Option.get nondepbrs.(1)) else let eqnl = detype_eqns constructs constagsl bl in GCases (dl,tag,pred,[tomatch,(alias,aliastyp)],eqnl) | _ -> let eqnl = detype_eqns constructs constagsl bl in GCases (dl,tag,pred,[tomatch,(alias,aliastyp)],eqnl) let detype_sort sigma = function | Prop Null -> GProp | Prop Pos -> GSet | Type u -> GType (if !print_universes then [dl, Pp.string_of_ppcmds (Univ.Universe.pr_with (Evd.pr_evd_level sigma) u)] else []) type binder_kind = BProd | BLambda | BLetIn (**********************************************************************) (* Main detyping function *) let detype_anonymous = ref (fun loc n -> anomaly ~label:"detype" (Pp.str "index to an anonymous variable")) let set_detype_anonymous f = detype_anonymous := f let detype_level sigma l = GType (Some (dl, Pp.string_of_ppcmds (Evd.pr_evd_level sigma l))) let detype_instance sigma l = if Univ.Instance.is_empty l then None else Some (List.map (detype_level sigma) (Array.to_list (Univ.Instance.to_array l))) let rec detype flags avoid env sigma t = match kind_of_term (collapse_appl t) with | Rel n -> (try match lookup_name_of_rel n (fst env) with | Name id -> GVar (dl, id) | Anonymous -> !detype_anonymous dl n with Not_found -> let s = "_UNBOUND_REL_"^(string_of_int n) in GVar (dl, Id.of_string s)) | Meta n -> (* Meta in constr are not user-parsable and are mapped to Evar *) (* using numbers to be unparsable *) GEvar (dl, Id.of_string ("M" ^ string_of_int n), []) | Var id -> (try let _ = Global.lookup_named id in GRef (dl, VarRef id, None) with Not_found -> GVar (dl, id)) | Sort s -> GSort (dl,detype_sort sigma s) | Cast (c1,REVERTcast,c2) when not !Flags.raw_print -> detype flags avoid env sigma c1 | Cast (c1,k,c2) -> let d1 = detype flags avoid env sigma c1 in let d2 = detype flags avoid env sigma c2 in let cast = match k with | VMcast -> CastVM d2 | NATIVEcast -> CastNative d2 | _ -> CastConv d2 in GCast(dl,d1,cast) | Prod (na,ty,c) -> detype_binder flags BProd avoid env sigma na None ty c | Lambda (na,ty,c) -> detype_binder flags BLambda avoid env sigma na None ty c | LetIn (na,b,ty,c) -> detype_binder flags BLetIn avoid env sigma na (Some b) ty c | App (f,args) -> let mkapp f' args' = match f' with | GApp (dl',f',args'') -> GApp (dl,f',args''@args') | _ -> GApp (dl,f',args') in mkapp (detype flags avoid env sigma f) (Array.map_to_list (detype flags avoid env sigma) args) | Const (sp,u) -> GRef (dl, ConstRef sp, detype_instance sigma u) | Proj (p,c) -> let noparams () = let pb = Environ.lookup_projection p (snd env) in let pars = pb.Declarations.proj_npars in let hole = GHole(Loc.ghost,Evar_kinds.InternalHole,Misctypes.IntroAnonymous,None) in let args = List.make pars hole in GApp (dl, GRef (dl, ConstRef (Projection.constant p), None), (args @ [detype flags avoid env sigma c])) in if fst flags || !Flags.in_debugger || !Flags.in_toplevel then try noparams () with _ -> (* lax mode, used by debug printers only *) GApp (dl, GRef (dl, ConstRef (Projection.constant p), None), [detype flags avoid env sigma c]) else if print_primproj_compatibility () && Projection.unfolded p then (** Print the compatibility match version *) let c' = try let pb = Environ.lookup_projection p (snd env) in let body = pb.Declarations.proj_body in let ty = Retyping.get_type_of (snd env) sigma c in let ((ind,u), args) = Inductiveops.find_mrectype (snd env) sigma ty in let body' = strip_lam_assum body in let body' = subst_instance_constr u body' in substl (c :: List.rev args) body' with Retyping.RetypeError _ | Not_found -> anomaly (str"Cannot detype an unfolded primitive projection.") in detype flags avoid env sigma c' else if print_primproj_params () then try let c = Retyping.expand_projection (snd env) sigma p c [] in detype flags avoid env sigma c with Retyping.RetypeError _ -> noparams () else noparams () | Evar (evk,cl) -> let bound_to_itself_or_letin decl c = match decl with | LocalDef _ -> true | LocalAssum (id,_) -> try let n = List.index Name.equal (Name id) (fst env) in isRelN n c with Not_found -> isVarId id c in let id,l = try let id = Evd.evar_ident evk sigma in let l = Evd.evar_instance_array bound_to_itself_or_letin (Evd.find sigma evk) cl in let fvs,rels = List.fold_left (fun (fvs,rels) (_,c) -> match kind_of_term c with Rel n -> (fvs,Int.Set.add n rels) | Var id -> (Id.Set.add id fvs,rels) | _ -> (fvs,rels)) (Id.Set.empty,Int.Set.empty) l in let l = Evd.evar_instance_array (fun d c -> not !print_evar_arguments && (bound_to_itself_or_letin d c && not (isRel c && Int.Set.mem (destRel c) rels || isVar c && (Id.Set.mem (destVar c) fvs)))) (Evd.find sigma evk) cl in id,l with Not_found -> Id.of_string ("X" ^ string_of_int (Evar.repr evk)), (Array.map_to_list (fun c -> (Id.of_string "__",c)) cl) in GEvar (dl,id, List.map (on_snd (detype flags avoid env sigma)) l) | Ind (ind_sp,u) -> GRef (dl, IndRef ind_sp, detype_instance sigma u) | Construct (cstr_sp,u) -> GRef (dl, ConstructRef cstr_sp, detype_instance sigma u) | Case (ci,p,c,bl) -> let comp = computable p (List.length (ci.ci_pp_info.ind_tags)) in detype_case comp (detype flags avoid env sigma) (detype_eqns flags avoid env sigma ci comp) is_nondep_branch avoid (ci.ci_ind,ci.ci_pp_info.style, ci.ci_pp_info.cstr_tags,ci.ci_pp_info.ind_tags) (Some p) c bl | Fix (nvn,recdef) -> detype_fix flags avoid env sigma nvn recdef | CoFix (n,recdef) -> detype_cofix flags avoid env sigma n recdef and detype_fix flags avoid env sigma (vn,_ as nvn) (names,tys,bodies) = let def_avoid, def_env, lfi = Array.fold_left2 (fun (avoid, env, l) na ty -> let id = next_name_away na avoid in (id::avoid, add_name (Name id) None ty env, id::l)) (avoid, env, []) names tys in let n = Array.length tys in let v = Array.map3 (fun c t i -> share_names flags (i+1) [] def_avoid def_env sigma c (lift n t)) bodies tys vn in GRec(dl,GFix (Array.map (fun i -> Some i, GStructRec) (fst nvn), snd nvn),Array.of_list (List.rev lfi), Array.map (fun (bl,_,_) -> bl) v, Array.map (fun (_,_,ty) -> ty) v, Array.map (fun (_,bd,_) -> bd) v) and detype_cofix flags avoid env sigma n (names,tys,bodies) = let def_avoid, def_env, lfi = Array.fold_left2 (fun (avoid, env, l) na ty -> let id = next_name_away na avoid in (id::avoid, add_name (Name id) None ty env, id::l)) (avoid, env, []) names tys in let ntys = Array.length tys in let v = Array.map2 (fun c t -> share_names flags 0 [] def_avoid def_env sigma c (lift ntys t)) bodies tys in GRec(dl,GCoFix n,Array.of_list (List.rev lfi), Array.map (fun (bl,_,_) -> bl) v, Array.map (fun (_,_,ty) -> ty) v, Array.map (fun (_,bd,_) -> bd) v) and share_names flags n l avoid env sigma c t = match kind_of_term c, kind_of_term t with (* factorize even when not necessary to have better presentation *) | Lambda (na,t,c), Prod (na',t',c') -> let na = match (na,na') with Name _, _ -> na | _, Name _ -> na' | _ -> na in let t' = detype flags avoid env sigma t in let id = next_name_away na avoid in let avoid = id::avoid and env = add_name (Name id) None t env in share_names flags (n-1) ((Name id,Explicit,None,t')::l) avoid env sigma c c' (* May occur for fix built interactively *) | LetIn (na,b,t',c), _ when n > 0 -> let t'' = detype flags avoid env sigma t' in let b' = detype flags avoid env sigma b in let id = next_name_away na avoid in let avoid = id::avoid and env = add_name (Name id) (Some b) t' env in