open Util open Names open Term open Declarations open Inductive open Environ open Sign open Reduction open Typeops open Type_errors open Rawterm open Retyping open Pretype_errors open Evarutil open Evarconv (*********************************************************************) (* A) Typing old cases *) (* This was previously in Indrec but creates existential holes *) let mkExistential isevars env = new_isevar isevars env dummy_sort CCI let norec_branch_scheme env isevars cstr = it_mkProd_or_LetIn (mkExistential isevars env) cstr.cs_args let rec_branch_scheme env isevars ((sp,j),_) recargs cstr = let rec crec (args,recargs) = match args, recargs with | (name,None,c)::rea,(ra::reca) -> let d = match ra with | Mrec k when k=j -> mkArrow (mkExistential isevars env) (crec (List.rev (lift_rel_context 1 (List.rev rea)),reca)) | _ -> crec (rea,reca) in mkProd (name, body_of_type c, d) | (name,Some d,c)::rea, reca -> mkLetIn (name, d, body_of_type c, crec (rea,reca)) | [],[] -> mkExistential isevars env | _ -> anomaly "rec_branch_scheme" in crec (List.rev cstr.cs_args,recargs) let branch_scheme env isevars isrec (IndFamily (mis,params) as indf) = let cstrs = get_constructors indf in if isrec then array_map2 (rec_branch_scheme env isevars (mis_inductive mis)) (mis_recarg mis) cstrs else Array.map (norec_branch_scheme env isevars) cstrs (***************************************************) (* Building ML like case expressions without types *) let concl_n env sigma = let rec decrec m c = if m = 0 then c else match kind_of_term (whd_betadeltaiota env sigma c) with | IsProd (n,_,c_0) -> decrec (m-1) c_0 | _ -> failwith "Typing.concl_n" in decrec let count_rec_arg j = let rec crec i = function | [] -> i | (Mrec k::l) -> crec (if k=j then (i+1) else i) l | (_::l) -> crec i l in crec 0 (* if arity of mispec is (p_bar:P_bar)(a_bar:A_bar)s where p_bar are the * K parameters. Then then build_notdep builds the predicate * [a_bar:A'_bar](lift k pred) * where A'_bar = A_bar[p_bar <- globargs] *) let build_notdep_pred env sigma indf pred = let arsign,_ = get_arity indf in let nar = List.length arsign in it_mkLambda_or_LetIn_name env (lift nar pred) arsign let pred_case_ml_fail env sigma isrec (IndType (indf,realargs)) (i,ft) = let pred = let mispec,_ = dest_ind_family indf in let recargs = mis_recarg mispec in assert (Array.length recargs <> 0); let recargi = recargs.(i) in let j = mis_index mispec in let nbrec = if isrec then count_rec_arg j recargi else 0 in let nb_arg = List.length (recargs.(i)) + nbrec in let pred = concl_n env sigma nb_arg ft in if noccur_between 1 nb_arg pred then lift (-nb_arg) pred else failwith "Dependent" in if realargs = [] then pred else (* we try with [_:T1]..[_:Tn](lift n pred) *) build_notdep_pred env sigma indf pred let pred_case_ml env sigma isrec indt lf (i,ft) = pred_case_ml_fail env sigma isrec indt (i,ft) (* similar to pred_case_ml but does not expect the list lf of braches *) let pred_case_ml_onebranch env sigma isrec indt (i,f,ft) = pred_case_ml_fail env sigma isrec indt (i,ft) (************************************************************************) (* Pattern-matching compilation (Cases) *) (************************************************************************) (************************************************************************) (* Configuration, errors and warnings *) let substitute_alias = ref false open Pp let mssg_may_need_inversion () = [< 'sTR "This pattern-matching is not exhaustive.">] let mssg_this_case_cannot_occur () = "This pattern-matching is not exhaustive." (* Utils *) let ctxt_of_ids ids = Array.of_list (List.map mkVar ids) let constructor_of_rawconstructor (cstr_sp,ids) = (cstr_sp,ctxt_of_ids ids) let inductive_of_rawconstructor c = inductive_of_constructor (constructor_of_rawconstructor c) (* Environment management *) let push_rels vars env = List.fold_right push_rel_assum vars env (**********************************************************************) (* Structures used in compiling pattern-matching *) type 'a lifted = int * 'a let insert_lifted a = (0,a);; (* INVARIANT: The pattern variables for [it] are the disjoint union of [user_ids] and the domain of [subst]. Non global Var in the codomain of [subst] are in [private_ids]. The non pattern variables of [it] + the global Var in the codomain of [subst] are in [other_ids] *) type rhs = { rhs_env : env; other_ids : identifier list; private_ids: identifier list; user_ids : identifier list; subst : (identifier * constr) list; rhs_lift : int; it : rawconstr } type equation = { dependencies : constr lifted list; patterns : cases_pattern list; rhs : rhs; tag : pattern_source } type