(************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) (* !use_typeclasses_for_conversion); optwrite = (fun b -> use_typeclasses_for_conversion := b) } (* Typing operations dealing with coercions *) exception NoCoercion exception NoCoercionNoUnifier of evar_map * unification_error (* Here, funj is a coercion therefore already typed in global context *) let apply_coercion_args env evd check isproj argl funj = let evdref = ref evd in let rec apply_rec acc typ = function | [] -> if isproj then let cst = fst (destConst (j_val funj)) in let p = Projection.make cst false in let pb = lookup_projection p env in let args = List.skipn pb.Declarations.proj_npars argl in let hd, tl = match args with hd :: tl -> hd, tl | [] -> assert false in { uj_val = applist (mkProj (p, hd), tl); uj_type = typ } else { uj_val = applist (j_val funj,argl); uj_type = typ } | h::restl -> (* On devrait pouvoir s'arranger pour qu'on n'ait pas a faire hnf_constr *) match kind_of_term (whd_betadeltaiota env evd typ) with | Prod (_,c1,c2) -> if check && not (e_cumul env evdref (Retyping.get_type_of env evd h) c1) then raise NoCoercion; apply_rec (h::acc) (subst1 h c2) restl | _ -> anomaly (Pp.str "apply_coercion_args") in let res = apply_rec [] funj.uj_type argl in !evdref, res (* appliquer le chemin de coercions de patterns p *) let apply_pattern_coercion loc pat p = List.fold_left (fun pat (co,n) -> let f i = if i (match kind_of_term c with Ind (i,_) -> let len = Array.length l in let sigty = delayed_force sig_typ in if Int.equal len 2 && eq_ind i (Globnames.destIndRef sigty) then let (a, b) = pair_of_array l in Some (a, b) else None | _ -> None) | _ -> None exception NoSubtacCoercion let hnf env evd c = whd_betadeltaiota env evd c let hnf_nodelta env evd c = whd_betaiota evd c let lift_args n sign = let rec liftrec k = function | t::sign -> liftn n k t :: (liftrec (k-1) sign) | [] -> [] in liftrec (List.length sign) sign let mu env evdref t = let rec aux v = let v' = hnf env !evdref v in match disc_subset v' with | Some (u, p) -> let f, ct = aux u in let p = hnf_nodelta env !evdref p in (Some (fun x -> app_opt env evdref f (papp evdref sig_proj1 [| u; p; x |])), ct) | None -> (None, v) in aux t and coerce loc env evdref (x : Term.constr) (y : Term.constr) : (Term.constr -> Term.constr) option = let rec coerce_unify env x y = let x = hnf env !evdref x and y = hnf env !evdref y in try evdref := the_conv_x_leq env x y !evdref; None with UnableToUnify _ -> coerce' env x y and coerce' env x y : (Term.constr -> Term.constr) option = let subco () = subset_coerce env evdref x y in let dest_prod c = match Reductionops.splay_prod_n env ( !evdref) 1 c with | [(na,b,t)], c -> (na,t), c | _ -> raise NoSubtacCoercion in let coerce_application typ typ' c c' l l' = let len = Array.length l in let rec aux tele typ typ' i co = if i < len then let hdx = l.(i) and hdy = l'.(i) in try evdref := the_conv_x_leq env hdx hdy !evdref; let (n, eqT), restT = dest_prod typ in let (n', eqT'), restT' = dest_prod typ' in aux (hdx :: tele) (subst1 hdx restT) (subst1 hdy restT') (succ i) co with UnableToUnify _ -> let (n, eqT), restT = dest_prod typ in let (n', eqT'), restT' = dest_prod typ' in let _ = try evdref := the_conv_x_leq env eqT eqT' !evdref with UnableToUnify _ -> raise NoSubtacCoercion in (* Disallow equalities on arities *) if Reduction.is_arity env eqT then raise NoSubtacCoercion; let restargs = lift_args 1 (List.rev (Array.to_list (Array.sub l (succ i) (len - (succ i))))) in