share_names flags n ((Name id,Explicit,Some b',t'')::l) avoid env sigma c (lift 1 t) (* Only if built with the f/n notation or w/o let-expansion in types *) | _, LetIn (_,b,_,t) when n > 0 -> share_names flags n l avoid env sigma c (subst1 b t) (* If it is an open proof: we cheat and eta-expand *) | _, Prod (na',t',c') when n > 0 -> let t'' = detype flags avoid env sigma t' in let id = next_name_away na' avoid in let avoid = id::avoid and env = add_name (Name id) None t' env in let appc = mkApp (lift 1 c,[|mkRel 1|]) in share_names flags (n-1) ((Name id,Explicit,None,t'')::l) avoid env sigma appc c' (* If built with the f/n notation: we renounce to share names *) | _ -> if n>0 then msg_warning (strbrk "Detyping.detype: cannot factorize fix enough"); let c = detype flags avoid env sigma c in let t = detype flags avoid env sigma t in (List.rev l,c,t) and detype_eqns flags avoid env sigma ci computable constructs consnargsl bl = try if !Flags.raw_print || not (reverse_matching ()) then raise Exit; let mat = build_tree Anonymous (snd flags) (avoid,env) ci bl in List.map (fun (pat,((avoid,env),c)) -> (dl,[],[pat],detype flags avoid env sigma c)) mat with e when Errors.noncritical e -> Array.to_list (Array.map3 (detype_eqn flags avoid env sigma) constructs consnargsl bl) and detype_eqn (lax,isgoal as flags) avoid env sigma constr construct_nargs branch = let make_pat x avoid env b body ty ids = if force_wildcard () && noccurn 1 b then PatVar (dl,Anonymous),avoid,(add_name Anonymous body ty env),ids else let flag = if isgoal then RenamingForGoal else RenamingForCasesPattern (fst env,b) in let na,avoid' = compute_displayed_name_in flag avoid x b in PatVar (dl,na),avoid',(add_name na body ty env),add_vname ids na in let rec buildrec ids patlist avoid env l b = match kind_of_term b, l with | _, [] -> (dl, Id.Set.elements ids, [PatCstr(dl, constr, List.rev patlist,Anonymous)], detype flags avoid env sigma b) | Lambda (x,t,b), false::l -> let pat,new_avoid,new_env,new_ids = make_pat x avoid env b None t ids in buildrec new_ids (pat::patlist) new_avoid new_env l b | LetIn (x,b,t,b'), true::l -> let pat,new_avoid,new_env,new_ids = make_pat x avoid env b' (Some b) t ids in buildrec new_ids (pat::patlist) new_avoid new_env l b' | Cast (c,_,_), l -> (* Oui, il y a parfois des cast *) buildrec ids patlist avoid env l c | _, true::l -> let pat = PatVar (dl,Anonymous) in buildrec ids (pat::patlist) avoid env l b | _, false::l -> (* eta-expansion : n'arrivera plus lorsque tous les termes seront construits à partir de la syntaxe Cases *) (* nommage de la nouvelle variable *) let new_b = applist (lift 1 b, [mkRel 1]) in let pat,new_avoid,new_env,new_ids = make_pat Anonymous avoid env new_b None mkProp ids in buildrec new_ids (pat::patlist) new_avoid new_env l new_b in buildrec Id.Set.empty [] avoid env construct_nargs branch and detype_binder (lax,isgoal as flags) bk avoid env sigma na body ty c = let flag = if isgoal then RenamingForGoal else RenamingElsewhereFor (fst env,c) in let na',avoid' = match bk with | BLetIn -> compute_displayed_let_name_in flag avoid na c | _ -> compute_displayed_name_in flag avoid na c in let r = detype flags avoid' (add_name na' body ty env) sigma c in match bk with | BProd -> GProd (dl, na',Explicit,detype (lax,false) avoid env sigma ty, r) | BLambda -> GLambda (dl, na',Explicit,detype (lax,false) avoid env sigma ty, r) | BLetIn -> let c = detype (lax,false) avoid env sigma (Option.get body) in (* Heuristic: we display the type if in Prop *) let s = Retyping.get_sort_family_of (snd env) sigma ty in let c = if s != InProp then c else GCast (dl, c, CastConv (detype (lax,false) avoid env sigma ty)) in GLetIn (dl, na', c, r) let detype_rel_context ?