matrix = equation list (* 1st argument of IsInd is the original ind before extracting the summary *) type tomatch_type = | IsInd of constr * inductive_type | NotInd of constr type dependency_in_rhs = DepInRhs | NotDepInRhs type dependency_on_previous = DepOnPrevious | NotDepOnPrevious type dependency_status = dependency_on_previous * dependency_in_rhs type pushed_attributes = (constr * tomatch_type) * dependency_in_rhs type topush_attributes = (name * tomatch_type) * dependency_status type tomatch_status = | Pushed of pushed_attributes lifted | ToPush of topush_attributes type tomatch_stack = tomatch_status list type predicate_signature = | PrLetIn of (constr list * constr option) * predicate_signature | PrProd of (bool * name * tomatch_type) * predicate_signature | PrCcl of constr (* A pattern-matching problem has the following form: env, isevars |- Cases tomatch of mat end where tomatch is some sequence (t1 ... tn) and mat is some matrix (p11 ... p1n -> rhs1) ( ... ) (pm1 ... pmn -> rhsm) Terms to match: there are 3 kinds of terms to match - initials terms are arbitrary terms given by user and typed in [env] - to-push inherited terms are subterms, actually variables, obtained from the top-down analysis of pattern, they are typed in [env] enriched by the previous inherited terms to match and are still to be pushed in env - pushed inherited terms are variables refering to a variable in [env] A variable inherited from a subpattern is not immediately pushed in [env] because of possible dependencies from previous variables to match Right-hand-sides: They consist of a raw term to type in an environment specific to the clause they belong to: the names of declarations are those of the variables present in the patterns. Therefore, they come with their own [rhs_env] (actually it is the same as [env] except for the names of variables). *) type 'a pattern_matching_problem = { env : env; isevars : 'a evar_defs; pred : predicate_signature option; tomatch : tomatch_stack; mat : matrix; typing_function: type_constraint -> env -> rawconstr -> unsafe_judgment } (************************************************************************) (* Utils *) let to_mutind env sigma t = try IsInd (t,find_rectype env sigma t) with Induc -> NotInd t let type_of_tomatch_type = function IsInd (t,ind) -> t | NotInd t -> t let current_pattern eqn = match eqn.patterns with | pat::_ -> pat | [] -> anomaly "Empty list of patterns" let alias_of_pat = function | PatVar (_,name) -> name | PatCstr(_,_,_,name) -> name let unalias_pat = function | PatVar (c,name) as p -> if name = Anonymous then p else PatVar (c,Anonymous) | PatCstr(a,b,c,name) as p -> if name = Anonymous then p else PatCstr (a,b,c,Anonymous) let remove_current_pattern eqn = match eqn.patterns with | _::pats -> { eqn with patterns = pats } | [] -> anomaly "Empty list of patterns" let liftn_tomatch_type n depth = function | IsInd (t,ind) -> IsInd (liftn n depth t,liftn_inductive_type n depth ind) | NotInd t -> NotInd (liftn n depth t) let lift_tomatch_type n = liftn_tomatch_type n 1 let lift_tomatch n ((current,typ),info) = ((lift n current,lift_tomatch_type n typ),info) let substnl_tomatch v depth = function | IsInd (t,indt) -> IsInd (substnl v depth t,substnl_ind_type v depth indt) | NotInd t -> NotInd (substnl v depth t) let subst_tomatch (depth,c) = substnl_tomatch [c] depth (**********************************************************************) (* Dealing with regular and default patterns *) let is_regular eqn = eqn.tag = RegularPat let lower_pattern_status = function | RegularPat -> DefaultPat 0 | DefaultPat n -> DefaultPat (n+1) let pattern_status defaults eqns = if eqns <> [] then RegularPat else let min = List.fold_right (fun (_,eqn) n -> match eqn with | {tag = DefaultPat i} when i i | _ -> n) defaults 0 in DefaultPat min (**********************************************************************) (* Well-formedness tests *) (* Partial check on patterns *) let check_constructor loc ((_,j as cstr_sp,ids),args) mind cstrs = (* Check it is constructor of the right type *) if inductive_path_of_constructor_path cstr_sp <> fst mind then error_bad_constructor_loc loc CCI (cstr_sp,ctxt_of_ids ids) mind; (* Check the constructor has the right number of args *) let nb_args_constr = cstrs.