let args = List.rev (restargs @ mkRel 1 :: List.map (lift 1) tele) in let pred = mkLambda (n, eqT, applistc (lift 1 c) args) in let eq = papp evdref coq_eq_ind [| eqT; hdx; hdy |] in let evar = make_existential loc env evdref eq in let eq_app x = papp evdref coq_eq_rect [| eqT; hdx; pred; x; hdy; evar|] in aux (hdy :: tele) (subst1 hdx restT) (subst1 hdy restT') (succ i) (fun x -> eq_app (co x)) else Some (fun x -> let term = co x in Typing.solve_evars env evdref term) in if isEvar c || isEvar c' then (* Second-order unification needed. *) raise NoSubtacCoercion; aux [] typ typ' 0 (fun x -> x) in match (kind_of_term x, kind_of_term y) with | Sort s, Sort s' -> (match s, s' with | Prop x, Prop y when x == y -> None | Prop _, Type _ -> None | Type x, Type y when Univ.Universe.equal x y -> None (* false *) | _ -> subco ()) | Prod (name, a, b), Prod (name', a', b') -> let name' = Name (Namegen.next_ident_away Namegen.default_dependent_ident (Termops.ids_of_context env)) in let env' = push_rel (name', None, a') env in let c1 = coerce_unify env' (lift 1 a') (lift 1 a) in (* env, x : a' |- c1 : lift 1 a' > lift 1 a *) let coec1 = app_opt env' evdref c1 (mkRel 1) in (* env, x : a' |- c1[x] : lift 1 a *) let c2 = coerce_unify env' (subst1 coec1 (liftn 1 2 b)) b' in (* env, x : a' |- c2 : b[c1[x]/x]] > b' *) (match c1, c2 with | None, None -> None | _, _ -> Some (fun f -> mkLambda (name', a', app_opt env' evdref c2 (mkApp (lift 1 f, [| coec1 |]))))) | App (c, l), App (c', l') -> (match kind_of_term c, kind_of_term c' with Ind (i, u), Ind (i', u') -> (* Inductive types *) let len = Array.length l in let sigT = delayed_force sigT_typ in let prod = delayed_force prod_typ in (* Sigma types *) if Int.equal len (Array.length l') && Int.equal len 2 && eq_ind i i' && (eq_ind i (destIndRef sigT) || eq_ind i (destIndRef prod)) then if eq_ind i (destIndRef sigT) then begin let (a, pb), (a', pb') = pair_of_array l, pair_of_array l' in let c1 = coerce_unify env a a' in let remove_head a c = match kind_of_term c with | Lambda (n, t, t') -> c, t' | Evar (k, args) -> let (evs, t) = Evarutil.define_evar_as_lambda env !evdref (k,args) in evdref := evs; let (n, dom, rng) = destLambda t in let dom = whd_evar !evdref dom in if isEvar dom then let (domk, args) = destEvar dom in evdref := define domk a !evdref; else (); t, rng | _ -> raise NoSubtacCoercion in let (pb, b), (pb', b') = remove_head a pb, remove_head a' pb' in let env' = push_rel (Name Namegen.default_dependent_ident, None, a) env in let c2 = coerce_unify env' b b' in match c1, c2 with | None, None -> None | _, _ -> Some (fun x -> let x, y = app_opt env' evdref c1 (papp evdref sigT_proj1 [| a; pb; x |]), app_opt env' evdref c2 (papp evdref sigT_proj2 [| a; pb; x |]) in papp evdref sigT_intro [| a'; pb'; x ; y |]) end else begin let (a, b), (a', b') = pair_of_array l, pair_of_array l' in let c1 = coerce_unify env a a' in let c2 = coerce_unify env b b' in match c1, c2 with None, None -> None | _, _ -> Some (fun x -> let x, y = app_opt env evdref c1 (papp evdref prod_proj1 [| a; b; x |]), app_opt env evdref c2 (papp evdref prod_proj2 [| a; b; x |]) in papp evdref prod_intro [| a'; b'; x ; y |]) end else if eq_ind i i' && Int.equal len (Array.length l') then let evm = !evdref in (try subco () with NoSubtacCoercion -> let typ = Typing.unsafe_type_of env evm c in let typ' = Typing.unsafe_type_of env evm c' in coerce_application typ typ' c c' l l') else subco () | x, y when Constr.equal c c' -> if Int.equal (Array.length l) (Array.length l') then let evm = !evdref in let lam_type = Typing.unsafe_type_of env evm c in let lam_type' = Typing.unsafe_type_of env evm c' in coerce_application lam_type lam_type' c c' l l' else subco () | _ -> subco ()) | _, _ -> subco () and subset_coerce env evdref x y = match disc_subset x with Some (u, p) -> let c = coerce_unify env u y in let f x = app_opt env evdref c (papp evdref sig_proj1 [| u; p; x |]) in Some f | None -> match disc_subset y with Some (u, p) -> let c = coerce_unify env x u in Some (fun x -> let cx = app_opt env evdref c x in let evar = make_existential loc env evdref (mkApp (p, [| cx |])) in (papp evdref sig_intro [| u; p; cx; evar |])) | None -> raise NoSubtacCoercion in coerce_unify env x y let app_coercion env evdref coercion v = match coercion with | None -> v | Some f -> let v' = Typing.solve_evars env evdref (f v) in whd_betaiota !evdref v' let coerce_itf loc env evd v t c1 = let evdref = ref evd in let coercion = coerce loc env evdref t c1 in let t = Option.map (app_coercion env evdref coercion) v in !evdref, t let saturate_evd env evd = Typeclasses.resolve_typeclasses ~filter:Typeclasses.no_goals ~split:true ~fail:false env evd (* Apply coercion path from p to hj; raise NoCoercion if not applicable *) let apply_coercion env sigma p hj typ_cl = try let j,t,evd = List.fold_left (fun (ja,typ_cl,sigma) i -> let ((fv,isid,isproj),ctx) = coercion_value i in let sigma = Evd.merge_context_set Evd.univ_flexible sigma ctx in let argl = (class_args_of env sigma typ_cl)@[ja.uj_val] in let sigma, jres = apply_coercion_args env sigma true isproj argl fv in (if isid then { uj_val = ja.uj_val; uj_type = jres.uj_type } else jres), jres.uj_type,sigma) (hj,typ_cl,sigma) p in evd, j with NoCoercion as e -> raise e | e when Errors.noncritical e -> anomaly (Pp.str "apply_coercion") (* Try to coerce to a funclass; raise NoCoercion if not possible *) let inh_app_fun_core env evd j = let t = whd_betadeltaiota env evd j.uj_type in match kind_of_term t with | Prod (_,_,_) -> (evd,j) | Evar ev -> let (evd',t) = define_evar_as_product evd ev in (evd',{ uj_val = j.uj_val; uj_type = t }) | _ -> try let t,p = lookup_path_to_fun_from env evd j.uj_type in apply_coercion env evd p j t with Not_found | NoCoercion -> if Flags.is_program_mode () then try let evdref = ref evd in let coercef, t = mu env evdref t in let res = { uj_val = app_opt env evdref coercef j.uj_val; uj_type = t } in (!evdref, res) with NoSubtacCoercion | NoCoercion -> (evd,j) else raise NoCoercion (* Try to coerce to a funclass; returns [j] if no coercion is applicable *) let inh_app_fun resolve_tc env evd j = try inh_app_fun_core env evd j with | NoCoercion when not resolve_tc || not !use_typeclasses_for_conversion -> (evd, j) | NoCoercion -> try inh_app_fun_core env (saturate_evd env evd) j with NoCoercion -> (evd, j) let inh_tosort_force loc env evd j = try let t,p = lookup_path_to_sort_from env evd j.uj_type in let evd,j1 = apply_coercion env evd p j t in let j2 = on_judgment_type (whd_evar evd) j1 in (evd,type_judgment env j2) with Not_found | NoCoercion -> error_not_a_type_loc loc env evd j let inh_coerce_to_sort loc env evd j = let typ = whd_betadeltaiota env evd j.uj_type in match kind_of_term typ with | Sort s -> (evd,{ utj_val = j.uj_val; utj_type = s }) | Evar ev when not (is_defined evd (fst ev)) -> let (evd',s) = define_evar_as_sort env evd ev in (evd',{ utj_val = j.uj_val; utj_type = s }) | _ -> inh_tosort_force loc env evd j let