(************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) (* PatVar (dummy_loc,Anonymous)) (* Environment management *) let push_rels vars env = List.fold_right push_rel vars env let push_rel_defs = List.fold_right (fun (x,d,t) e -> push_rel (x,Some d,t) e) (* We have x1:t1...xn:tn,xi':ti,y1..yk |- c and re-generalize over xi:ti to get x1:t1...xn:tn,xi':ti,y1..yk |- c[xi:=xi'] *) let regeneralize_rel i k j = if j = i+k then k else if j < i+k then j else j let rec regeneralize_index i k t = match kind_of_term t with | Rel j when j = i+k -> mkRel (k+1) | Rel j when j < i+k -> t | Rel j when j > i+k -> t | _ -> map_constr_with_binders succ (regeneralize_index i) k t type alias_constr = | DepAlias | NonDepAlias let mkSpecialLetInJudge j (na,(deppat,nondeppat,d,t)) = { uj_val = (match d with | DepAlias -> mkLetIn (na,deppat,t,j.uj_val) | NonDepAlias -> if (not (dependent (mkRel 1) j.uj_type)) or (* A leaf: *) isRel deppat then (* The body of pat is not needed to type j - see *) (* insert_aliases - and both deppat and nondeppat have the *) (* same type, then one can freely substitute one by the other *) subst1 nondeppat j.uj_val else (* The body of pat is not needed to type j but its value *) (* is dependent in the type of j; our choice is to *) (* enforce this dependency *) mkLetIn (na,deppat,t,j.uj_val)); uj_type = subst1 deppat j.uj_type } (**********************************************************************) (* Structures used in compiling pattern-matching *) type 'a lifted = int * 'a let insert_lifted a = (0,a);; (* The pattern variables for [it] are in [user_ids] and the variables to avoid are in [other_ids]. *) type rhs = { rhs_env : env; other_ids : identifier list; user_ids : identifier list; rhs_lift : int; it : rawconstr } type equation = { dependencies : constr lifted list; patterns : cases_pattern list; rhs : rhs; alias_stack : name list; eqn_loc : loc; used : bool ref; tag : pattern_source } type matrix = equation list (* 1st argument of IsInd is the original ind before extracting the summary *) type tomatch_type = | IsInd of types * inductive_type | NotInd of constr option * types type tomatch_status = | Pushed of ((constr * tomatch_type) * int list) | Alias of (constr * constr * alias_constr * constr) | Abstract of rel_declaration type tomatch_stack = tomatch_status list (* The type [predicate_signature] types the terms to match and the rhs: - [PrLetIn (names,dep,pred)] types a pushed term ([Pushed]), if dep<>Anonymous, the term is dependent, let n=|names|, if n<>0 then the type of the pushed term is necessarily an inductive with n real arguments. Otherwise, it may be non inductive, or inductive without real arguments, or inductive originating from a subterm in which case real args are not dependent; it accounts for n+1 binders if dep or n binders if not dep - [PrProd] types abstracted term ([Abstract]); it accounts for one binder - [PrCcl] types the right-hand-side - Aliases [Alias] have no trace in [predicate_signature] *) type predicate_signature = | PrLetIn of (name list * name) * predicate_signature | PrProd of predicate_signature | PrCcl of constr (* We keep a constr for aliases and a cases_pattern for error message *) type alias_builder = | AliasLeaf | AliasConstructor of constructor type pattern_history = | Top | MakeAlias of alias_builder * pattern_continuation and pattern_continuation = | Continuation of int * cases_pattern list * pattern_history | Result of cases_pattern list let start_history n = Continuation (n, [], Top) let initial_history = function Continuation (_,[],Top) -> true | _ -> false let feed_history arg = function | Continuation (n, l, h) when n>=1 -> Continuation (n-1, arg :: l, h) | Continuation (n, _, _) -> anomaly ("Bad number of expected remaining patterns: "^(string_of_int n)) | Result _ -> anomaly "Exhausted pattern history" (* This is for non exhaustive error message *) let rec rawpattern_of_partial_history args2 = function | Continuation (n, args1, h) -> let args3 = make_anonymous_patvars (n - (List.length args2)) in build_rawpattern (List.rev_append args1 (args2@args3)) h | Result pl -> pl and build_rawpattern args = function | Top -> args | MakeAlias (AliasLeaf, rh) -> assert (args = []); rawpattern_of_partial_history [PatVar (dummy_loc, Anonymous)] rh | MakeAlias (AliasConstructor pci, rh) -> rawpattern_of_partial_history [PatCstr (dummy_loc, pci, args, Anonymous)] rh let complete_history = rawpattern_of_partial_history [] (* This is to build glued pattern-matching history and alias bodies *) let rec simplify_history = function | Continuation (0, l, Top) -> Result (List.rev l) | Continuation (0, l, MakeAlias (f, rh)) -> let pargs = List.rev l in let pat = match f with | AliasConstructor pci -> PatCstr (dummy_loc,pci,pargs,Anonymous) | AliasLeaf -> assert (l = []); PatVar (dummy_loc, Anonymous) in feed_history pat rh | h -> h (* Builds a continuation expecting [n] arguments and building [ci] applied to this [n] arguments *) let push_history_pattern n current cont = Continuation (n, [], MakeAlias (current, cont)) (* A pattern-matching problem has the following form: env, isevars |- Cases tomatch of mat end where tomatch is some sequence of "instructions" (t1 ... tn) and mat is some matrix (p11 ... p1n -> rhs1) ( ... ) (pm1 ... pmn -> rhsm) Terms to match: there are 3 kinds of instructions - "Pushed" terms to match are typed in [env]; these are usually just Rel(n) except for the initial terms given by user and typed in [env] - "Abstract" instructions means an abstraction has to be inserted in the current branch to build (this means a pattern has been detected dependent in another one and generalisation is necessary to ensure well-typing) - "Alias" instructions means an alias has to be inserted (this alias is usually removed at the end, except when its type is not the same as the type of the matched term from which it comes - typically because the inductive types are "real" parameters) Right-hand-sides: They consist of a raw term to type in an environment specific to the clause they belong to: the names of declarations are those of the variables present in the patterns. Therefore, they come with their own [rhs_env] (actually it is the same as [env] except for the names of variables). *) type pattern_matching_problem = { env : env; isevars : Evd.evar_defs ref; pred : predicate_signature option; tomatch : tomatch_stack; history : pattern_continuation; mat : matrix; caseloc : loc; typing_function: type_constraint -> env -> rawconstr -> unsafe_judgment } (*--------------------------------------------------------------------------* * A few functions to infer the inductive type from the patterns instead of * * checking that the patterns correspond to the ind. type of the * * destructurated object. Allows type inference of examples like * * match n with O => true | _ => false end * * match x in I with C => true | _ => false end * *--------------------------------------------------------------------------*) (* Computing the inductive type from the matrix of patterns *) (* We use the "in I" clause to coerce the terms to match and otherwise use the constructor to know in which type is the matching problem Note that insertion of coercions inside nested patterns is done each time the matrix is expanded *) let rec find_row_ind = function [] -> None | PatVar _ :: l -> find_row_ind l | PatCstr(loc,c,_,_) :: _ -> Some (loc,c) let inductive_template isevars env tmloc ind = let (mib,mip) = Inductive.lookup_mind_specif env ind in let (ntys,_) = splay_prod env (Evd.evars_of !isevars) mip.mind_nf_arity in let hole_source = match tmloc with | Some loc -> fun i -> (loc, Evd.TomatchTypeParameter (ind,i)) | None -> fun _ -> (dummy_loc, Evd.InternalHole) in let (evarl,_) = List.fold_right (fun (na,ty) (evl,n) -> (e_new_evar isevars env ~src:(hole_source n) (substl evl ty))::evl,n+1) ntys ([],1) in applist (mkInd ind,List.rev evarl) let inh_coerce_to_ind isevars env ty tyi = let expected_typ = inductive_template isevars env None tyi in (* devrait être indifférent d'exiger leq ou pas puisque pour un inductif cela doit être égal *) let _ = e_cumul env isevars expected_typ ty in () let unify_tomatch_with_patterns isevars env typ tm = match find_row_ind tm with | None -> NotInd (None,typ) | Some (_,(ind,_)) -> inh_coerce_to_ind isevars env typ ind; try IsInd (typ,find_rectype env (Evd.evars_of !isevars) typ) with Not_found -> NotInd (None,typ) let find_tomatch_tycon isevars env loc = function (* Try first if some 'in I ...' is present and can be used as a constraint *) | Some (_,ind,_),_ (* Otherwise try to get constraints from (the 1st) constructor in clauses *) | None, Some (_,(ind,_)) -> Some (inductive_template isevars env loc ind) | None, None -> empty_tycon let coerce_row typing_fun isevars env cstropt (tomatch,(_,indopt)) = let loc = Some (loc_of_rawconstr tomatch) in let tycon = find_tomatch_tycon isevars env loc (indopt,cstropt) in let j = typing_fun tycon env tomatch in let typ = nf_evar (Evd.evars_of !isevars) j.uj_type in let t = try IsInd (typ,find_rectype env (Evd.evars_of !isevars) typ) with Not_found -> NotInd (None,typ) in (j.uj_val,t) let coerce_to_indtype typing_fun isevars env matx tomatchl = let pats = List.map (fun r -> r.patterns) matx in let matx' = match matrix_transpose pats with | [] -> List.map (fun _ -> None) tomatchl (* no patterns at all *) | m -> List.map find_row_ind m in List.map2 (coerce_row typing_fun isevars env) matx' tomatchl (************************************************************************) (* Utils *) let mkExistential env ?(src=(dummy_loc,Evd.InternalHole)) isevars = e_new_evar isevars env ~src:src (new_Type ()) let evd_comb2 f isevars x y = let (evd',y) = f !isevars x y in isevars := evd'; y let adjust_tomatch_to_pattern pb ((current,typ),deps) = (* Ideally, we could find a common inductive type to which both the term to match and the patterns coerce *) (* In practice, we coerce the term to match if it is not already an inductive type and it is not dependent; moreover, we use only the first pattern type and forget about the others *) let typ = match typ with IsInd (t,_) -> t | NotInd (_,t) -> t in let typ = try IsInd (typ,find_rectype pb.env (Evd.evars_of !(pb.isevars)) typ) with Not_found -> NotInd (None,typ) in let tomatch = ((current,typ),deps) in match typ with | NotInd (None,typ) -> let tm1 = List.map (fun eqn -> List.hd eqn.patterns) pb.mat in (match find_row_ind tm1 with | None -> tomatch | Some (_,(ind,_)) -> let indt = inductive_template pb.isevars pb.env None ind in let current = if deps = [] & isEvar typ then (* Don't insert coercions if dependent; only solve evars *) let _ = e_cumul pb.env pb.isevars indt typ in current else (evd_comb2 (Coercion.inh_conv_coerce_to dummy_loc pb.env) pb.isevars (make_judge current typ) indt).uj_val in let sigma = Evd.evars_of !(pb.isevars) in let typ = IsInd (indt,find_rectype pb.env sigma indt) in ((current,typ),deps)) | _ -> tomatch (* extract some ind from [t], possibly coercing from constructors in [tm] *) let to_mutind env isevars tm c t = (* match c with | Some body -> *) NotInd (c,t) (* | None -> unify_tomatch_with_patterns isevars env t tm*) let type_of_tomatch = function | IsInd (t,_) -> t | NotInd (_,t) -> t let mkDeclTomatch na = function | IsInd (t,_) -> (na,None,t) | NotInd (c,t) -> (na,c,t) let map_tomatch_type f = function | IsInd (t,ind) -> IsInd (f t,map_inductive_type f ind) | NotInd (c,t) -> NotInd (option_app f c, f t) let liftn_tomatch_type n depth = map_tomatch_type (liftn n depth) let lift_tomatch_type n = liftn_tomatch_type n 1 let lift_tomatch n ((current,typ),info) = ((lift n current,lift_tomatch_type n typ),info) (**********************************************************************) (* Utilities on patterns *) let current_pattern eqn = match eqn.patterns with | pat::_ -> pat | [] -> anomaly "Empty list of patterns" let alias_of_pat = function | PatVar (_,name) -> name | PatCstr(_,_,_,name) -> name let unalias_pat = function | PatVar (c,name) as p -> if name = Anonymous then p else PatVar (c,Anonymous) | PatCstr(a,b,c,name) as p -> if name = Anonymous then p else PatCstr (a,b,c,Anonymous) let remove_current_pattern eqn = match eqn.patterns with | pat::pats -> { eqn with patterns = pats; alias_stack = alias_of_pat pat :: eqn.alias_stack } | [] -> anomaly "Empty list of patterns" let prepend_pattern tms eqn = {eqn with patterns = tms@eqn.patterns } (**********************************************************************) (* Dealing with regular and default patterns *) let is_regular eqn = eqn.tag = RegularPat let lower_pattern_status = function | RegularPat -> DefaultPat 0 | DefaultPat n -> DefaultPat (n+1) let pattern_status pats = if array_exists ((=) RegularPat) pats then RegularPat else let min = Array.fold_right (fun pat n -> match pat with | DefaultPat i when i i | _ -> n) pats 0 in DefaultPat min (**********************************************************************) (* Well-formedness tests *) (* Partial check on patterns *) exception NotAdjustable let rec adjust_local_defs loc = function | (pat :: pats, (_,None,_) :: decls) -> pat :: adjust_local_defs loc (pats,decls) | (pats, (_,Some _,_) :: decls) -> PatVar (loc, Anonymous) :: adjust_local_defs loc (pats,decls) | [], [] -> [] | _ -> raise NotAdjustable let check_and_adjust_constructor ind cstrs = function | PatVar _ as pat -> pat | PatCstr (loc,((_,i) as cstr),args,alias) as pat -> (* Check it is constructor of the right type *) let ind' = inductive_of_constructor cstr in if ind' = ind then (* Check the constructor has the right number of args *) let ci = cstrs.