(************************************************************************) (* * The Coq Proof Assistant / The Coq Development Team *) (* v * INRIA, CNRS and contributors - Copyright 1999-2018 *) (* LocalAssum (na,t) | Some b -> LocalDef (na,b,t) ) env let add_name_opt na b t (nenv, env) = match t with | None -> Termops.add_name na nenv, env | Some t -> add_name na b t (nenv, env) (****************************************************************************) (* Tools for printing of Cases *) let encode_inductive r = let indsp = global_inductive r in let constr_lengths = constructors_nrealargs indsp in (indsp,constr_lengths) (* Parameterization of the translation from constr to ast *) (* Tables for Cases printing under a "if" form, a "let" form, *) let has_two_constructors lc = Int.equal (Array.length lc) 2 (* & lc.(0) = 0 & lc.(1) = 0 *) let isomorphic_to_tuple lc = Int.equal (Array.length lc) 1 let encode_bool ({CAst.loc} as r) = let (x,lc) = encode_inductive r in if not (has_two_constructors lc) then user_err ?loc ~hdr:"encode_if" (str "This type has not exactly two constructors."); x let encode_tuple ({CAst.loc} as r) = let (x,lc) = encode_inductive r in if not (isomorphic_to_tuple lc) then user_err ?loc ~hdr:"encode_tuple" (str "This type cannot be seen as a tuple type."); x module PrintingInductiveMake = functor (Test : sig val encode : qualid -> inductive val member_message : Pp.t -> bool -> Pp.t val field : string val title : string end) -> struct type t = inductive let compare = ind_ord let encode = Test.encode let subst subst obj = subst_ind subst obj let printer ind = pr_global_env Id.Set.empty (IndRef ind) let key = ["Printing";Test.field] let title = Test.title let member_message x = Test.member_message (printer x) let synchronous = true end module PrintingCasesIf = PrintingInductiveMake (struct let encode = encode_bool let field = "If" let title = "Types leading to pretty-printing of Cases using a `if' form:" let member_message s b = str "Cases on elements of " ++ s ++ str (if b then " are printed using a `if' form" else " are not printed using a `if' form") end) module PrintingCasesLet = PrintingInductiveMake (struct let encode = encode_tuple let field = "Let" let title = "Types leading to a pretty-printing of Cases using a `let' form:" let member_message s b = str "Cases on elements of " ++ s ++ str (if b then " are printed using a `let' form" else " are not printed using a `let' form") end) module PrintingIf = Goptions.MakeRefTable(PrintingCasesIf) module PrintingLet = Goptions.MakeRefTable(PrintingCasesLet) (* Flags.for printing or not wildcard and synthetisable types *) open Goptions let wildcard_value = ref true let force_wildcard () = !wildcard_value let _ = declare_bool_option { optdepr = false; optname = "forced wildcard"; optkey = ["Printing";"Wildcard"]; optread = force_wildcard; optwrite = (:=) wildcard_value } let synth_type_value = ref true let synthetize_type () = !synth_type_value let _ = declare_bool_option { optdepr = false; optname = "pattern matching return type synthesizability"; optkey = ["Printing";"Synth"]; optread = synthetize_type; optwrite = (:=) synth_type_value } let reverse_matching_value = ref true let reverse_matching () = !reverse_matching_value let _ = declare_bool_option { optdepr = false; optname = "pattern-matching reversibility"; optkey = ["Printing";"Matching"]; optread = reverse_matching; optwrite = (:=) reverse_matching_value } let print_primproj_params_value = ref false let print_primproj_params () = !print_primproj_params_value let _ = declare_bool_option { optdepr = false; optname = "printing of primitive projection parameters"; optkey = ["Printing";"Primitive";"Projection";"Parameters"]; optread = print_primproj_params; optwrite = (:=) print_primproj_params_value } let print_primproj_compatibility_value = ref false let print_primproj_compatibility () = !print_primproj_compatibility_value let _ = declare_bool_option { optdepr = false; optname = "backwards-compatible printing of primitive projections"; optkey = ["Printing";"Primitive";"Projection";"Compatibility"]; optread = print_primproj_compatibility; optwrite = (:=) print_primproj_compatibility_value } (* Auxiliary function for MutCase printing *) (* [computable] tries to tell if the predicate typing the result is inferable*) let computable sigma p k = (* We first remove as many lambda as the arity, then we look if it remains a lambda for a dependent elimination. This