inh_coerce_to_base loc env evd j = if Flags.is_program_mode () then let evdref = ref evd in let ct, typ' = mu env evdref j.uj_type in let res = { uj_val = app_coercion env evdref ct j.uj_val; uj_type = typ' } in !evdref, res else (evd, j) let inh_coerce_to_prod loc env evd t = if Flags.is_program_mode () then let evdref = ref evd in let _, typ' = mu env evdref t in !evdref, typ' else (evd, t) let inh_coerce_to_fail env evd rigidonly v t c1 = if rigidonly && not (Heads.is_rigid env c1 && Heads.is_rigid env t) then raise NoCoercion else let evd, v', t' = try let t2,t1,p = lookup_path_between env evd (t,c1) in match v with | Some v -> let evd,j = apply_coercion env evd p {uj_val = v; uj_type = t} t2 in evd, Some j.uj_val, j.uj_type | None -> evd, None, t with Not_found -> raise NoCoercion in try (the_conv_x_leq env t' c1 evd, v') with UnableToUnify _ -> raise NoCoercion let rec inh_conv_coerce_to_fail loc env evd rigidonly v t c1 = try (the_conv_x_leq env t c1 evd, v) with UnableToUnify (best_failed_evd,e) -> try inh_coerce_to_fail env evd rigidonly v t c1 with NoCoercion -> match kind_of_term (whd_betadeltaiota env evd t), kind_of_term (whd_betadeltaiota env evd c1) with | Prod (name,t1,t2), Prod (_,u1,u2) -> (* Conversion did not work, we may succeed with a coercion. *) (* We eta-expand (hence possibly modifying the original term!) *) (* and look for a coercion c:u1->t1 s.t. fun x:u1 => v' (c x)) *) (* has type forall (x:u1), u2 (with v' recursively obtained) *) (* Note: we retype the term because sort-polymorphism may have *) (* weaken its type *) let name = match name with | Anonymous -> Name Namegen.default_dependent_ident | _ -> name in let env1 = push_rel (name,None,u1) env in let (evd', v1) = inh_conv_coerce_to_fail loc env1 evd rigidonly (Some (mkRel 1)) (lift 1 u1) (lift 1 t1) in let v1 = Option.get v1 in let v2 = Option.map (fun v -> beta_applist (lift 1 v,[v1])) v in let t2 = match v2 with | None -> subst_term v1 t2 | Some v2 -> Retyping.get_type_of env1 evd' v2 in let (evd'',v2') = inh_conv_coerce_to_fail loc env1 evd' rigidonly v2 t2 u2 in (evd'', Option.map (fun v2' -> mkLambda (name, u1, v2')) v2') | _ -> raise (NoCoercionNoUnifier (best_failed_evd,e)) (* Look for cj' obtained from cj by inserting coercions, s.t. cj'.typ = t *) let inh_conv_coerce_to_gen resolve_tc rigidonly loc env evd cj t = let (evd', val') = try inh_conv_coerce_to_fail loc env evd rigidonly (Some cj.uj_val) cj.uj_type t with NoCoercionNoUnifier (best_failed_evd,e) -> try if Flags.is_program_mode () then coerce_itf loc env evd (Some cj.uj_val) cj.uj_type t else raise NoSubtacCoercion with | NoSubtacCoercion when not resolve_tc || not !use_typeclasses_for_conversion -> error_actual_type_loc loc env best_failed_evd cj t e | NoSubtacCoercion -> let evd' = saturate_evd env evd in try if evd' == evd then error_actual_type_loc loc env best_failed_evd cj t e else inh_conv_coerce_to_fail loc env evd' rigidonly (Some cj.uj_val) cj.uj_type t with NoCoercionNoUnifier (best_failed_evd,e) -> error_actual_type_loc loc env best_failed_evd cj t e in let val' = match val' with Some v -> v | None -> assert(false) in (evd',{ uj_val = val'; uj_type = t }) let inh_conv_coerce_to resolve_tc = inh_conv_coerce_to_gen resolve_tc false let inh_conv_coerce_rigid_to resolve_tc = inh_conv_coerce_to_gen resolve_tc true let inh_conv_coerces_to loc env evd t t' = try fst (inh_conv_coerce_to_fail loc env evd true None t t') with NoCoercion -> evd (* Maybe not enough information to unify *)