(j-1).cs_nargs in if List.length args <> nb_args_constr then error_wrong_numarg_constructor_loc loc CCI cstr_sp nb_args_constr let check_all_variables typ mat = List.iter (fun eqn -> match current_pattern eqn with | PatVar (_,id) -> () | PatCstr (loc,(cstr_sp,ids),_,_) -> error_bad_pattern_loc loc CCI (cstr_sp,ctxt_of_ids ids) typ) mat let check_number_of_regular_eqns eqns = let n = List.fold_left(fun i eqn ->if is_regular eqn then i+1 else i) 0 eqns in match n with | 0 -> warning "Found several default clauses, kept the first one" | 1 -> () | n -> errorlabstrm "build_leaf" [<'sTR "Some clauses are redondant" >] (**********************************************************************) (* Functions to deal with matrix factorization *) let occur_rawconstr id = let rec occur = function | RVar (loc,id') -> id = id' | RApp (loc,f,args) -> (occur f) or (List.exists occur args) | RBinder (loc,bk,na,ty,c) -> (occur ty) or ((na <> Name id) & (occur c)) | RCases (loc,prinfo,tyopt,tml,pl) -> (occur_option tyopt) or (List.exists occur tml) or (List.exists occur_pattern pl) | ROldCase (loc,b,tyopt,tm,bv) -> (occur_option tyopt) or (occur tm) or (array_exists occur bv) | RRec (loc,fk,idl,tyl,bv) -> (array_exists occur tyl) or (not (array_exists (fun id2 -> id=id2) idl) & array_exists occur bv) | RCast (loc,c,t) -> (occur c) or (occur t) | (RSort _ | RHole _ | RRef _ | RMeta _) -> false and occur_pattern (idl,p,c) = not (List.mem id idl) & (occur c) and occur_option = function None -> false | Some p -> occur p in occur let occur_in_rhs na rhs = match na with | Anonymous -> false | Name id -> occur_rawconstr id rhs.it let is_dep_patt eqn pat = occur_in_rhs (alias_of_pat pat) eqn.rhs let dependencies_in_rhs nargs eqns = if eqns = [] then list_tabulate (fun _ -> false) nargs (* Only "_" patts *) else let deps = List.map (fun (tms,eqn) -> List.map (is_dep_patt eqn) tms) eqns in let columns = matrix_transpose deps in List.map (List.for_all ((=) true)) columns (* Introduction of an argument of the current constructor must be delayed (flag DepOnPrevious) if it depends in the rhs and depends on a previous variable of inductive type, or on a previous variable already dependent *) let rec is_dep_on_previous n t = function | ((_,IsInd _),_)::_ when dependent (mkRel n) t -> DepOnPrevious | ((_,NotInd _),(DepOnPrevious,DepInRhs))::_ when dependent (mkRel n) t -> DepOnPrevious | _::rest -> is_dep_on_previous (n+1) t rest | [] -> NotDepOnPrevious let find_dependencies t prevlist is_dep_in_rhs = if is_dep_in_rhs then (is_dep_on_previous 1 t prevlist,DepInRhs) else (NotDepOnPrevious,NotDepInRhs) (******) (* A Pushed term to match has just been substituted by some constructor t = (ci x1...xn) and the terms x1 ... xn have been added to match - all terms to match and to push (dependent on t by definition) must have (Rel depth) substituted by t and Rel's>depth lifted by n - all pushed terms to match (non dependent on t by definition) must be lifted by n We start with depth=1 We delay lift for Pushed but not for ToPush (trop complexe !) *) let rec lift_subst_tomatch n (depth,ci as binder) = function | [] -> [] (* By definition ToPush terms depend on the previous substituted tm *) (* and they contribute to the environment (hence [depth+1]) *) | ToPush ((na,t),info)::rest -> let t' = liftn_tomatch_type n (depth+1) t in let t'' = subst_tomatch binder t' in ToPush ((na,t''), info)::(lift_subst_tomatch n (depth+1,ci) rest) (* By definition Pushed terms do not depend on previous terms to match *) (* and are already pushed in the environment; *) (* if all is correct, [c] has no variables < depth *) | Pushed (lift,tm)::rest -> Pushed (n+lift, tm)::(lift_subst_tomatch n binder rest) let subst_in_subst id t (id2,c) = (id2,replace_vars [(id,t)] c) let replace_id_in_rhs id t rhs = if List.mem id rhs.private_ids then {rhs with subst = List.map (subst_in_subst id t) rhs.subst; private_ids = list_except id rhs.private_ids} else if List.mem id rhs.user_ids & not (List.mem_assoc id rhs.subst) then {rhs with subst = (id,t)::List.map (subst_in_subst id t) rhs.subst} else anomaly ("Found a pattern variables neither private nor user supplied: " ^(string_of_id id)) let replace_name_in_rhs name c rhs = match name with | Anonymous -> rhs | Name id -> replace_id_in_rhs id c rhs (* We should here add subst as a let-in sequence in front of rhs; need first to compute the right "current" in named binders style in the call to expand_defaults *) let prepare_rhs rhs = if rhs.private_ids <> [] then anomaly "Some private pattern variable has not been substituted"; (* if List.length rhs.user_ids <> List.length rhs.subst then anomaly "Some user pattern variable has not been substituted"; let subst = List.map (fun id -> (id,List.assoc id rhs.subst)) rhs.user_ids in *) rhs.it (* if [current] has type [I(p1...pn u1...um)] and we consider the case of constructor [ci] of type [I(p1...pn u'1...u'm)], then the default variable [name] is expected to have which type? Rem: [current] is [(Rel i)] except perhaps for initial