function works for normal eta-expanded term. For non eta-expanded or non-normal terms, it may affirm the pred is synthetisable because of an undetected ultimate dependent variable in the second clause, or else, it may affirm the pred non synthetisable because of a non normal term in the fourth clause. A solution could be to store, in the MutCase, the eta-expanded normal form of pred to decide if it depends on its variables Lorsque le prédicat est dépendant de manière certaine, on ne déclare pas le prédicat synthétisable (même si la variable dépendante ne l'est pas effectivement) parce que sinon on perd la réciprocité de la synthèse (qui, lui, engendrera un prédicat non dépendant) *) let sign,ccl = decompose_lam_assum sigma p in Int.equal (Context.Rel.length sign) (k + 1) && noccur_between sigma 1 (k+1) ccl let lookup_name_as_displayed env sigma t s = let rec lookup avoid n c = match EConstr.kind sigma c with | Prod (name,_,c') -> (match compute_displayed_name_in sigma RenamingForGoal avoid name c' with | (Name id,avoid') -> if Id.equal id s then Some n else lookup avoid' (n+1) c' | (Anonymous,avoid') -> lookup avoid' (n+1) (pop c')) | LetIn (name,_,_,c') -> (match compute_displayed_name_in sigma RenamingForGoal avoid name c' with | (Name id,avoid') -> if Id.equal id s then Some n else lookup avoid' (n+1) c' | (Anonymous,avoid') -> lookup avoid' (n+1) (pop c')) | Cast (c,_,_) -> lookup avoid n c | _ -> None in lookup (Environ.ids_of_named_context_val (Environ.named_context_val env)) 1 t let lookup_index_as_renamed env sigma t n = let rec lookup n d c = match EConstr.kind sigma c with | Prod (name,_,c') -> (match compute_displayed_name_in sigma RenamingForGoal Id.Set.empty name c' with (Name _,_) -> lookup n (d+1) c' | (Anonymous,_) -> if Int.equal n 0 then Some (d-1) else if Int.equal n 1 then Some d else lookup (n-1) (d+1) c') | LetIn (name,_,_,c') -> (match compute_displayed_name_in sigma RenamingForGoal Id.Set.empty name c' with | (Name _,_) -> lookup n (d+1) c' | (Anonymous,_) -> if Int.equal n 0 then Some (d-1) else if Int.equal n 1 then Some d else lookup (n-1) (d+1) c' ) | Cast (c,_,_) -> lookup n d c | _ -> if Int.equal n 0 then Some (d-1) else None in lookup n 1 t (**********************************************************************) (* Factorization of match patterns *) let print_factorize_match_patterns = ref true let _ = let open Goptions in declare_bool_option { optdepr = false; optname = "factorization of \"match\" patterns in printing"; optkey = ["Printing";"Factorizable";"Match";"Patterns"]; optread = (fun () -> !print_factorize_match_patterns); optwrite = (fun b -> print_factorize_match_patterns := b) } let print_allow_match_default_clause = ref true let _ = let open Goptions in declare_bool_option { optdepr = false; optname = "possible use of \"match\" default pattern in printing"; optkey = ["Printing";"Allow";"Match";"Default";"Clause"]; optread = (fun () -> !print_allow_match_default_clause); optwrite = (fun b -> print_allow_match_default_clause := b) } let rec join_eqns (ids,rhs as x) patll = function | ({CAst.loc; v=(ids',patl',rhs')} as eqn')::rest -> if not !Flags.raw_print && !print_factorize_match_patterns && List.eq_set Id.equal ids ids' && glob_constr_eq rhs rhs' then join_eqns x (patl'::patll) rest else let eqn,rest = join_eqns x patll rest in eqn, eqn'::rest | [] -> patll, [] let number_of_patterns {CAst.v=(_ids,patll,_rhs)} = List.length patll let is_default_candidate {CAst.v=(ids,_patll,_rhs)} = ids = [] let rec move_more_factorized_default_candidate_to_end eqn n = function | eqn' :: eqns -> let set,get = set_temporary_memory () in if is_default_candidate eqn' && set (number_of_patterns eqn') >= n then let isbest, dft, eqns = move_more_factorized_default_candidate_to_end eqn' (get ()) eqns in if isbest then false, dft, eqns else false, dft, eqn' :: eqns else let isbest, dft, eqns = move_more_factorized_default_candidate_to_end eqn n eqns in isbest, dft, eqn' :: eqns | [] -> true, Some eqn, [] let rec select_default_clause = function | eqn :: eqns -> let set,get = set_temporary_memory () in if is_default_candidate eqn && set (number_of_patterns eqn) > 1 then let isbest, dft, eqns = move_more_factorized_default_candidate_to_end eqn (get ()) eqns in if isbest then dft, eqns else dft, eqn :: eqns else let dft, eqns = select_default_clause eqns in dft, eqn :: eqns | [] -> None, [] let factorize_eqns eqns = let open CAst in let rec aux