(i-1) in let nb_args_constr = ci.cs_nargs in if List.length args = nb_args_constr then pat else try let args' = adjust_local_defs loc (args, List.rev ci.cs_args) in PatCstr (loc, cstr, args', alias) with NotAdjustable -> error_wrong_numarg_constructor_loc loc (Global.env()) cstr nb_args_constr else (* Try to insert a coercion *) try Coercion.inh_pattern_coerce_to loc pat ind' ind with Not_found -> error_bad_constructor_loc loc cstr ind let check_all_variables typ mat = List.iter (fun eqn -> match current_pattern eqn with | PatVar (_,id) -> () | PatCstr (loc,cstr_sp,_,_) -> error_bad_pattern_loc loc cstr_sp typ) mat let check_unused_pattern env eqn = if not !(eqn.used) then raise_pattern_matching_error (eqn.eqn_loc, env, UnusedClause eqn.patterns) let set_used_pattern eqn = eqn.used := true let extract_rhs pb = match pb.mat with | [] -> errorlabstrm "build_leaf" (mssg_may_need_inversion()) | eqn::_ -> set_used_pattern eqn; eqn.tag, eqn.rhs (**********************************************************************) (* Functions to deal with matrix factorization *) let occur_in_rhs na rhs = match na with | Anonymous -> false | Name id -> occur_rawconstr id rhs.it let is_dep_patt eqn = function | PatVar (_,name) -> occur_in_rhs name eqn.rhs | PatCstr _ -> true let dependencies_in_rhs nargs eqns = if eqns = [] then list_tabulate (fun _ -> false) nargs (* Only "_" patts *) else let deps = List.map (fun (tms,eqn) -> List.map (is_dep_patt eqn) tms) eqns in let columns = matrix_transpose deps in List.map (List.exists ((=) true)) columns let dependent_decl a = function | (na,None,t) -> dependent a t | (na,Some c,t) -> dependent a t || dependent a c (* Computing the matrix of dependencies *) (* We are in context d1...dn |- and [find_dependencies k 1 nextlist] computes for declaration [k+1] in which of declarations in [nextlist] (which corresponds to d(k+2)...dn) it depends; declarations are expressed by index, e.g. in dependency list [n-2;1], [1] points to [dn] and [n-2] to [d3] *) let rec find_dependency_list k n = function | [] -> [] | (used,tdeps,d)::rest -> let deps = find_dependency_list k (n+1) rest in if used && dependent_decl (mkRel n) d then list_add_set (List.length rest + 1) (list_union deps tdeps) else deps let find_dependencies is_dep_or_cstr_in_rhs d (k,nextlist) = let deps = find_dependency_list k 1 nextlist in if is_dep_or_cstr_in_rhs || deps <> [] then (k-1,(true ,deps,d)::nextlist) else (k-1,(false,[] ,d)::nextlist) let find_dependencies_signature deps_in_rhs typs = let k = List.length deps_in_rhs in let _,l = List.fold_right2 find_dependencies deps_in_rhs typs (k,[]) in List.map (fun (_,deps,_) -> deps) l (******) (* A Pushed term to match has just been substituted by some constructor t = (ci x1...xn) and the terms x1 ... xn have been added to match - all terms to match and to push (dependent on t by definition) must have (Rel depth) substituted by t and Rel's>depth lifted by n - all pushed terms to match (non dependent on t by definition) must be lifted by n We start with depth=1 *) let regeneralize_index_tomatch n = let rec genrec depth = function | [] -> [] | Pushed ((c,tm),l)::rest -> let c = regeneralize_index n depth c in let tm = map_tomatch_type (regeneralize_index n depth) tm in let l = List.map (regeneralize_rel n depth) l in Pushed ((c,tm),l)::(genrec depth rest) | Alias (c1,c2,d,t)::rest -> Alias (regeneralize_index n depth c1,c2,d,t)::(genrec depth rest) | Abstract d::rest -> Abstract (map_rel_declaration (regeneralize_index n depth) d) ::(genrec (depth+1) rest) in genrec 0 let rec replace_term n c k t = if t = mkRel (n+k) then lift k c else map_constr_with_binders succ (replace_term n c) k t let replace_tomatch n c = let rec replrec depth = function | [] -> [] | Pushed ((b,tm),l)::rest -> let b = replace_term n c depth b in let tm = map_tomatch_type (replace_term n c depth) tm in List.iter (fun i -> if i=n+depth then anomaly "replace_tomatch") l; Pushed ((b,tm),l)::(replrec depth rest) | Alias (c1,c2,d,t)::rest -> Alias (replace_term n c depth c1,c2,d,t)::(replrec depth rest) | Abstract d::rest -> Abstract (map_rel_declaration (replace_term n c depth) d) ::(replrec (depth+1) rest) in replrec 0 let liftn_rel_declaration n k = map_rel_declaration (liftn n k) let substnl_rel_declaration sigma k = map_rel_declaration (substnl sigma k) let rec liftn_tomatch_stack n depth = function | [] -> [] | Pushed ((c,tm),l)::rest -> let c = liftn n depth c in let tm = liftn_tomatch_type n depth tm in let l = List.map (fun i -> if i Alias (liftn n depth c1,liftn n depth c2,d,liftn n depth t) ::(liftn_tomatch_stack n depth rest) | Abstract d::rest -> Abstract (map_rel_declaration (liftn n depth) d) ::(liftn_tomatch_stack n (depth+1) rest) let lift_tomatch_stack n = liftn_tomatch_stack n 1 (* if [current] has type [I(p1...pn u1...um)] and we consider the case of constructor [ci] of type [I(p1...pn u'1...u'm)], then the default variable [name] is expected to have which type? Rem: [current] is [(Rel i)] except perhaps for initial terms to match *) (************************************************************************) (* Some heuristics to get names for variables pushed in pb environment *) (* Typical requirement: [match y with (S (S x)) => x | x => x end] should be compiled into [match y with O => y | (S n) => match n with O => y | (S x) => x end end] and [match y with (S (S n)) => n | n => n end] into [match y with O => y | (S n0) => match n0 with O => y | (S n) => n end end] i.e. user names should be preserved and created names should not interfere with user names *) let merge_name get_name obj = function | Anonymous -> get_name obj | na -> na let merge_names get_name = List.map2 (merge_name get_name) let get_names env sign eqns = let names1 = list_tabulate (fun _ -> Anonymous) (List.length sign) in (* If any, we prefer names used in pats, from top to bottom *) let names2 = List.fold_right (fun (pats,eqn) names -> merge_names alias_of_pat pats names) eqns names1 in (* Otherwise, we take names from the parameters of the constructor but avoiding conflicts with user ids *) let allvars = List.fold_left (fun l (_,eqn) -> list_union l eqn.rhs.other_ids) [] eqns in let names4,_ = List.fold_left2 (fun (l,avoid) d na -> let na = merge_name (fun (na,_,t) -> Name (next_name_away (named_hd env t na) avoid)) d na in (na::l,(out_name na)::avoid)) ([],allvars) (List.rev sign) names2 in names4 (************************************************************************) (* Recovering names for variables pushed to the rhs' environment *) let recover_alias_names get_name = List.map2 (fun x (_,c,t) ->(get_name x,c,t)) let push_rels_eqn sign eqn = {eqn with rhs = {eqn.rhs with rhs_env = push_rels sign eqn.rhs.rhs_env} } let push_rels_eqn_with_names sign eqn = let pats = List.rev (list_firstn (List.length sign) eqn.patterns) in let sign = recover_alias_names alias_of_pat pats sign in push_rels_eqn sign eqn let build_aliases_context env sigma names allpats pats = (* pats is the list of bodies to push as an alias *) (* They all are defined in env and we turn them into a sign *) (* cuts in sign need to be done in allpats *) let rec insert env sign1 sign2 n newallpats oldallpats = function | (deppat,_,_,_)::pats, Anonymous::names when not (isRel deppat) -> (* Anonymous leaves must be considered named and treated in the *) (* next clause because they may occur in implicit arguments *) insert env sign1 sign2 n newallpats (List.map List.tl oldallpats) (pats,names) | (deppat,nondeppat,d,t)::pats, na::names -> let nondeppat = lift n nondeppat in let deppat = lift n deppat in let newallpats = List.map2 (fun l1 l2 -> List.hd l2::l1) newallpats oldallpats in let oldallpats = List.map List.tl oldallpats in let decl = (na,Some deppat,t) in let a = (deppat,nondeppat,d,t) in insert (push_rel decl env) (decl::sign1) ((na,a)::sign2) (n+1) newallpats oldallpats (pats,names) | [], [] -> newallpats, sign1, sign2, env | _ -> anomaly "Inconsistent alias and name lists" in let allpats = List.map (fun x -> [x]) allpats in insert env [] [] 0 (List.map (fun _ -> []) allpats) allpats (pats, names) let insert_aliases_eqn sign eqnnames alias_rest eqn = let thissign = List.map2 (fun na (_,c,t) -> (na,c,t)) eqnnames sign in { eqn with alias_stack = alias_rest; rhs = {eqn.rhs with rhs_env = push_rels thissign eqn.rhs.rhs_env } } let insert_aliases env sigma alias eqns = (* Là, y a une faiblesse, si un alias est utilisé dans un cas par *) (* défaut présent mais inutile, ce qui est le cas général, l'alias *) (* est introduit même s'il n'est pas utilisé dans les cas réguliers *) let eqnsnames = List.map (fun eqn -> List.hd eqn.alias_stack) eqns in let alias_rests = List.map (fun eqn -> List.tl eqn.alias_stack) eqns in (* names2 takes the meet of all needed aliases *) let names2 = List.fold_right (merge_name (fun x -> x)) eqnsnames Anonymous in (* Only needed aliases are kept by build_aliases_context *) let eqnsnames, sign1, sign2, env = build_aliases_context env sigma [names2] eqnsnames [alias] in let eqns = list_map3 (insert_aliases_eqn sign1) eqnsnames alias_rests eqns in sign2, env, eqns (**********************************************************************) (* Functions to deal with elimination predicate *) exception Occur let noccur_between_without_evar n m term = let rec occur_rec n c = match kind_of_term c with | Rel p -> if n<=p && p () | _ -> iter_constr_with_binders succ occur_rec n c in try occur_rec n term; true with Occur -> false (* Infering the predicate *) let prepare_unif_pb typ cs = let n = List.length (assums_of_rel_context cs.cs_args) in (* We may need to invert ci if its parameters occur in typ *) let typ' = if noccur_between_without_evar 1 n typ then lift (-n) typ else (* TODO4-1 *) error "Inference of annotation not yet implemented in this case" in let args = extended_rel_list (-n) cs.cs_args in let ci = applist (mkConstruct cs.cs_cstr, cs.cs_params@args) in (* This is the problem: finding P s.t. cs_args |- (P realargs ci) = typ' *) (Array.map (lift (-n)) cs.cs_concl_realargs, ci, typ') (* Infering the predicate *) (* The problem to solve is the following: We match Gamma |- t : I(u01..u0q) against the following constructors: Gamma, x11...x1p1 |- C1(x11..x1p1) : I(u11..u1q) ... Gamma, xn1...xnpn |- Cn(xn1..xnp1) : I(un1..unq) Assume the types in the branches are the following Gamma, x11...x1p1 |- branch1 : T1 ... Gamma, xn1...xnpn |- branchn : Tn Assume the type of the global case expression is Gamma |- T The predicate has the form phi = [y1..yq][z:I(y1..yq)]? and must satisfy the following n+1 equations: Gamma, x11...x1p1 |- (phi u11..u1q (C1 x11..x1p1)) = T1 ... Gamma, xn1...xnpn |- (phi un1..unq (Cn xn1..xnpn)) = Tn Gamma |- (phi u01..u0q t) = T Some hints: - Clearly, if xij occurs in Ti, then, a "match z with (Ci xi1..xipi) => ..." should be inserted somewhere in Ti. - If T is undefined, an easy solution is to insert a "match z with (Ci xi1..xipi) => ..." in front of each Ti - Otherwise, T1..Tn and T must be step by step unified, if some of them diverge, then try to replace the diverging subterm by one of y1..yq or z. - The main problem is what to do when an existential variables is encountered let prepare_unif_pb typ cs = let n = cs.cs_nargs in let _,p = decompose_prod_n n typ in let ci = build_dependent_constructor cs in (* This is the problem: finding P s.t. cs_args |- (P realargs ci) = p *) (n, cs.cs_concl_realargs, ci, p) let eq_operator_lift k (n,n') = function | OpRel p, OpRel p' when p > k & p' > k -> if p < k+n or p' < k+n' then false else p - n = p' - n' | op, op' -> op = op' let rec transpose_args n = if n=0 then [] else (Array.map (fun l -> List.hd l) lv):: (transpose_args (m-1) (Array.init (fun l -> List.tl l))) let shift_operator k = function OpLambda _ | OpProd _ -> k+1 | _ -> k let reloc_operator (k,n) = function OpRel p when p > k -> let rec unify_clauses k pv = let pv'= Array.map (fun (n,sign,_,p) -> n,splay_constr (whd_betaiotaevar (push_rels (List.rev sign) env) (Evd.evars_of isevars)) p) pv in let n1,op1 = let (n1,(op1,args1)) = pv'.(0) in n1,op1 in if Array.for_all (fun (ni,(opi,_)) -> eq_operator_lift k (n1,ni) (op1,opi)) pv' then let argvl = transpose_args (List.length args1) pv' in let k' = shift_operator k op1 in let argl = List.map (unify_clauses k') argvl in gather_constr (reloc_operator (k,n1) op1) argl *) let abstract_conclusion typ cs = let n = List.length (assums_of_rel_context cs.cs_args) in let (sign,p) = decompose_prod_n n typ in lam_it p sign let infer_predicate loc env isevars typs cstrs indf = (* Il faudra substituer les isevars a un certain moment *) if Array.length cstrs = 0 then (* "TODO4-3" *) error "Inference of annotation for empty inductive types not implemented" else (* Empiric normalization: p may depend in a irrelevant way on args of the*) (* cstr as in [c:{_:Alpha & Beta}] match c with (existS a b)=>(a,b) end *) let typs = Array.map (local_strong (whd_betaevar empty_env (Evd.evars_of !isevars))) typs in let eqns = array_map2 prepare_unif_pb typs cstrs in (* First strategy: no dependencies at all *) (* let (mis,_) = dest_ind_family indf in let (cclargs,_,typn) = eqns.(mis_nconstr mis -1) in *) let (sign,_) = get_arity env indf in let mtyp = if array_exists is_Type typs then (* Heuristic to avoid comparison between non-variables algebric univs*) new_Type () else mkExistential env ~src:(loc, Evd.CasesType) isevars in if array_for_all (fun (_,_,typ) -> e_cumul env isevars typ mtyp) eqns then (* Non dependent case -> turn it into a (dummy) dependent one *) let sign = (Anonymous,None,build_dependent_inductive env indf)::sign in let pred = it_mkLambda_or_LetIn (lift (List.length sign) mtyp) sign in (true,pred) (* true = dependent -- par défaut *) else (* let s = get_sort_of env (evars_of isevars) typs.