terms to match *) let rec pop_next_tomatchs acc = function | ToPush((na,t),(NotDepOnPrevious,_ as deps))::l -> pop_next_tomatchs (((na,t),deps)::acc) l | ((ToPush(_,(DepOnPrevious,_)) | Pushed _)::_ | []) as l -> (acc,l) let expand_defaults pats (* current *) (name,eqn) = { eqn with patterns = pats @ eqn.patterns; rhs = (* replace_name_in_rhs name current *) eqn.rhs; tag = lower_pattern_status eqn.tag } (************************************************************************) (* Some heuristics to get names for variables pushed in pb environment *) let merge_names get_name = List.map2 (fun obj na -> match na with | Anonymous -> get_name obj | _ -> na) let get_names env sign eqns = let names1 = list_tabulate (fun _ -> Anonymous) (List.length sign) in (* If any, we prefer names used in pats, from top to bottom *) let names2 = List.fold_right (fun (pats,eqn) names -> merge_names alias_of_pat pats names) eqns names1 in (* Otherwise, we take names from the parameters of the constructor *) let names3 = merge_names (fun (na,t) -> named_hd env t na) sign names2 in (* Then we rename the base names to avoid conflicts *) let allvars = List.fold_left (fun l (_,eqn) -> list_union l eqn.rhs.other_ids) [] eqns in let names4,_ = List.fold_left (fun (l,avoid) na -> let id = next_name_away na avoid in ((Name id)::l,id::avoid)) ([],allvars) names3 in List.rev names4 (************************************************************************) (* Recovering names for variables pushed to the rhs' environment *) let rec recover_pat_names = function | (_,t)::sign,p::pats -> (alias_of_pat p,t)::(recover_pat_names (sign,pats)) | [],_ -> [] | _,[] -> anomaly "Cases.recover_pat_names: Not enough patterns" let push_rels_eqn sign eqn = let pats = List.rev (fst (list_chop (List.length sign) eqn.patterns)) in let sign' = recover_pat_names (sign, pats) in {eqn with rhs = {eqn.rhs with rhs_env = push_rels sign' eqn.rhs.rhs_env} } (* let push_decls_eqn sign eqn = let pats = List.rev (fst (list_chop (List.length sign) eqn.patterns)) in let sign' = recover_pat_names (sign, pats) in {eqn with rhs = {eqn.rhs with rhs_env = push_decls sign' eqn.rhs.rhs_env} } *) let prepend_pattern tms eqn = {eqn with patterns = tms@eqn.patterns } (* let substitute_rhs current pb = if !substitute_alias then { pb with subst = current::pb.subst } else pb *) let pop_pattern eqn = { eqn with patterns = List.tl eqn.patterns } (**********************************************************************) (* Functions to deal with elimination predicate *) exception Occur let noccur_between_without_evar n m term = let rec occur_rec n c = match kind_of_term c with | IsRel p -> if n<=p && p () | _ -> iter_constr_with_binders succ occur_rec n c in try occur_rec n term; true with Occur -> false (* Infering the predicate *) let prepare_unif_pb typ cs = let n = cs.cs_nargs in let (sign,p) = decompose_prod_n n typ in (* We may need to invert ci if its parameters occur in p *) let p' = if noccur_between_without_evar 1 n p then lift (-n) p else (* TODO4-1 *) error "Inference of annotation not yet implemented in this case" in let ci = applist (mkMutConstruct cs.cs_cstr, cs.cs_params@(rel_list (-n) n)) in (* This is the problem: finding P s.t. cs_args |- (P realargs ci) = p' *) (Array.map (lift (-n)) cs.cs_concl_realargs, ci, p') (* (* Infering the predicate *) let prepare_unif_pb typ cs = let n = cs.cs_nargs in let _,p = decompose_prod_n n typ in let ci = build_dependent_constructor cs in (* This is the problem: finding P s.t. cs_args |- (P realargs ci) = p *) (n, cs.cs_concl_realargs, ci, p) let eq_operator_lift k (n,n') = function | OpRel p, OpRel p' when p > k & p' > k -> if p < k+n or p' < k+n' then false else p - n = p' - n' | op, op' -> op = op' let rec transpose_args n = if n=0 then [] else (Array.map (fun l -> List.hd l) lv):: (transpose_args (m-1) (Array.init (fun l -> List.tl l))) let shift_operator k = function OpLambda _ | OpProd _ -> k+1 | _ -> k let reloc_operator (k,n) = function OpRel p when p > k -> let rec unify_clauses k pv = let pv'= Array.map (fun (n,sign,_,p) -> n,splay_constr (whd_betaiotaevar (push_rels (List.rev sign) env) !isevars) p) pv in let n1,op1 = let (n1,(op1,args1)) = pv'.(0) in n1,op1 in if Array.for_all (fun (ni,(opi,_)) -> eq_operator_lift k (n1,ni) (op1,opi)) pv' then let argvl = transpose_args (List.length args1) pv' in let k' = shift_operator k op1 in let argl = List.map (unify_clauses k') argvl in gather_constr (reloc_operator (k,n1) op1) argl *) let abstract_conclusion typ cs = let n = cs.cs_nargs in let (sign,p) = decompose_prod_n n typ in lam_it p sign let infer_predicate env isevars typs cstrs (IndFamily (mis,_) as indf) = (* Il faudra substituer les isevars a un certain moment *) if Array.length cstrs = 0 then (* "TODO4-3" *) error "Inference of annotation for empty inductive types not implemented" else let eqns = array_map2 prepare_unif_pb typs cstrs in (* First strategy: no dependencies at all *) let (cclargs,_,typn) = eqns.