found = function | {loc;v=(ids,patl,rhs)}::rest -> let patll,rest = join_eqns (ids,rhs) [patl] rest in aux (CAst.make ?loc (ids,patll,rhs)::found) rest | [] -> found in let eqns = aux [] (List.rev eqns) in let mk_anon patl = List.map (fun _ -> DAst.make @@ PatVar Anonymous) patl in let open CAst in if not !Flags.raw_print && !print_allow_match_default_clause && eqns <> [] then match select_default_clause eqns with (* At least two clauses and the last one is disjunctive with no variables *) | Some {loc=gloc;v=([],patl::_::_,rhs)}, (_::_ as eqns) -> eqns@[CAst.make ?loc:gloc ([],[mk_anon patl],rhs)] (* Only one clause which is disjunctive with no variables: we keep at least one constructor *) (* so that it is not interpreted as a dummy "match" *) | Some {loc=gloc;v=([],patl::patl'::_,rhs)}, [] -> [CAst.make ?loc:gloc ([],[patl;mk_anon patl'],rhs)] | Some {v=((_::_,_,_ | _,([]|[_]),_))}, _ -> assert false | None, eqns -> eqns else eqns (**********************************************************************) (* Fragile algorithm to reverse pattern-matching compilation *) let update_name sigma na ((_,(e,_)),c) = match na with | Name _ when force_wildcard () && noccurn sigma (List.index Name.equal na e) c -> Anonymous | _ -> na let rec decomp_branch tags nal b (avoid,env as e) sigma c = let flag = if b then RenamingForGoal else RenamingForCasesPattern (fst env,c) in match tags with | [] -> (List.rev nal,(e,c)) | b::tags -> let na,c,f,body,t = match EConstr.kind sigma (strip_outer_cast sigma c), b with | Lambda (na,t,c),false -> na,c,compute_displayed_let_name_in,None,Some t | LetIn (na,b,t,c),true -> na,c,compute_displayed_name_in,Some b,Some t | _, false -> Name default_dependent_ident,(applist (lift 1 c, [mkRel 1])), compute_displayed_name_in,None,None | _, true -> Anonymous,lift 1 c,compute_displayed_name_in,None,None in let na',avoid' = f sigma flag avoid na c in decomp_branch tags (na'::nal) b (avoid', add_name_opt na' body t env) sigma c let rec build_tree na isgoal e sigma ci cl = let mkpat n rhs pl = DAst.make @@ PatCstr((ci.ci_ind,n+1),pl,update_name sigma na rhs) in let cnl = ci.ci_pp_info.cstr_tags in List.flatten (List.init (Array.length cl) (fun i -> contract_branch isgoal e sigma (cnl.(i),mkpat i,cl.(i)))) and align_tree nal isgoal (e,c as rhs) sigma = match nal with | [] -> [Id.Set.empty,[],rhs] | na::nal -> match EConstr.kind sigma c with | Case (ci,p,c,cl) when eq_constr sigma c (mkRel (List.index Name.equal na (fst (snd e)))) && not (Int.equal (Array.length cl) 0) && (* don't contract if p dependent *) computable sigma p (List.length ci.ci_pp_info.ind_tags) (* FIXME: can do better *) -> let clauses = build_tree na isgoal e sigma ci cl in List.flatten (List.map (fun (ids,pat,rhs) -> let lines = align_tree nal isgoal rhs sigma in List.map (fun (ids',hd,rest) -> Id.Set.fold Id.Set.add ids ids',pat::hd,rest) lines) clauses) | _ -> let na = update_name sigma na rhs in let pat = DAst.make @@ PatVar na in let mat = align_tree nal isgoal rhs sigma in List.map (fun (ids,hd,rest) -> Nameops.Name.fold_right Id.Set.add na ids,pat::hd,rest) mat and contract_branch isgoal e sigma (cdn,mkpat,rhs) = let nal,rhs = decomp_branch cdn [] isgoal e sigma rhs in let mat = align_tree nal isgoal rhs sigma in List.map (fun (ids,hd,rhs) -> ids,mkpat rhs hd,rhs) mat (**********************************************************************) (* Transform internal representation of pattern-matching into list of *) (* clauses *) let is_nondep_branch sigma c l = try (* FIXME: do better using tags from l *) let sign,ccl = decompose_lam_n_decls sigma (List.length l) c in noccur_between sigma 1 (Context.Rel.length sign) ccl with e when CErrors.noncritical e -> (* Not eta-expanded or not reduced *) false let extract_nondep_branches test c b l = let rec strip l r = match DAst.get r, l with | r', [] -> r | GLambda (_,_,_,t), false::l -> strip l t | GLetIn (_,_,_,t), true::l -> strip l t (* FIXME: do we need adjustment? *) | _,_ -> assert false in if test c l then Some (strip l b) else None let it_destRLambda_or_LetIn_names l c = let rec aux l nal c = match DAst.get c, l with | _, [] -> (List.rev nal,c) | GLambda (na,_,_,c), false::l -> aux l (na::nal) c | GLetIn (na,_,_,c), true::l -> aux l (na::nal) c | _, true::l -> (* let-expansion *) aux l (Anonymous :: nal) c | _, false::l -> (* eta-expansion *) let next l = let x = next_ident_away default_dependent_ident l in (* Not efficient but unusual and no