(lax=false) where avoid env sigma sign = let where = Option.map (fun c -> it_mkLambda_or_LetIn c sign) where in let rec aux avoid env = function | [] -> [] | decl::rest -> let open Context.Rel.Declaration in let na = get_name decl in let t = get_type decl in let na',avoid' = match where with | None -> na,avoid | Some c -> if is_local_def decl then compute_displayed_let_name_in (RenamingElsewhereFor (fst env,c)) avoid na c else compute_displayed_name_in (RenamingElsewhereFor (fst env,c)) avoid na c in let b = match decl with | LocalAssum _ -> None | LocalDef (_,b,_) -> Some b in let b' = Option.map (detype (lax,false) avoid env sigma) b in let t' = detype (lax,false) avoid env sigma t in (na',Explicit,b',t') :: aux avoid' (add_name na' b t env) rest in aux avoid env (List.rev sign) let detype_names isgoal avoid nenv env sigma t = detype (false,isgoal) avoid (nenv,env) sigma t let detype ?(lax=false) isgoal avoid env sigma t = detype (lax,isgoal) avoid (names_of_rel_context env, env) sigma t let detype_closed_glob ?lax isgoal avoid env sigma t = let convert_id cl id = try Id.Map.find id cl.idents with Not_found -> id in let convert_name cl = function | Name id -> Name (convert_id cl id) | Anonymous -> Anonymous in let rec detype_closed_glob cl = function | GVar (loc,id) -> (* if [id] is bound to a name. *) begin try GVar(loc,Id.Map.find id cl.idents) (* if [id] is bound to a typed term *) with Not_found -> try (* assumes [detype] does not raise [Not_found] exceptions *) let (b,c) = Id.Map.find id cl.typed in (* spiwack: I'm not sure it is the right thing to do, but I'm computing the detyping environment like [Printer.pr_constr_under_binders_env] does. *) let assums = List.map (fun id -> (Name id,(* dummy *) mkProp)) b in let env = Termops.push_rels_assum assums env in detype ?lax isgoal avoid env sigma c (* if [id] is bound to a [closed_glob_constr]. *) with Not_found -> try let {closure;term} = Id.Map.find id cl.untyped in detype_closed_glob closure term (* Otherwise [id] stands for itself *) with Not_found -> GVar(loc,id) end | GLambda (loc,id,k,t,c) -> let id = convert_name cl id in GLambda(loc,id,k,detype_closed_glob cl t, detype_closed_glob cl c) | GProd (loc,id,k,t,c) -> let id = convert_name cl id in GProd(loc,id,k,detype_closed_glob cl t, detype_closed_glob cl c) | GLetIn (loc,id,b,e) -> let id = convert_name cl id in GLetIn(loc,id,detype_closed_glob cl b, detype_closed_glob cl e) | GLetTuple (loc,ids,(n,r),b,e) -> let ids = List.map (convert_name cl) ids in let n = convert_name cl n in GLetTuple (loc,ids,(n,r),detype_closed_glob cl b, detype_closed_glob cl e) | GCases (loc,sty,po,tml,eqns) -> let (tml,eqns) = Glob_ops.map_pattern_binders (fun na -> convert_name cl na) tml eqns in let (tml,eqns) = Glob_ops.map_pattern (fun c -> detype_closed_glob cl c) tml eqns in GCases(loc,sty,po,tml,eqns) | c -> Glob_ops.map_glob_constr (detype_closed_glob cl) c in detype_closed_glob t.closure t.term (**********************************************************************) (* Module substitution: relies on detyping *) let rec subst_cases_pattern subst pat = match pat with | PatVar _ -> pat | PatCstr (loc,((kn,i),j),cpl,n) -> let kn' = subst_mind subst kn and cpl' = List.smartmap (subst_cases_pattern subst) cpl in if kn' == kn && cpl' == cpl then pat else PatCstr (loc,((kn',i),j),cpl',n) let (f_subst_genarg, subst_genarg_hook) = Hook.make () let rec subst_glob_constr subst raw = match raw with | GRef (loc,ref,u) -> let ref',t = subst_global subst ref in if ref' == ref then raw else detype false [] (Global.env()) Evd.empty t | GVar _ -> raw | GEvar _ -> raw | GPatVar _ -> raw | GApp (loc,r,rl) -> let r' = subst_glob_constr subst r and rl' = List.smartmap (subst_glob_constr subst) rl in if r' == r && rl' == rl then raw else GApp(loc,r',rl') | GLambda (loc,n,bk,r1,r2) -> let r1' = subst_glob_constr subst r1 and r2' = subst_glob_constr subst r2 in if r1' == r1 && r2' == r2 then raw else GLambda (loc,n,bk,r1',r2') | GProd (loc,n,bk,r1,r2) -> let r1' = subst_glob_constr subst r1 and r2' = subst_glob_constr subst r2 in if r1' == r1 && r2' == r2 then raw else GProd (loc,n,bk,r1',r2') | GLetIn (loc,n,r1,r2) -> let r1' = subst_glob_constr subst r1 and r2' = subst_glob_constr subst r2 in if r1' == r1 && r2' == r2 then raw else GLetIn (loc,n,r1',r2') | GCases (loc,sty,rtno,rl,branches) -> let rtno' = Option.smartmap (subst_glob_constr subst) rtno and rl' = List.smartmap (fun (a,x as y) -> let a' = subst_glob_constr subst a in let (n,topt) = x in let topt' = Option.smartmap (fun (loc,(sp,i),y as t) -> let sp' = subst_mind subst sp in if sp == sp' then t else (loc,(sp',i),y)) topt in if a == a' && topt == topt' then y else (a',(n,topt'))) rl and branches' = List.smartmap (fun (loc,idl,cpl,r as branch) -> let cpl' = List.smartmap (subst_cases_pattern subst) cpl and r' = subst_glob_constr subst r in if cpl' == cpl && r' == r then branch else (loc,idl,cpl',r')) branches in if rtno' == rtno && rl' == rl && branches' == branches then raw else GCases (loc,sty,rtno',rl',branches') | GLetTuple (loc,nal,(na,po),b,c) -> let po' = Option.smartmap (subst_glob_constr subst) po and b' = subst_glob_constr subst b and c' = subst_glob_constr subst c in if po' == po && b' == b && c' == c then raw else GLetTuple (loc,nal,(na,po'),b',c') | GIf (loc,c,(na,po),b1,b2) -> let po' = Option.smartmap (subst_glob_constr subst) po and b1' = subst_glob_constr subst b1 and b2' = subst_glob_constr subst b2 and c' = subst_glob_constr subst c in if c' == c && po' == po && b1' == b1 && b2' == b2 then raw else GIf (loc,c',(na,po'),b1',b2') | GRec (loc,fix,ida,bl,ra1,ra2) -> let ra1' = Array.smartmap (subst_glob_constr subst) ra1 and ra2' = Array.smartmap (subst_glob_constr subst) ra2 in let bl' = Array.smartmap (List.smartmap (fun (na,k,obd,ty as dcl) -> let ty' = subst_glob_constr subst ty in let obd' = Option.smartmap (subst_glob_constr subst) obd in if ty'==ty && obd'==obd then dcl else (na,k,obd',ty'))) bl in if ra1' == ra1 && ra2' == ra2 && bl'==bl then raw else GRec (loc,fix,ida,bl',ra1',ra2') | GSort _ -> raw | GHole (loc, knd, naming, solve) -> let nknd = match knd with | Evar_kinds.ImplicitArg (ref, i, b) -> let nref, _ = subst_global subst ref in if nref == ref then knd else Evar_kinds.ImplicitArg (nref, i, b) | _ -> knd in let nsolve = Option.smartmap (Hook.get f_subst_genarg subst) solve in if nsolve == solve && nknd == knd then raw else GHole (loc, nknd, naming, nsolve) | GCast (loc,r1,k) -> let r1' = subst_glob_constr subst r1 in let k' = Miscops.smartmap_cast_type (subst_glob_constr subst) k in if r1' == r1 && k' == k then raw else GCast (loc,r1',k') (* Utilities to transform kernel cases to simple pattern-matching problem *) let simple_cases_matrix_of_branches ind brs = List.map (fun (i,n,b) -> let nal,c = it_destRLambda_or_LetIn_names n b in let mkPatVar na = PatVar (Loc.ghost,na) in let p = PatCstr (Loc.ghost,(ind,i+1),List.map mkPatVar nal,Anonymous) in let map name = try Some (Nameops.out_name name) with Failure _ -> None in let ids = List.map_filter map nal in (Loc.ghost,ids,[p],c)) brs let return_type_of_predicate ind nrealargs_tags pred = let nal,p = it_destRLambda_or_LetIn_names (nrealargs_tags@[false]) pred in (List.hd nal, Some (Loc.ghost, ind, List.tl nal)), Some p