(mis_nconstr mis -1) in let (sign,_) = get_arity indf in if array_for_all (fun (_,_,typ) -> the_conv_x env isevars typn typ) eqns then let pred = it_mkLambda_or_LetIn (lift (List.length sign) typn) sign in (false,pred) (* true = dependent -- par défaut *) else let s = get_sort_of env !isevars typs.(0) in let predpred = it_mkLambda_or_LetIn (mkSort s) sign in let caseinfo = make_default_case_info mis in let brs = array_map2 abstract_conclusion typs cstrs in let predbody = mkMutCase (caseinfo, predpred, mkRel 1, brs) in let pred = it_mkLambda_or_LetIn (lift (List.length sign) typn) sign in (* "TODO4-2" *) error "General inference of annotation not yet implemented;\ you need to give the predicate"; (true,pred) (* Propagation of user-provided predicate through compilation steps *) let lift_predicate n pred = let rec liftrec k = function | PrCcl ccl -> PrCcl (liftn n k ccl) | PrProd ((dep,na,t),pred) -> PrProd ((dep,na,liftn_tomatch_type n k t), liftrec (k+1) pred) | PrLetIn ((args,copt),pred) -> let args' = List.map (liftn n k) args in let copt' = option_app (liftn n k) copt in PrLetIn ((args',copt'), liftrec (k+1) pred) in liftrec 1 pred let subst_predicate (args,copt) pred = let sigma = match copt with | None -> List.rev args | Some c -> c::(List.rev args) in let rec substrec k = function | PrCcl ccl -> PrCcl (substnl sigma k ccl) | PrProd ((dep,na,t),pred) -> PrProd ((dep,na,substnl_tomatch sigma k t), substrec (k+1) pred) | PrLetIn ((args,copt),pred) -> let args' = List.map (substnl sigma k) args in let copt' = option_app (substnl sigma k) copt in PrLetIn ((args',copt'), substrec (k+1) pred) in substrec 0 pred let specialize_predicate_var = function | PrProd _ | PrCcl _ -> anomaly "specialize_predicate_var: a pattern-variable must be pushed" | PrLetIn (tm,pred) -> subst_predicate tm pred let rec weaken_predicate n pred = if n=0 then pred else match pred with | PrLetIn _ | PrCcl _ -> anomaly "weaken_predicate: only product can be weakened" | PrProd ((dep,_,IsInd (_,IndType(indf,realargs))),pred) -> (* To make it more uniform, we apply realargs but they not occur! *) let copt = if dep then Some (mkRel n) else None in PrLetIn ((realargs,copt), weaken_predicate (n-1) (lift_predicate (List.length realargs) pred)) | PrProd ((dep,_,NotInd t),pred) -> let copt = if dep then Some (mkRel n) else None in PrLetIn (([],copt), weaken_predicate (n-1) pred) let rec extract_predicate = function | PrProd ((_,na,t),pred) -> mkProd (na, type_of_tomatch_type t, extract_predicate pred) | PrLetIn ((args,Some c),pred) -> substl (c::(List.rev args)) (extract_predicate pred) | PrLetIn ((args,None),pred) -> substl (List.rev args) (extract_predicate pred) | PrCcl ccl -> ccl let abstract_predicate env sigma indf = function | PrProd _ | PrCcl _ -> anomaly "abstract_predicate: must be some LetIn" | PrLetIn ((_,copt),pred) -> let sign,_ = get_arity indf in let dep = copt <> None in let sign' = if dep then (Anonymous,None,build_dependent_inductive indf) :: sign else sign in (dep, it_mkLambda_or_LetIn_name env (extract_predicate pred) sign') let specialize_predicate_match tomatchs cs = function | PrProd _ | PrCcl _ -> anomaly "specialize_predicate_match: a matched pattern must be pushed" | PrLetIn ((args,copt),pred) -> let argsi = Array.to_list cs.cs_concl_realargs in let copti = option_app (fun _ -> build_dependent_constructor cs) copt in let pred' = subst_predicate (argsi, copti) pred in let pred'' = (*lift_predicate cs.cs_nargs *) pred' in let dep = (copt <> None) in List.fold_right (* Ne perd-on pas des cas en ne posant pas true à la place de dep ? *) (fun ((na,t),_) p -> PrProd ((dep,na,t),p)) tomatchs pred'' let find_predicate env isevars p typs cstrs current (IndType (indf,realargs)) = let (dep,pred) = match p with | Some p -> abstract_predicate env !isevars indf p | None -> infer_predicate env isevars typs cstrs indf in let typ = applist (pred, realargs) in if dep then (pred, applist (typ, [current]), Type Univ.dummy_univ) else (pred, typ, Type Univ.dummy_univ) (************************************************************************) (* Sorting equation by constructor *) type inversion_problem = (* the discriminating arg in some Ind and its order in Ind *) | Incompatible of int * (int * int) | Constraints of (int * constr) list let solve_constraints constr_info indt = (* TODO *) Constraints [] let group_equations mind cstrs mat = let brs = Array.create (Array.length cstrs) [] in let dflt = ref [] in let _ = List.fold_right (* To be sure it's from bottom to top *) (fun eqn () -> let rest = remove_current_pattern eqn in match current_pattern eqn with | PatVar (_,name) -> dflt := (name,rest) :: !dflt | PatCstr(loc,((ind_sp,i),ids as cstr),largs,alias) -> check_constructor loc (cstr,largs) mind cstrs; brs.