function to get free glob_vars *) (* if occur_glob_constr x c then next (x::l) else x in *) x in let x = next (free_glob_vars c) in let a = DAst.make @@ GVar x in aux l (Name x :: nal) (match DAst.get c with | GApp (p,l) -> DAst.make ?loc:c.CAst.loc @@ GApp (p,l@[a]) | _ -> DAst.make @@ GApp (c,[a])) in aux l [] c let detype_case computable detype detype_eqns testdep avoid data p c bl = let (indsp,st,constagsl,k) = data in let synth_type = synthetize_type () in let tomatch = detype c in let alias, aliastyp, pred= if (not !Flags.raw_print) && synth_type && computable && not (Int.equal (Array.length bl) 0) then Anonymous, None, None else let p = detype p in let nl,typ = it_destRLambda_or_LetIn_names k p in let n,typ = match DAst.get typ with | GLambda (x,_,t,c) -> x, c | _ -> Anonymous, typ in let aliastyp = if List.for_all (Name.equal Anonymous) nl then None else Some (CAst.make (indsp,nl)) in n, aliastyp, Some typ in let constructs = Array.init (Array.length bl) (fun i -> (indsp,i+1)) in let tag = try if !Flags.raw_print then RegularStyle else if st == LetPatternStyle then st else if PrintingLet.active indsp then LetStyle else if PrintingIf.active indsp then IfStyle else st with Not_found -> st in match tag, aliastyp with | LetStyle, None -> let bl' = Array.map detype bl in let (nal,d) = it_destRLambda_or_LetIn_names constagsl.(0) bl'.(0) in GLetTuple (nal,(alias,pred),tomatch,d) | IfStyle, None -> let bl' = Array.map detype bl in let nondepbrs = Array.map3 (extract_nondep_branches testdep) bl bl' constagsl in if Array.for_all ((!=) None) nondepbrs then GIf (tomatch,(alias,pred), Option.get nondepbrs.(0),Option.get nondepbrs.(1)) else let eqnl = detype_eqns constructs constagsl bl in GCases (tag,pred,[tomatch,(alias,aliastyp)],eqnl) | _ -> let eqnl = detype_eqns constructs constagsl bl in GCases (tag,pred,[tomatch,(alias,aliastyp)],eqnl) let rec share_names detype n l avoid env sigma c t = match EConstr.kind sigma c, EConstr.kind sigma t with (* factorize even when not necessary to have better presentation *) | Lambda (na,t,c), Prod (na',t',c') -> let na = match (na,na') with Name _, _ -> na | _, Name _ -> na' | _ -> na in let t' = detype avoid env sigma t in let id = next_name_away na avoid in let avoid = Id.Set.add id avoid and env = add_name (Name id) None t env in share_names detype (n-1) ((Name id,Explicit,None,t')::l) avoid env sigma c c' (* May occur for fix built interactively *) | LetIn (na,b,t',c), _ when n > 0 -> let t'' = detype avoid env sigma t' in let b' = detype avoid env sigma b in let id = next_name_away na avoid in let avoid = Id.Set. add id avoid and env = add_name (Name id) (Some b) t' env in share_names detype n ((Name id,Explicit,Some b',t'')::l) avoid env sigma c (lift 1 t) (* Only if built with the f/n notation or w/o let-expansion in types *) | _, LetIn (_,b,_,t) when n > 0 -> share_names detype n l avoid env sigma c (subst1 b t) (* If it is an open proof: we cheat and eta-expand *) | _, Prod (na',t',c') when n > 0 -> let t'' = detype avoid env sigma t' in let id = next_name_away na' avoid in let avoid = Id.Set.add id avoid and env = add_name (Name id) None t' env in let appc = mkApp (lift 1 c,[|mkRel 1|]) in share_names detype (n-1) ((Name id,Explicit,None,t'')::l) avoid env sigma appc c' (* If built with the f/n notation: we renounce to share names *) | _ -> if n>0 then Feedback.msg_debug (strbrk "Detyping.detype: cannot factorize fix enough"); let c = detype avoid env sigma c in let t = detype avoid env sigma t in (List.rev l,c,t) let rec share_pattern_names detype n l avoid env sigma c t = let open Pattern in if n = 0 then let c = detype avoid env sigma c in let t = detype avoid env sigma t in (List.rev l,c,t) else match c, t with | PLambda (na,t,c), PProd (na',t',c') -> let na = match (na,na') with Name _, _ -> na | _, Name _ -> na' | _ -> na in let t' = detype avoid env sigma t in let id = next_name_away na avoid in let avoid = Id.Set.add id avoid in let env = Name id :: env in share_pattern_names detype (n-1) ((Name id,Explicit,None,t')::l) avoid env sigma c c' | _ -> if n>0 then Feedback.msg_debug (strbrk "Detyping.detype: cannot factorize fix enough"); let c = detype avoid env sigma c in let t = detype avoid env sigma t in (List.rev l,c,t) let detype_fix detype avoid env sigma (vn,_ as nvn) (names,tys,bodies) = let def_avoid, def_env, lfi = Array.fold_left2 (fun (avoid, env, l) na ty -> let id = next_name_away na avoid in (Id.Set.add