(0) in let predpred = it_mkLambda_or_LetIn (mkSort s) sign in let caseinfo = make_default_case_info mis in let brs = array_map2 abstract_conclusion typs cstrs in let predbody = mkCase (caseinfo, (nf_betaiota predpred), mkRel 1, brs) in let pred = it_mkLambda_or_LetIn (lift (List.length sign) mtyp) sign in *) (* "TODO4-2" *) (* We skip parameters *) let cis = Array.map (fun cs -> applist (mkConstruct cs.cs_cstr, extended_rel_list 0 cs.cs_args)) cstrs in let ct = array_map2 (fun ci (_,_,t) -> (ci,t)) cis eqns in raise_pattern_matching_error (loc,env, CannotInferPredicate ct) (* (true,pred) *) (* Propagation of user-provided predicate through compilation steps *) let rec map_predicate f k = function | PrCcl ccl -> PrCcl (f k ccl) | PrProd pred -> PrProd (map_predicate f (k+1) pred) | PrLetIn ((names,dep as tm),pred) -> let k' = List.length names + (if dep<>Anonymous then 1 else 0) in PrLetIn (tm, map_predicate f (k+k') pred) let rec noccurn_predicate k = function | PrCcl ccl -> noccurn k ccl | PrProd pred -> noccurn_predicate (k+1) pred | PrLetIn ((names,dep),pred) -> let k' = List.length names + (if dep<>Anonymous then 1 else 0) in noccurn_predicate (k+k') pred let liftn_predicate n = map_predicate (liftn n) let lift_predicate n = liftn_predicate n 1 let regeneralize_index_predicate n = map_predicate (regeneralize_index n) 0 let substnl_predicate sigma = map_predicate (substnl sigma) (* This is parallel bindings *) let subst_predicate (args,copt) pred = let sigma = match copt with | None -> List.rev args | Some c -> c::(List.rev args) in substnl_predicate sigma 0 pred let specialize_predicate_var (cur,typ) = function | PrProd _ | PrCcl _ -> anomaly "specialize_predicate_var: a pattern-variable must be pushed" | PrLetIn (([],dep),pred) -> subst_predicate ([],if dep<>Anonymous then Some cur else None) pred | PrLetIn ((_,dep),pred) -> (match typ with | IsInd (_,IndType (_,realargs)) -> subst_predicate (realargs,if dep<>Anonymous then Some cur else None) pred | _ -> anomaly "specialize_predicate_var") let ungeneralize_predicate = function | PrLetIn _ | PrCcl _ -> anomaly "ungeneralize_predicate: expects a product" | PrProd pred -> pred (*****************************************************************************) (* We have pred = [X:=realargs;x:=c]P typed in Gamma1, x:I(realargs), Gamma2 *) (* and we want to abstract P over y:t(x) typed in the same context to get *) (* *) (* pred' = [X:=realargs;x':=c](y':t(x'))P[y:=y'] *) (* *) (* We first need to lift t(x) s.t. it is typed in Gamma, X:=rargs, x' *) (* then we have to replace x by x' in t(x) and y by y' in P *) (*****************************************************************************) let generalize_predicate c ny d = function | PrLetIn ((names,dep as tm),pred) -> if dep=Anonymous then anomaly "Undetected dependency"; let p = List.length names + 1 in let pred = lift_predicate 1 pred in let pred = regeneralize_index_predicate (ny+p+1) pred in PrLetIn (tm, PrProd pred) | PrProd _ | PrCcl _ -> anomaly "generalize_predicate: expects a non trivial pattern" let rec extract_predicate l = function | pred, Alias (deppat,nondeppat,_,_)::tms -> let tms' = match kind_of_term nondeppat with | Rel i -> replace_tomatch i deppat tms | _ -> (* initial terms are not dependent *) tms in extract_predicate l (pred,tms') | PrProd pred, Abstract d'::tms -> let d' = map_rel_declaration (lift (List.length l)) d' in substl l (mkProd_or_LetIn d' (extract_predicate [] (pred,tms))) | PrLetIn (([],dep),pred), Pushed ((cur,_),_)::tms -> extract_predicate (if dep<>Anonymous then cur::l else l) (pred,tms) | PrLetIn ((_,dep),pred), Pushed ((cur,IsInd (_,(IndType(_,realargs)))),_)::tms -> let l = List.rev realargs@l in extract_predicate (if dep<>Anonymous then cur::l else l) (pred,tms) | PrCcl ccl, [] -> substl l ccl | _ -> anomaly"extract_predicate: predicate inconsistent with terms to match" let abstract_predicate env sigma indf cur tms = function | (PrProd _ | PrCcl _) -> anomaly "abstract_predicate: must be some LetIn" | PrLetIn ((names,dep),pred) -> let sign = make_arity_signature env true indf in (* n is the number of real args + 1 *) let n = List.length sign in let tms = lift_tomatch_stack n tms in let tms = match kind_of_term cur with | Rel i -> regeneralize_index_tomatch (i+n) tms | _ -> (* Initial case *) tms in (* Depending on whether the predicate is dependent or not, and has real args or not, we lift it to make room for [sign] *) (* Even if not intrinsically dep, we move the predicate into a dep one *) let sign,k = if names = [] & n <> 1 then (* Real args were not considered *) (if dep<>Anonymous then ((let (_,c,t) = List.hd sign in (dep,c,t)::List.tl sign),n-1) else (sign,n)) else (* Real args are OK *) (List.map2 (fun na (_,c,t) -> (na,c,t)) (dep::names) sign, if dep<>Anonymous then 0 else 1) in let pred = lift_predicate k pred in let pred = extract_predicate [] (pred,tms) in (true, it_mkLambda_or_LetIn_name env pred sign) let rec known_dependent = function | None -> false | Some (PrLetIn ((_,dep),_)) -> dep<>Anonymous | Some (PrCcl _) -> false | Some (PrProd _) -> anomaly "known_dependent: can only be used when patterns remain" (* [expand_arg] is used by [specialize_predicate] it replaces gamma, x1...xn, x1...xk |- pred by gamma, x1...xn, x1...xk-1 |- [X=realargs,xk=xk]pred (if dep) or by gamma, x1...xn, x1...xk-1 |- [X=realargs]pred (if not dep) *) let expand_arg n alreadydep (na,t) deps (k,pred) = (* current can occur in pred even if the original problem is not dependent *) let dep = if alreadydep<>Anonymous then alreadydep else if deps = [] && noccurn_predicate 1 pred then Anonymous else Name (id_of_string "x") in let pred = if dep<>Anonymous then pred else lift_predicate (-1) pred in (* There is no dependency in realargs for subpattern *) (k-1, PrLetIn (([],dep), pred)) (*****************************************************************************) (* pred = [X:=realargs;x:=c]P types the following problem: *) (* *) (* Gamma |- match Pushed(c:I(realargs)) rest with...end: pred *) (* *) (* where the branch with constructor Ci:(x1:T1)...(xn:Tn)->I(realargsi) *) (* is considered. Assume each Ti is some Ii(argsi). *) (* We let e=Ci(x1,...,xn) and replace pred by *) (* *) (* pred' = [X1:=rargs1,x1:=x1']...[Xn:=rargsn,xn:=xn'](P[X:=realargsi;x:=e]) *) (* *) (* s.t Gamma,x1'..xn' |- match Pushed(x1')..Pushed(xn') rest with..end :pred'*) (* *) (*****************************************************************************) let specialize_predicate tomatchs deps cs = function | (PrProd _ | PrCcl _) -> anomaly "specialize_predicate: a matched pattern must be pushed" | PrLetIn ((names,isdep),pred) -> (* Assume some gamma st: gamma, (X,x:=realargs,copt) |- pred *) let nrealargs = List.length names in let k = nrealargs + (if isdep<>Anonymous then 1 else 0) in (* We adjust pred st: gamma, x1..xn, (X,x:=realargs,copt) |- pred' *) let n = cs.cs_nargs in let pred' = liftn_predicate n (k+1) pred in let argsi = if nrealargs <> 0 then Array.to_list cs.cs_concl_realargs else [] in let copti = if isdep<>Anonymous then Some (build_dependent_constructor cs) else None in (* The substituends argsi, copti are all defined in gamma, x1...xn *) (* We need _parallel_ bindings to get gamma, x1...xn |- pred'' *) let pred'' = subst_predicate (argsi, copti) pred' in (* We adjust pred st: gamma, x1..xn, x1..xn |- pred'' *) let pred''' = liftn_predicate n (n+1) pred'' in (* We finally get gamma,x1..xn |- [X1,x1:=R1,x1]..