(i-1) <- (largs,rest) :: brs.(i-1)) mat () in (brs,!dflt) (************************************************************************) (* Here start the pattern-matching compiling algorithm *) (* No more patterns: typing the right-hand-side of equations *) let build_leaf pb = let rhs = match pb.mat with | [] -> errorlabstrm "build_leaf" (mssg_may_need_inversion()) | (eqn::_::_ as eqns) -> check_number_of_regular_eqns eqns; eqn.rhs | [eqn] -> eqn.rhs in let tycon = match pb.pred with | None -> empty_tycon | Some (PrCcl typ) -> mk_tycon typ | Some _ -> anomaly "not all parameters of pred have been consumed" in pb.typing_function tycon rhs.rhs_env (prepare_rhs rhs) (* Building the sub-problem when all patterns are variables *) let shift_problem pb = (* rhs have alr. the right env: we just have to pop a pattern & cook pred *) {pb with pred = option_app specialize_predicate_var pb.pred; mat = List.map pop_pattern pb.mat } (* Building the sub-pattern-matching problem for a given branch *) let build_branch pb defaults eqns const_info = let cs_args = assums_of_rel_context const_info.cs_args in let names = get_names pb.env cs_args eqns in let newpats = if !substitute_alias then List.map (fun na -> PatVar (dummy_loc,na)) names else List.map (fun _ -> PatVar (dummy_loc,Anonymous)) names in let submatdef = List.map (expand_defaults newpats) defaults in let submat = List.map (fun (tms,eqn) -> prepend_pattern tms eqn) eqns in if submat = [] & submatdef = [] then error "Non exhaustive"; let typs = List.map2 (fun (_,t) na -> (na,t)) cs_args (List.rev names) in let _,typs' = List.fold_right (fun (na,t) (env,typs) -> (push_rel_assum (na,t) env, ((na,to_mutind env !(pb.isevars) t),t)::typs)) typs (pb.env,[]) in let tomatchs = List.fold_left2 (fun l (d,t) dep_in_rhs -> (d,find_dependencies t l dep_in_rhs)::l) [] typs' (dependencies_in_rhs const_info.cs_nargs eqns) in let topushs = List.map (fun x -> ToPush x) tomatchs in (* The dependent term to subst in the types of the remaining UnPushed terms is relative to the current context enriched by topushs *) let ci = applist (mkMutConstruct const_info.cs_cstr, (List.map (lift const_info.cs_nargs) const_info.cs_params) @(rel_list 0 const_info.cs_nargs)) in (* We replace [(mkRel 1)] by its expansion [ci] *) let updated_old_tomatch = lift_subst_tomatch const_info.cs_nargs (1,ci) pb.tomatch in { pb with tomatch = topushs@updated_old_tomatch; mat = submat@submatdef; pred = option_app (specialize_predicate_match tomatchs const_info) pb.pred } (********************************************************************** INVARIANT: pb = { env, subst, tomatch, mat, ...} tomatch = list of Pushed (c:T) or ToPush (na:T) or Initial (c:T) "Pushed" terms and types are relative to env "ToPush" types are relative to env enriched by the previous terms to match Concretely, each term "c" or type "T" comes with a delayed lift index, but it works as if the lifting were effective. *) (**********************************************************************) (* Main compiling descent *) let rec compile pb = match pb.tomatch with | (Pushed cur)::rest -> match_current { pb with tomatch = rest } cur | (ToPush next)::rest -> compile_further pb next rest | [] -> build_leaf pb and match_current pb (n,tm) = let ((current,typ),info) = lift_tomatch n tm in match typ with | NotInd typ -> check_all_variables typ pb.mat; compile (shift_problem pb) | IsInd (_,(IndType(indf,realargs) as indt)) -> let mis,_ = dest_ind_family indf in let cstrs = get_constructors indf in let eqns,defaults = group_equations (mis_inductive mis) cstrs pb.mat in if array_for_all ((=) []) eqns then compile (shift_problem pb) else let constraints = Array.map (solve_constraints indt) cstrs in let pbs = array_map2 (build_branch pb defaults) eqns cstrs in let tags = Array.map (pattern_status defaults) eqns in let brs = Array.map compile pbs in let brvals = Array.map (fun j -> j.uj_val) brs in let brtyps = Array.map (fun j -> body_of_type j.uj_type) brs in let (pred,typ,s) = find_predicate pb.env pb.isevars pb.pred brtyps cstrs current indt in let ci = make_case_info mis None tags in { uj_val = mkMutCase (ci, (*eta_reduce_if_rel*)pred,current,brvals); uj_type = typ } and compile_further pb firstnext rest = (* We