id avoid, add_name (Name id) None ty env, id::l)) (avoid, env, []) names tys in let n = Array.length tys in let v = Array.map3 (fun c t i -> share_names detype (i+1) [] def_avoid def_env sigma c (lift n t)) bodies tys vn in GRec(GFix (Array.map (fun i -> Some i, GStructRec) (fst nvn), snd nvn),Array.of_list (List.rev lfi), Array.map (fun (bl,_,_) -> bl) v, Array.map (fun (_,_,ty) -> ty) v, Array.map (fun (_,bd,_) -> bd) v) let detype_cofix detype avoid env sigma n (names,tys,bodies) = let def_avoid, def_env, lfi = Array.fold_left2 (fun (avoid, env, l) na ty -> let id = next_name_away na avoid in (Id.Set.add id avoid, add_name (Name id) None ty env, id::l)) (avoid, env, []) names tys in let ntys = Array.length tys in let v = Array.map2 (fun c t -> share_names detype 0 [] def_avoid def_env sigma c (lift ntys t)) bodies tys in GRec(GCoFix n,Array.of_list (List.rev lfi), Array.map (fun (bl,_,_) -> bl) v, Array.map (fun (_,_,ty) -> ty) v, Array.map (fun (_,bd,_) -> bd) v) let detype_universe sigma u = let fn (l, n) = Some (Termops.reference_of_level sigma l, n) in Univ.Universe.map fn u let detype_sort sigma = function | Prop -> GProp | Set -> GSet | Type u -> GType (if !print_universes then detype_universe sigma u else []) type binder_kind = BProd | BLambda | BLetIn (**********************************************************************) (* Main detyping function *) let detype_anonymous = ref (fun ?loc n -> anomaly ~label:"detype" (Pp.str "index to an anonymous variable.")) let set_detype_anonymous f = detype_anonymous := f let detype_level sigma l = let l = Termops.reference_of_level sigma l in GType (UNamed l) let detype_instance sigma l = let l = EInstance.kind sigma l in if Univ.Instance.is_empty l then None else Some (List.map (detype_level sigma) (Array.to_list (Univ.Instance.to_array l))) let delay (type a) (d : a delay) (f : a delay -> _ -> _ -> _ -> _ -> _ -> a glob_constr_r) flags env avoid sigma t : a glob_constr_g = match d with | Now -> DAst.make (f d flags env avoid sigma t) | Later -> DAst.delay (fun () -> f d flags env avoid sigma t) let rec detype d flags avoid env sigma t = delay d detype_r flags avoid env sigma t and detype_r d flags avoid env sigma t = match EConstr.kind sigma (collapse_appl sigma t) with | Rel n -> (try match lookup_name_of_rel n (fst env) with | Name id -> GVar id | Anonymous -> GVar (!detype_anonymous n) with Not_found -> let s = "_UNBOUND_REL_"^(string_of_int n) in GVar (Id.of_string s)) | Meta n -> (* Meta in constr are not user-parsable and are mapped to Evar *) if n = Constr_matching.special_meta then (* Using a dash to be unparsable *) GEvar (Id.of_string_soft "CONTEXT-HOLE", []) else GEvar (Id.of_string_soft ("M" ^ string_of_int n), []) | Var id -> (try let _ = Global.lookup_named id in GRef (VarRef id, None) with Not_found -> GVar id) | Sort s -> GSort (detype_sort sigma (ESorts.kind sigma s)) | Cast (c1,REVERTcast,c2) when not !Flags.raw_print -> DAst.get (detype d flags avoid env sigma c1) | Cast (c1,k,c2) -> let d1 = detype d flags avoid env sigma c1 in let d2 = detype d flags avoid env sigma c2 in let cast = match k with | VMcast -> CastVM d2 | NATIVEcast -> CastNative d2 | _ -> CastConv d2 in GCast(d1,cast) | Prod (na,ty,c) -> detype_binder d flags BProd avoid env sigma na None ty c | Lambda (na,ty,c) -> detype_binder d flags BLambda avoid env sigma na None ty c | LetIn (na,b,ty,c) -> detype_binder d flags BLetIn avoid env sigma na (Some b) ty c | App (f,args) -> let mkapp f' args' = match DAst.get f' with | GApp (f',args'') -> GApp (f',args''@args') | _ -> GApp (f',args') in mkapp (detype d flags avoid env sigma f) (Array.map_to_list (detype d flags avoid env sigma) args) | Const (sp,u) -> GRef (ConstRef sp, detype_instance sigma u) | Proj (p,c) -> let noparams () = GProj (p, detype d flags avoid env sigma c) in if fst flags || !Flags.in_debugger || !Flags.in_toplevel then try noparams () with _ -> (* lax mode, used by debug printers only *) GApp (DAst.make @@ GRef (ConstRef (Projection.constant p), None), [detype d flags avoid env sigma c]) else if print_primproj_compatibility () && Projection.unfolded p then (** Print the compatibility match version *) let c' = try let pb = Environ.lookup_projection p (snd env) in let ind = pb.Declarations.proj_ind in let bodies = Inductiveops.legacy_match_projection (snd env) ind in let body = bodies.