[Xn,xn:=Rn,xn]pred'''*) snd (List.fold_right2 (expand_arg n isdep) tomatchs deps (n,pred''')) let find_predicate loc env isevars p typs cstrs current (IndType (indf,realargs)) tms = let (dep,pred) = match p with | Some p -> abstract_predicate env (Evd.evars_of !isevars) indf current tms p | None -> infer_predicate loc env isevars typs cstrs indf in let typ = whd_beta (applist (pred, realargs)) in if dep then (pred, whd_beta (applist (typ, [current])), new_Type ()) else (pred, typ, new_Type ()) (************************************************************************) (* Sorting equations by constructor *) type inversion_problem = (* the discriminating arg in some Ind and its order in Ind *) | Incompatible of int * (int * int) | Constraints of (int * constr) list let solve_constraints constr_info indt = (* TODO *) Constraints [] let rec irrefutable env = function | PatVar (_,name) -> true | PatCstr (_,cstr,args,_) -> let ind = inductive_of_constructor cstr in let (_,mip) = Inductive.lookup_mind_specif env ind in let one_constr = Array.length mip.mind_user_lc = 1 in one_constr & List.for_all (irrefutable env) args let first_clause_irrefutable env = function | eqn::mat -> List.for_all (irrefutable env) eqn.patterns | _ -> false let group_equations pb mind current cstrs mat = let mat = if first_clause_irrefutable pb.env mat then [List.hd mat] else mat in let brs = Array.create (Array.length cstrs) [] in let only_default = ref true in let _ = List.fold_right (* To be sure it's from bottom to top *) (fun eqn () -> let rest = remove_current_pattern eqn in let pat = current_pattern eqn in match check_and_adjust_constructor mind cstrs pat with | PatVar (_,name) -> (* This is a default clause that we expand *) for i=1 to Array.length cstrs do let args = make_anonymous_patvars cstrs.(i-1).cs_nargs in let rest = {rest with tag = lower_pattern_status rest.tag} in brs.(i-1) <- (args, rest) :: brs.(i-1) done | PatCstr (loc,((_,i)),args,_) -> (* This is a regular clause *) only_default := false; brs.(i-1) <- (args,rest) :: brs.(i-1)) mat () in (brs,!only_default) (************************************************************************) (* Here starts the pattern-matching compilation algorithm *) (* Abstracting over dependent subterms to match *) let rec generalize_problem pb current = function | [] -> pb | i::l -> let d = map_rel_declaration (lift i) (Environ.lookup_rel i pb.env) in let pb' = generalize_problem pb current l in let tomatch = lift_tomatch_stack 1 pb'.tomatch in let tomatch = regeneralize_index_tomatch (i+1) tomatch in { pb with tomatch = Abstract d :: tomatch; pred = option_app (generalize_predicate current i d) pb'.pred } (* No more patterns: typing the right-hand-side of equations *) let build_leaf pb = let tag, rhs = extract_rhs pb in let tycon = match pb.pred with | None -> empty_tycon | Some (PrCcl typ) -> mk_tycon typ | Some _ -> anomaly "not all parameters of pred have been consumed" in tag, pb.typing_function tycon rhs.rhs_env rhs.it (* Building the sub-problem when all patterns are variables *) let shift_problem (current,t) pb = {pb with tomatch = Alias (current,current,NonDepAlias,type_of_tomatch t)::pb.tomatch; pred = option_app (specialize_predicate_var (current,t)) pb.pred; history = push_history_pattern 0 AliasLeaf pb.history; mat = List.map remove_current_pattern pb.mat } (* Building the sub-pattern-matching problem for a given branch *) let build_branch current deps pb eqns const_info = (* We remember that we descend through a constructor *) let alias_type = if Array.length const_info.cs_concl_realargs = 0 & not (known_dependent pb.pred) & deps = [] then NonDepAlias else DepAlias in let history = push_history_pattern const_info.cs_nargs (AliasConstructor const_info.cs_cstr) pb.history in (* We find matching clauses *) let cs_args = (*assums_of_rel_context*) const_info.cs_args in let names = get_names pb.env cs_args eqns in let submat = List.map (fun (tms,eqn) -> prepend_pattern tms eqn) eqns in if submat = [] then raise_pattern_matching_error (dummy_loc, pb.env, NonExhaustive (complete_history history)); let typs = List.map2 (fun (_,c,t) na -> (na,c,t)) cs_args names in let _,typs',_ = List.fold_right (fun (na,c,t as d) (env,typs,tms) -> let tm1 = List.map List.hd tms in let tms = List.map List.tl tms in (push_rel d env, (na,to_mutind env pb.isevars tm1 c t)::typs,tms)) typs (pb.env,[],List.map fst eqns) in let dep_sign = find_dependencies_signature (dependencies_in_rhs const_info.cs_nargs eqns) (List.rev typs) in (* The dependent term to subst in the types of the remaining UnPushed terms is relative to the current context enriched by topushs *) let ci = build_dependent_constructor const_info in (* We replace [(mkRel 1)] by its expansion [ci] *) (* and context "Gamma = Gamma1, current, Gamma2" by "Gamma;typs;curalias" *) (* This is done in two steps : first from "Gamma |- tms" *) (* into "Gamma; typs; curalias |- tms" *) let tomatch = lift_tomatch_stack const_info.cs_nargs pb.tomatch in let currents = list_map2_i (fun i (na,t) deps -> Pushed ((mkRel i, lift_tomatch_type i t), deps)) 1 typs' (List.rev dep_sign) in let sign = List.map (fun (na,t) -> mkDeclTomatch na t) typs' in let ind = appvect ( applist (mkInd (inductive_of_constructor const_info.cs_cstr), List.map (lift const_info.cs_nargs) const_info.cs_params), const_info.cs_concl_realargs) in let cur_alias = lift (List.length sign) current in let currents = Alias (ci,cur_alias,alias_type,ind) :: currents in sign, { pb with env = push_rels sign pb.env; tomatch = List.rev_append currents tomatch; pred = option_app (specialize_predicate (List.rev typs') dep_sign const_info) pb.pred; history = history; mat = List.map (push_rels_eqn_with_names sign) submat } (********************************************************************** INVARIANT: pb = { env, subst, tomatch, mat, ...