pop as much as possible tomatch not dependent one of the other *) let nexts,future = pop_next_tomatchs [firstnext] rest in (* the next pattern to match is at the end of [nexts], it has ref (mkRel n) where n is the length of nexts *) let sign = List.map (fun ((na,t),_) -> (na,type_of_tomatch_type t)) nexts in let currents = list_map_i (fun i ((na,t),(_,rhsdep)) -> Pushed (insert_lifted ((mkRel i, lift_tomatch_type i t), rhsdep))) 1 nexts in let pb' = { pb with env = push_rels sign pb.env; tomatch = List.rev_append currents future; pred= option_app (weaken_predicate (List.length sign)) pb.pred; mat = List.map (push_rels_eqn sign) pb.mat } in let j = compile pb' in { uj_val = lam_it j.uj_val sign; uj_type = (* Pas d'univers ici: imprédicatif si Prop/Set, dummy si Type *) type_app (fun t -> prod_it t sign) j.uj_type } (* pour les alias des initiaux, enrichir les env de ce qu'il faut et substituer après par les initiaux *) (**************************************************************************) (* Preparation of the pattern-matching problem *) let prepare_initial_alias lpat tomatchl rhs = List.fold_right2 (fun pat tm (stripped_pats, rhs) -> match alias_of_pat pat with | Anonymous -> (pat::stripped_pats, rhs) | Name _ as na -> (unalias_pat pat::stripped_pats, RBinder (dummy_loc, BLetIn, na, tm, rhs))) lpat tomatchl ([], rhs) (* builds the matrix of equations testing that each eqn has n patterns * and linearizing the _ patterns. * Syntactic correctness has already been done in astterm *) let matx_of_eqns env tomatchl eqns = let build_eqn (ids,lpat,rhs) = let initial_lpat,initial_rhs = prepare_initial_alias lpat tomatchl rhs in let rhs = { rhs_env = env; other_ids = ids@(ids_of_named_context (named_context env)); private_ids = []; user_ids = ids; subst = []; rhs_lift = 0; it = initial_rhs } in { dependencies = []; patterns = initial_lpat; tag = RegularPat; rhs = rhs } in List.map build_eqn eqns (*--------------------------------------------------------------------------* * A few functions to infer the inductive type from the patterns instead of * * checking that the patterns correspond to the ind. type of the * * destructurated object. Allows type inference of examples like * * [n]Cases n of O => true | _ => false end * *--------------------------------------------------------------------------*) (* Computing the inductive type from the matrix of patterns *) let rec find_row_ind = function [] -> None | PatVar _ :: l -> find_row_ind l | PatCstr(loc,c,_,_) :: _ -> Some (loc,c) (* We do the unification for all the rows that contain * constructor patterns. This is what we do at the higher level of patterns. * For nested patterns, we do this unif when we ``expand'' the matrix, and we * use the function above. *) exception NotCoercible let inh_coerce_to_ind isevars env ty tyi = let (ntys,_) = splay_prod env !isevars (body_of_type (mis_nf_arity (Global.lookup_mind_specif tyi))) in let (_,evarl) = List.fold_right (fun (na,ty) (env,evl) -> (push_rel_assum (na,ty) env, (new_isevar isevars env ty CCI)::evl)) ntys (env,[]) in let expected_typ = applist (mkMutInd tyi,evarl) in (* devrait être indifférent d'exiger leq ou pas puisque pour un inductif cela doit être égal *) if the_conv_x_leq env isevars expected_typ ty then ty else raise NotCoercible let coerce_row typing_fun isevars env row tomatch = let j = typing_fun empty_tycon env tomatch in let typ = body_of_type j.uj_type in let t = match find_row_ind row with Some (cloc,(cstr,_ as c)) -> (let tyi = inductive_of_rawconstructor c in try let indtyp = inh_coerce_to_ind isevars env typ tyi in IsInd (typ,find_rectype env !isevars typ) with NotCoercible -> (* 2 cases : Not the right inductive or not an inductive at all *) try let mind,_ = find_mrectype env !isevars typ in error_bad_constructor_loc cloc CCI (constructor_of_rawconstructor c) mind with Induc -> error_case_not_inductive_loc (loc_of_rawconstr tomatch) CCI env j.uj_val typ) | None -> try IsInd (typ,find_rectype env !isevars typ) with Induc -> NotInd typ in (j.uj_val,t) let coerce_to_indtype typing_fun isevars env matx tomatchl = let pats = List.map (fun r -> r.patterns) matx in List.map2 (coerce_row typing_fun isevars env) (matrix_transpose pats) tomatchl (***********************************************************************) (* preparing the elimination predicate if any *) let build_expected_arity env isevars isdep tomatchl = let cook n = function | _,IsInd (_,IndType(indf,_)) -> let indf' = lift_inductive_family n indf in (build_dependent_inductive indf', fst (get_arity indf')) | _,NotInd _ -> anomaly "Should have been catched in case_dependent" in let rec buildrec n = function | [] -> dummy_sort | tm::ltm -> let (ty1,aritysign) = cook n tm in let rec follow n = function | d::sign -> mkProd_or_LetIn d (follow (n+1) sign) | [] -> if isdep then mkProd (Anonymous, ty1, buildrec (n+1) ltm) else buildrec n ltm in follow n (List.rev aritysign) in buildrec 0 tomatchl let build_initial_predicate isdep pred tomatchl = let cook n = function | _,IsInd (_,IndType(ind_data,realargs)) -> let args = List.map (lift n) realargs in if isdep then let ty = lift n (build_dependent_inductive ind_data) in (List.length realargs + 1, (args,Some ty)) else (List.length realargs, (args,None)) | _,NotInd _ -> anomaly "Should have been catched in case_dependent" in let rec buildrec n pred = function | [] -> PrCcl pred | tm::ltm -> let (nargs,args) = cook n tm in PrLetIn (args,buildrec (n+nargs) (snd(decompose_lam_n nargs pred)) ltm) in buildrec 0 pred tomatchl let rec eta_expand0 env sigma n c t = match kind_of_term (whd_betadeltaiota env sigma t) with | IsProd (na,a,b) -> mkLambda (na,a,eta_expand0 env sigma (n+1) c b) | _ -> applist (lift n c, rel_list 0 n) let rec eta_expand env sigma c t = let c' = whd_betadeltaiota env sigma c in let t' = whd_betadeltaiota env sigma t in match kind_of_term c', kind_of_term t' with | IsLambda (na,ta,cb), IsProd (_,_,tb) -> mkLambda (na,ta,eta_expand env sigma cb tb) | _, _ -> eta_expand0 env sigma 0 c' t' (* determines wether the multiple case is dependent or not. For that * the predicate given by the user is eta-expanded. If the result * of expansion is pred, then : * if pred=[x1:T1]...[xn:Tn]P and tomatchj=[|[e1:S1]...[ej:Sj]] then * if n= SUM {i=1 to j} nb_prod (arity Sj) * then case_dependent= false * else if n= j+(SUM (i=1 to j) nb_prod(arity Sj)) * then case_dependent=true * else error! (can not treat mixed dependent and non dependent case *) let case_dependent env sigma loc predj tomatchs = let nb_dep_ity = function (_,IsInd (_,IndType(_,realargs))) -> List.length realargs | (c,NotInd t) -> errorlabstrm "case_dependent" (error_case_not_inductive CCI env c t) in let etapred = eta_expand env sigma predj.uj_val (body_of_type predj.uj_type) in let n = nb_lam etapred in let _,sort = splay_prod env sigma (body_of_type predj.uj_type) in let ndepv = List.map nb_dep_ity tomatchs in let sum = List.fold_right (fun i j -> i+j) ndepv 0 in let depsum = sum + List.length tomatchs in if n = sum then (etapred,false) else if n = depsum then (etapred,true) else error_wrong_predicate_arity_loc loc CCI env etapred sum depsum let prepare_predicate typing_fun isevars env tomatchs = function | None -> None | Some pred -> let loc = loc_of_rawconstr pred in let predj = let isevars_copy = ref !isevars in (* We first assume the predicate is non dependent *) try let ndep_arity = build_expected_arity env isevars false tomatchs in typing_fun (mk_tycon ndep_arity) env pred with TypeError _ | Stdpp.Exc_located (_,TypeError _) -> isevars := !isevars_copy; (* We then assume the predicate is dependent *) try let dep_arity = build_expected_arity env isevars true tomatchs in typing_fun (mk_tycon dep_arity) env pred with TypeError _ | Stdpp.Exc_located (_,TypeError _) -> isevars := !isevars_copy; (* Otherwise we attempt to type it without constraints, possibly *) (* failing with an error message; it may also be well-typed *) (* but fails to satisfy arity constraints in case_dependent *) typing_fun empty_tycon env pred in let etapred,cdep = case_dependent env !isevars loc predj tomatchs in Some (build_initial_predicate cdep etapred tomatchs) (**************************************************************************) (* Main entry of the matching compilation *) let compile_cases loc (typing_fun,isevars) tycon env (predopt, tomatchl, eqns)= (* We build the matrix of patterns and right-hand-side *) let matx = matx_of_eqns env tomatchl eqns in (* We build the vector of terms to match consistently with the *) (* constructors found in patterns *) let tomatchs = coerce_to_indtype typing_fun isevars env matx tomatchl in (* We build the elimination predicate if any and check its consistency *) (* with the type of arguments to match *) let pred = prepare_predicate typing_fun isevars env tomatchs predopt in (* We push the initial terms to match and push their alias to rhs' envs *) (* names of aliases will be recovered from patterns (hence Anonymous here) *) let initial_pushed = List.map (fun tm -> Pushed (insert_lifted (tm,NotDepInRhs))) tomatchs in let pb = { env = env; isevars = isevars; pred = pred; tomatch = initial_pushed; mat = matx; typing_function = typing_fun } in let j = compile pb in match tycon with | Some p -> Coercion.inh_conv_coerce_to loc env isevars j p | None -> j