(pb.Declarations.proj_arg) in let ty = Retyping.get_type_of (snd env) sigma c in let ((ind,u), args) = Inductiveops.find_mrectype (snd env) sigma ty in let body' = strip_lam_assum body in let u = EInstance.kind sigma u in let body' = CVars.subst_instance_constr u body' in let body' = EConstr.of_constr body' in substl (c :: List.rev args) body' with Retyping.RetypeError _ | Not_found -> anomaly (str"Cannot detype an unfolded primitive projection.") in DAst.get (detype d flags avoid env sigma c') else if print_primproj_params () then try let c = Retyping.expand_projection (snd env) sigma p c [] in DAst.get (detype d flags avoid env sigma c) with Retyping.RetypeError _ -> noparams () else noparams () | Evar (evk,cl) -> let bound_to_itself_or_letin decl c = match decl with | LocalDef _ -> true | LocalAssum (id,_) -> try let n = List.index Name.equal (Name id) (fst env) in isRelN sigma n c with Not_found -> isVarId sigma id c in let id,l = try let id = match Evd.evar_ident evk sigma with | None -> Termops.pr_evar_suggested_name evk sigma | Some id -> id in let l = Evd.evar_instance_array bound_to_itself_or_letin (Evd.find sigma evk) cl in let fvs,rels = List.fold_left (fun (fvs,rels) (_,c) -> match EConstr.kind sigma c with Rel n -> (fvs,Int.Set.add n rels) | Var id -> (Id.Set.add id fvs,rels) | _ -> (fvs,rels)) (Id.Set.empty,Int.Set.empty) l in let l = Evd.evar_instance_array (fun d c -> not !print_evar_arguments && (bound_to_itself_or_letin d c && not (isRel sigma c && Int.Set.mem (destRel sigma c) rels || isVar sigma c && (Id.Set.mem (destVar sigma c) fvs)))) (Evd.find sigma evk) cl in id,l with Not_found -> Id.of_string ("X" ^ string_of_int (Evar.repr evk)), (Array.map_to_list (fun c -> (Id.of_string "__",c)) cl) in GEvar (id, List.map (on_snd (detype d flags avoid env sigma)) l) | Ind (ind_sp,u) -> GRef (IndRef ind_sp, detype_instance sigma u) | Construct (cstr_sp,u) -> GRef (ConstructRef cstr_sp, detype_instance sigma u) | Case (ci,p,c,bl) -> let comp = computable sigma p (List.length (ci.ci_pp_info.ind_tags)) in detype_case comp (detype d flags avoid env sigma) (detype_eqns d flags avoid env sigma ci comp) (is_nondep_branch sigma) avoid (ci.ci_ind,ci.ci_pp_info.style, ci.ci_pp_info.cstr_tags,ci.ci_pp_info.ind_tags) p c bl | Fix (nvn,recdef) -> detype_fix (detype d flags) avoid env sigma nvn recdef | CoFix (n,recdef) -> detype_cofix (detype d flags) avoid env sigma n recdef and detype_eqns d flags avoid env sigma ci computable constructs consnargsl bl = try if !Flags.raw_print || not (reverse_matching ()) then raise Exit; let mat = build_tree Anonymous (snd flags) (avoid,env) sigma ci bl in List.map (fun (ids,pat,((avoid,env),c)) -> CAst.make (Id.Set.elements ids,[pat],detype d flags avoid env sigma c)) mat with e when CErrors.noncritical e -> Array.to_list (Array.map3 (detype_eqn d flags avoid env sigma) constructs consnargsl bl) and detype_eqn d (lax,isgoal as flags) avoid env sigma constr construct_nargs branch = let make_pat x avoid env b body ty ids = if force_wildcard () && noccurn sigma 1 b then DAst.make @@ PatVar Anonymous,avoid,(add_name Anonymous body ty env),ids else let flag = if isgoal then RenamingForGoal else RenamingForCasesPattern (fst env,b) in let na,avoid' = compute_displayed_name_in sigma flag avoid x b in DAst.make (PatVar na),avoid',(add_name na body ty env),add_vname ids na in let rec buildrec ids patlist avoid env l b = match EConstr.kind sigma b, l with | _, [] -> CAst.make @@ (Id.Set.elements ids, [DAst.make @@ PatCstr(constr, List.rev patlist,Anonymous)], detype d flags avoid env sigma b) | Lambda (x,t,b), false::l -> let pat,new_avoid,new_env,new_ids = make_pat x avoid env b None t ids in buildrec new_ids (pat::patlist) new_avoid new_env l b | LetIn (x,b,t,b'), true::l -> let pat,new_avoid,new_env,new_ids = make_pat x avoid env b' (Some b) t ids in buildrec new_ids (pat::patlist) new_avoid new_env l b' | Cast (c,_,_), l -> (* Oui, il y a parfois des cast *) buildrec ids patlist avoid env l c | _, true::l -> let pat = DAst.make @@ PatVar Anonymous in buildrec ids (pat::patlist) avoid env l b | _, false::l -> (* eta-expansion : n'arrivera plus lorsque tous les termes seront construits à partir de la syntaxe Cases *) (* nommage de la nouvelle variable *) let new_b = applist (lift 1 b, [mkRel 1]) in let pat,new_avoid,new_env,new_ids = make_pat Anonymous avoid env new_b None mkProp ids in buildrec new_ids (pat::patlist) new_avoid new_env l new_b in buildrec Id.Set.empty [] avoid env construct_nargs branch and detype_binder d (lax,isgoal as flags) bk avoid env sigma na body ty c = let flag = if isgoal then RenamingForGoal else RenamingElsewhereFor (fst env,c) in let na',avoid' = match bk with | BLetIn -> compute_displayed_let_name_in sigma flag avoid na c | _ -> compute_displayed_name_in sigma flag avoid na c in let r = detype d flags avoid' (add_name na' body ty env) sigma c in match bk with | BProd -> GProd (na',Explicit,detype d (lax,false) avoid env sigma ty, r) | BLambda -> GLambda (na',Explicit,detype d (lax,false) avoid env sigma ty, r) | BLetIn -> let c = detype d (lax,false) avoid env sigma (Option.get body) in (* Heuristic: we display the type if in Prop *) let s = try Retyping.get_sort_family_of (snd env) sigma ty with _ when !Flags.in_debugger || !Flags.in_toplevel -> InType (* Can fail because of sigma missing in debugger *) in let t = if s != InProp && not !Flags.raw_print then None else Some (detype d (lax,false) avoid env sigma ty) in GLetIn (na', c, t, r) let detype_rel_context d ?(lax=false) where avoid env sigma sign = let where = Option.map (fun c -> EConstr.it_mkLambda_or_LetIn c sign) where in let rec aux avoid env = function | [] -> [] | decl::rest -> let open Context.Rel.Declaration in let na = get_name decl in let t = get_type decl in let na',avoid' = match where with | None -> na,avoid | Some c -> if is_local_def decl then compute_displayed_let_name_in sigma (RenamingElsewhereFor (fst env,c)) avoid na c else compute_displayed_name_in sigma (RenamingElsewhereFor (fst env,c)) avoid na c in let b = match decl with | LocalAssum _ -> None | LocalDef (_,b,_) -> Some b in let b' = Option.map (detype d (lax,false) avoid env sigma) b in let t' = detype d (lax,false) avoid env sigma t in (na',Explicit,b',t') :: aux avoid' (add_name na' b t env) rest in aux avoid env (List.rev sign) let detype_names isgoal avoid nenv env sigma t = detype Now (false,isgoal) avoid (nenv,env) sigma t let detype d ?(lax=false) isgoal avoid env sigma t = detype d (lax,isgoal) avoid (names_of_rel_context env, env) sigma t let detype_rel_context d ?lax where avoid env sigma sign = detype_rel_context d ?lax where avoid env sigma sign let detype_closed_glob ?lax isgoal avoid env sigma t = let open Context.Rel.Declaration in let convert_id cl id = try Id.Map.find id cl.idents with Not_found -> id in let convert_name cl = function | Name id -> Name (convert_id cl id) | Anonymous -> Anonymous in let rec detype_closed_glob cl cg : Glob_term.glob_constr = DAst.map (function | GVar id -> (* if [id] is bound to a name. *) begin try GVar(Id.Map.find id cl.idents) (* if [id] is bound to a typed term *) with Not_found -> try (* assumes [detype] does not raise [Not_found] exceptions *) let (b,c) = Id.Map.find id cl.typed in (* spiwack: I'm not sure it is the right thing to do, but I'm computing the detyping environment like [Printer.pr_constr_under_binders_env] does. *) let assums = List.map (fun id -> LocalAssum (Name id,(* dummy *) mkProp)) b in let env = push_rel_context assums env in DAst.get (detype Now ?lax isgoal avoid env sigma c) (* if [id] is bound to a [closed_glob_constr]. *) with Not_found -> try let {closure;term} = Id.Map.find id cl.untyped in DAst.get (detype_closed_glob closure term) (* Otherwise [id] stands for itself *) with Not_found -> GVar id end | GLambda (id,k,t,c) -> let id = convert_name cl id in GLambda(id,k,detype_closed_glob cl t, detype_closed_glob cl c) | GProd (id,k,t,c) -> let id = convert_name cl id in GProd(id,k,detype_closed_glob cl t, detype_closed_glob cl c) | GLetIn (id,b,t,e) -> let id = convert_name cl id in GLetIn(id,detype_closed_glob cl b, Option.map (detype_closed_glob cl) t, detype_closed_glob cl e) | GLetTuple (ids,(n,r),b,e) -> let ids = List.map (convert_name cl) ids in let n = convert_name cl n in GLetTuple (ids,(n,r),detype_closed_glob cl b, detype_closed_glob cl e) | GCases (sty,po,tml,eqns) -> let (tml,eqns) = Glob_ops.map_pattern_binders (fun na -> convert_name cl na) tml eqns in let (tml,eqns) = Glob_ops.map_pattern (fun c -> detype_closed_glob cl c) tml eqns in GCases(sty,po,tml,eqns) | c -> DAst.get (Glob_ops.map_glob_constr (detype_closed_glob cl) cg) ) cg in detype_closed_glob t.closure t.term (**********************************************************************) (* Module substitution: relies on detyping *) let rec subst_cases_pattern subst = DAst.map (function | PatVar _ as pat -> pat | PatCstr (((kn,i),j),cpl,n) as pat -> let kn' = subst_mind subst kn and