} tomatch = list of Pushed (c:T) or Abstract (na:T) or Alias (c:T) "Pushed" terms and types are relative to env "Abstract" types are relative to env enriched by the previous terms to match Concretely, each term "c" or type "T" comes with a delayed lift index, but it works as if the lifting were effective. *) (**********************************************************************) (* Main compiling descent *) let rec compile pb = match pb.tomatch with | (Pushed cur)::rest -> match_current { pb with tomatch = rest } cur | (Alias x)::rest -> compile_alias pb x rest | (Abstract d)::rest -> compile_generalization pb d rest | [] -> build_leaf pb and match_current pb tomatch = let ((current,typ as ct),deps) = adjust_tomatch_to_pattern pb tomatch in match typ with | NotInd (_,typ) -> check_all_variables typ pb.mat; compile (shift_problem ct pb) | IsInd (_,(IndType(indf,realargs) as indt)) -> let mind,_ = dest_ind_family indf in let cstrs = get_constructors pb.env indf in let eqns,onlydflt = group_equations pb mind current cstrs pb.mat in if (Array.length cstrs <> 0 or pb.mat <> []) & onlydflt then compile (shift_problem ct pb) else let _constraints = Array.map (solve_constraints indt) cstrs in (* We generalize over terms depending on current term to match *) let pb = generalize_problem pb current deps in (* We compile branches *) let brs = array_map2 (compile_branch current deps pb) eqns cstrs in (* We build the (elementary) case analysis *) let tags = Array.map (fun (t,_,_) -> t) brs in let brvals = Array.map (fun (_,v,_) -> v) brs in let brtyps = Array.map (fun (_,_,t) -> t) brs in let (pred,typ,s) = find_predicate pb.caseloc pb.env pb.isevars pb.pred brtyps cstrs current indt pb.tomatch in let ci = make_case_info pb.env mind RegularStyle tags in let case = mkCase (ci,nf_betaiota pred,current,brvals) in let inst = List.map mkRel deps in pattern_status tags, { uj_val = applist (case, inst); uj_type = substl inst typ } and compile_branch current deps pb eqn cstr = let sign, pb = build_branch current deps pb eqn cstr in let tag, j = compile pb in (tag, it_mkLambda_or_LetIn j.uj_val sign, j.uj_type) and compile_generalization pb d rest = let pb = { pb with env = push_rel d pb.env; tomatch = rest; pred = option_app ungeneralize_predicate pb.pred; mat = List.map (push_rels_eqn [d]) pb.mat } in let patstat,j = compile pb in patstat, { uj_val = mkLambda_or_LetIn d j.uj_val; uj_type = mkProd_or_LetIn d j.uj_type } and compile_alias pb (deppat,nondeppat,d,t) rest = let history = simplify_history pb.history in let sign, newenv, mat = insert_aliases pb.env (Evd.evars_of !(pb.isevars)) (deppat,nondeppat,d,t) pb.mat in let n = List.length sign in (* We had Gamma1; x:current; Gamma2 |- tomatch(x) and we rebind x to get *) (* Gamma1; x:current; Gamma2; typs; x':=curalias |- tomatch(x') *) let tomatch = lift_tomatch_stack n rest in let tomatch = match kind_of_term nondeppat with | Rel i -> if n = 1 then regeneralize_index_tomatch (i+n) tomatch else replace_tomatch i deppat tomatch | _ -> (* initial terms are not dependent *) tomatch in let pb = {pb with env = newenv; tomatch = tomatch; pred = option_app (lift_predicate n) pb.pred; history = history; mat = mat } in let patstat,j = compile pb in patstat, List.fold_left mkSpecialLetInJudge j sign (* pour les alias des initiaux, enrichir les env de ce qu'il faut et substituer après par les initiaux *) (**************************************************************************) (* Preparation of the pattern-matching problem *) (* Qu'est-ce qui faut pas faire pour traiter les alias ... *) (* On ne veut pas ajouter de primitive à Environ et le problème, c'est donc de faire un renommage en se contraignant à parcourir l'env dans le sens croissant. Ici, subst renomme des variables repérées par leur numéro et seen_ids collecte celles dont on sait que les variables de subst annule le scope *) let rename_env subst env = let n = ref (rel_context_length (rel_context env)) in let seen_ids = ref [] in process_rel_context (fun (na,c,t as d) env -> let d = try let id = List.assoc !n subst in seen_ids := id :: !seen_ids; (Name id,c,t) with Not_found -> match na with | Name id when List.mem id !seen_ids -> (Anonymous,c,t) | _ -> d in decr n; push_rel d env) env let is_dependent_indtype = function | NotInd _ -> false | IsInd (_, IndType(_,realargs)) -> realargs <> [] let prepare_initial_alias_eqn isdep tomatchl eqn = let (subst, pats) = List.fold_right2 (fun pat (tm,tmtyp) (subst, stripped_pats) -> match alias_of_pat pat with | Anonymous -> (subst, pat::stripped_pats) | Name idpat -> match kind_of_term tm with | Rel n when not (is_dependent_indtype tmtyp) & not isdep -> (n, idpat)::subst, (unalias_pat pat::stripped_pats) | _ -> (subst, pat::stripped_pats)) eqn.patterns tomatchl ([], []) in let env = rename_env subst eqn.rhs.rhs_env in { eqn with patterns = pats; rhs = { eqn.rhs with rhs_env = env } } let prepare_initial_aliases isdep tomatchl mat = mat (* List.map (prepare_initial_alias_eqn isdep tomatchl) mat*) (* let prepare_initial_alias lpat tomatchl rhs = List.fold_right2 (fun pat tm (stripped_pats, rhs) -> match alias_of_pat pat with | Anonymous -> (pat::stripped_pats, rhs) | Name _ as na -> match tm with | RVar _ -> (unalias_pat pat::stripped_pats, RLetIn (dummy_loc, na, tm, rhs)) | _ -> (pat::stripped_pats, rhs)) lpat tomatchl ([], rhs) *) (* builds the matrix of equations testing that each eqn has n patterns * and linearizing the _ patterns. * Syntactic correctness has already been done in astterm *) let matx_of_eqns env tomatchl eqns = let build_eqn (loc,ids,lpat,rhs) = (* let initial_lpat,initial_rhs = prepare_initial_alias lpat tomatchl rhs in*) let initial_lpat,initial_rhs = lpat,rhs in let initial_rhs = rhs in let rhs = { rhs_env = env; other_ids = ids@(ids_of_named_context (named_context env)); user_ids = ids; rhs_lift = 0; it = initial_rhs } in { dependencies = []; patterns = initial_lpat; tag = RegularPat; alias_stack = []; eqn_loc = loc; used = ref false; rhs = rhs } in List.map build_eqn eqns (************************************************************************) (* preparing the elimination predicate if any *) let build_expected_arity env isevars isdep tomatchl = let cook n = function | _,IsInd (_,IndType(indf,_)) -> let indf' = lift_inductive_family n indf in Some (build_dependent_inductive env indf', fst (get_arity env indf')) | _,NotInd _ -> None in let rec buildrec n env = function | [] -> new_Type () | tm::ltm -> match cook n tm with | None -> buildrec n env ltm | Some (ty1,aritysign) -> let rec follow n env = function | d::sign -> mkProd_or_LetIn_name env (follow (n+1) (push_rel d env) sign) d | [] -> if isdep then mkProd (Anonymous, ty1, buildrec (n+1) (push_rel_assum (Anonymous, ty1) env) ltm) else buildrec n env ltm in follow n env (List.rev aritysign) in buildrec 0 env tomatchl let extract_predicate_conclusion isdep tomatchl pred = let cook = function | _,IsInd (_,IndType(_,args)) -> Some (List.length args) | _,NotInd _ -> None in let rec decomp_lam_force n l p = if n=0 then (l,p) else match kind_of_term p with | Lambda (na,_,c) -> decomp_lam_force (n-1) (na::l) c | _ -> (* eta-expansion *) let na = Name (id_of_string "x") in decomp_lam_force (n-1) (na::l) (applist (lift 1 p, [mkRel 1])) in let rec buildrec allnames p = function | [] -> (List.rev allnames,p) | tm::ltm -> match cook tm with | None -> let p = (* adjust to a sign containing the NotInd's *) if isdep then lift 1 p else p in let names = if isdep then [Anonymous] else [] in buildrec (names::allnames) p ltm | Some n -> let n = if isdep then n+1 else n in let names,p = decomp_lam_force n [] p in buildrec (names::allnames) p ltm in buildrec [] pred tomatchl let set_arity_signature dep n arsign tomatchl pred x = (* avoid is not exhaustive ! *) let rec decomp_lam_force n avoid l p = if n = 0 then (List.rev l,p,avoid) else match p with | RLambda (_,(Name id as na),_,c) -> decomp_lam_force (n-1) (id::avoid) (na::l) c | RLambda (_,(Anonymous as na),_,c) -> decomp_lam_force (n-1) avoid (na::l) c | _ -> let x = next_ident_away (id_of_string "x") avoid in decomp_lam_force (n-1) (x::avoid) (Name x :: l) (* eta-expansion *) (let a = RVar (dummy_loc,x) in match p with | RApp (loc,p,l) -> RApp (loc,p,l@[a]) | _ -> (RApp (dummy_loc,p,[a]))) in let rec decomp_block avoid p = function | ([], _) -> x := Some p | ((_,IsInd (_,IndType(indf,realargs)))::l),(y::l') -> let (ind,params) = dest_ind_family indf in let (nal,p,avoid') = decomp_lam_force (List.length realargs) avoid [] p in let na,p,avoid' = if dep then decomp_lam_force 1 avoid' [] p else [Anonymous],p,avoid' in y := (List.hd na, if List.for_all ((=) Anonymous) nal then None else Some (dummy_loc, ind, (List.map (fun _ -> Anonymous) params)@nal)); decomp_block avoid' p (l,l') | (_::l),(y::l') -> y := (Anonymous,None); decomp_block avoid p (l,l') | _ -> anomaly "set_arity_signature" in decomp_block [] pred (tomatchl,arsign) let prepare_predicate_from_tycon loc dep env isevars tomatchs c = let cook (n, l, env, signs) = function | c,IsInd (_,IndType(indf,realargs)) -> let indf' = lift_inductive_family n indf in let sign = make_arity_signature env dep indf' in let p = List.length realargs in if dep then (n + p + 1, c::(List.rev realargs)@l, push_rels sign env,sign::signs) else (n + p, (List.rev realargs)@l, push_rels sign env,sign::signs) | c,NotInd _ -> (n, l, env, []::signs) in let n, allargs, env, signs = List.fold_left cook (0, [], env, []) tomatchs in let names = List.rev (List.map (List.map pi1) signs) in let allargs = List.map (fun c -> lift n (nf_betadeltaiota env (Evd.evars_of !isevars) c)) allargs in let rec build_skeleton env c = (* Don't put into normal form, it has effects on the synthesis of evars *) (* let c = whd_betadeltaiota env (evars_of isevars) c in *) (* We turn all subterms possibly dependent into an evar with maximum ctxt*) if isEvar c or List.exists (eq_constr c) allargs then e_new_evar isevars env ~src:(loc, Evd.CasesType) (Retyping.get_type_of env (Evd.evars_of !isevars) c) else map_constr_with_full_binders push_rel build_skeleton env c in names, build_skeleton env (lift n c) (* Here, [pred] is assumed to be in the context built from all *) (* realargs and terms to match *) let build_initial_predicate isdep allnames pred = let nar = List.fold_left (fun n names -> List.length names + n) 0 allnames in let rec buildrec n pred = function | [] -> PrCcl pred | names::lnames -> let names' = if isdep then List.tl names else names in let n' = n + List.length names' in let pred, p, user_p = if isdep then if dependent (mkRel (nar-n')) pred then pred, 1, 1 else liftn (-1) (nar-n') pred, 0, 1 else pred, 0, 0 in let na = if p=1 then let na = List.hd names in if na = Anonymous then (* peut arriver en raison des evars *) Name (id_of_string "x") (*Hum*) else na else Anonymous in PrLetIn ((names',na), buildrec (n'+user_p) pred lnames) in buildrec 0 pred allnames let extract_arity_signature env0 tomatchl tmsign = let get_one_sign n tm (na,t) = match tm with | NotInd (bo,typ) -> (match t with | None -> [na,option_app (lift n) bo,lift n typ] | Some (loc,_,_) -> user_err_loc (loc,"", str "Unexpected type annotation for a term of non inductive type")) | IsInd (_,IndType(indf,realargs)) -> let indf' = lift_inductive_family n indf in let (ind,params) = dest_ind_family indf' in let nrealargs = List.length realargs in let realnal = match t with | Some (loc,ind',nal) -> let nparams = List.length params in if ind <> ind' then user_err_loc (loc,"",str "Wrong inductive type"); let nindargs = nparams + nrealargs in (* Normally done at interning time *) if List.length nal <> nindargs then error_wrong_numarg_inductive_loc loc env0 ind' nindargs; let parnal,realnal = list_chop nparams nal in if List.exists ((<>) Anonymous) parnal then user_err_loc (loc,"", str "The parameters of inductive type must be implicit"); List.rev realnal | None -> list_tabulate (fun _ -> Anonymous) nrealargs in let arsign = fst (get_arity env0 indf') in (na,None,build_dependent_inductive env0 indf') ::(List.map2 (fun x (_,c,t) ->(x,c,t)) realnal arsign) in let rec buildrec n = function | [],[] -> [] | (_,tm)::ltm, x::tmsign -> let l = get_one_sign n tm x in l :: buildrec (n + List.length l) (ltm,tmsign) | _ -> assert false in List.rev (buildrec 0 (tomatchl,tmsign)) (* Builds the predicate. If the predicate is dependent, its context is * made of 1+nrealargs assumptions for each matched term in an inductive * type and 1 assumption for each term not _syntactically_ in an * inductive type. * Each matched terms are independently considered dependent or not. * A type constraint but no annotation case: it is assumed non dependent. *) let prepare_predicate loc typing_fun isevars env tomatchs sign tycon = function (* No type annotation *) | None -> (match tycon with | None -> None | Some t -> let names,pred = prepare_predicate_from_tycon loc false env isevars tomatchs t in Some (build_initial_predicate false names pred)) (* Some type annotation *) | Some rtntyp -> (* We extract the signature of the arity *) let arsign = extract_arity_signature env tomatchs sign in let env = List.fold_right push_rels arsign env in let allnames = List.rev (List.map (List.map pi1) arsign) in let predccl = (typing_fun (mk_tycon (new_Type ())) env rtntyp).uj_val in Some (build_initial_predicate true allnames predccl) (**************************************************************************) (* Main entry of the matching compilation *) let compile_cases loc (typing_fun,isevars) tycon env (predopt, tomatchl, eqns)= (* We build the matrix of patterns and right-hand-side *) let matx = matx_of_eqns env tomatchl eqns in (* We build the vector of terms to match consistently with the *) (* constructors found in patterns *) let tomatchs = coerce_to_indtype typing_fun isevars env matx tomatchl in (* We build the elimination predicate if any and check its consistency *) (* with the type of arguments to match *) let tmsign = List.map snd tomatchl in let pred = prepare_predicate loc typing_fun isevars env tomatchs tmsign tycon predopt in (* We deal with initial aliases *) let matx = prepare_initial_aliases (known_dependent pred) tomatchs matx in (* We push the initial terms to match and push their alias to rhs' envs *) (* names of aliases will be recovered from patterns (hence Anonymous here) *) let initial_pushed = List.map (fun tm -> Pushed (tm,[])) tomatchs in let pb = { env = env; isevars = isevars; pred = pred; tomatch = initial_pushed; history = start_history (List.length initial_pushed); mat = matx; caseloc = loc; typing_function = typing_fun } in let _, j = compile pb in (* We check for unused patterns *) List.iter (check_unused_pattern env) matx; match tycon with | Some p -> let (evd',j) = Coercion.inh_conv_coerce_to loc env !isevars j p in isevars := evd'; j | None -> j