cpl' = List.Smart.map (subst_cases_pattern subst) cpl in if kn' == kn && cpl' == cpl then pat else PatCstr (((kn',i),j),cpl',n) ) let (f_subst_genarg, subst_genarg_hook) = Hook.make () let rec subst_glob_constr subst = DAst.map (function | GRef (ref,u) as raw -> let ref',t = subst_global subst ref in if ref' == ref then raw else let env = Global.env () in let evd = Evd.from_env env in DAst.get (detype Now false Id.Set.empty env evd (EConstr.of_constr t)) | GSort _ | GVar _ | GEvar _ | GPatVar _ as raw -> raw | GApp (r,rl) as raw -> let r' = subst_glob_constr subst r and rl' = List.Smart.map (subst_glob_constr subst) rl in if r' == r && rl' == rl then raw else GApp(r',rl') | GLambda (n,bk,r1,r2) as raw -> let r1' = subst_glob_constr subst r1 and r2' = subst_glob_constr subst r2 in if r1' == r1 && r2' == r2 then raw else GLambda (n,bk,r1',r2') | GProd (n,bk,r1,r2) as raw -> let r1' = subst_glob_constr subst r1 and r2' = subst_glob_constr subst r2 in if r1' == r1 && r2' == r2 then raw else GProd (n,bk,r1',r2') | GLetIn (n,r1,t,r2) as raw -> let r1' = subst_glob_constr subst r1 in let r2' = subst_glob_constr subst r2 in let t' = Option.Smart.map (subst_glob_constr subst) t in if r1' == r1 && t == t' && r2' == r2 then raw else GLetIn (n,r1',t',r2') | GCases (sty,rtno,rl,branches) as raw -> let open CAst in let rtno' = Option.Smart.map (subst_glob_constr subst) rtno and rl' = List.Smart.map (fun (a,x as y) -> let a' = subst_glob_constr subst a in let (n,topt) = x in let topt' = Option.Smart.map (fun ({loc;v=((sp,i),y)} as t) -> let sp' = subst_mind subst sp in if sp == sp' then t else CAst.(make ?loc ((sp',i),y))) topt in if a == a' && topt == topt' then y else (a',(n,topt'))) rl and branches' = List.Smart.map (fun ({loc;v=(idl,cpl,r)} as branch) -> let cpl' = List.Smart.map (subst_cases_pattern subst) cpl and r' = subst_glob_constr subst r in if cpl' == cpl && r' == r then branch else CAst.(make ?loc (idl,cpl',r'))) branches in if rtno' == rtno && rl' == rl && branches' == branches then raw else GCases (sty,rtno',rl',branches') | GLetTuple (nal,(na,po),b,c) as raw -> let po' = Option.Smart.map (subst_glob_constr subst) po and b' = subst_glob_constr subst b and c' = subst_glob_constr subst c in if po' == po && b' == b && c' == c then raw else GLetTuple (nal,(na,po'),b',c') | GIf (c,(na,po),b1,b2) as raw -> let po' = Option.Smart.map (subst_glob_constr subst) po and b1' = subst_glob_constr subst b1 and b2' = subst_glob_constr subst b2 and c' = subst_glob_constr subst c in if c' == c && po' == po && b1' == b1 && b2' == b2 then raw else GIf (c',(na,po'),b1',b2') | GRec (fix,ida,bl,ra1,ra2) as raw -> let ra1' = Array.Smart.map (subst_glob_constr subst) ra1 and ra2' = Array.Smart.map (subst_glob_constr subst) ra2 in let bl' = Array.Smart.map (List.Smart.map (fun (na,k,obd,ty as dcl) -> let ty' = subst_glob_constr subst ty in let obd' = Option.Smart.map (subst_glob_constr subst) obd in if ty'==ty && obd'==obd then dcl else (na,k,obd',ty'))) bl in if ra1' == ra1 && ra2' == ra2 && bl'==bl then raw else GRec (fix,ida,bl',ra1',ra2') | GHole (knd, naming, solve) as raw -> let nknd = match knd with | Evar_kinds.ImplicitArg (ref, i, b) -> let nref, _ = subst_global subst ref in if nref == ref then knd else Evar_kinds.ImplicitArg (nref, i, b) | _ -> knd in let nsolve = Option.Smart.map (Hook.get f_subst_genarg subst) solve in if nsolve == solve && nknd == knd then raw else GHole (nknd, naming, nsolve) | GCast (r1,k) as raw -> let r1' = subst_glob_constr subst r1 in let k' = smartmap_cast_type (subst_glob_constr subst) k in if r1' == r1 && k' == k then raw else GCast (r1',k') | GProj (p,c) as raw -> let kn = Projection.constant p in let b = Projection.unfolded p in let kn' = subst_constant subst kn in let c' = subst_glob_constr subst c in if kn' == kn && c' == c then raw else GProj(Projection.make kn' b, c') ) (* Utilities to transform kernel cases to simple pattern-matching problem *) let simple_cases_matrix_of_branches ind brs = List.map (fun (i,n,b) -> let nal,c = it_destRLambda_or_LetIn_names n b in let mkPatVar na = DAst.make @@ PatVar na in let p = DAst.make @@ PatCstr ((ind,i+1),List.map mkPatVar nal,Anonymous) in let ids = List.map_filter Nameops.Name.to_option nal in CAst.make @@ (ids,[p],c)) brs let return_type_of_predicate ind nrealargs_tags pred = let nal,p = it_destRLambda_or_LetIn_names (nrealargs_tags@[false]) pred in (List.hd nal, Some (CAst.make (ind, List.tl nal))), Some p