(************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) (* f i c | _ -> assert false type protect_flag = Eval|Prot|Rec let tag_arg tag_rec map subs i c = match map i with Eval -> mk_clos subs c | Prot -> mk_atom c | Rec -> if i = -1 then mk_clos subs c else tag_rec c let rec mk_clos_but f_map subs t = match f_map t with | Some map -> tag_arg (mk_clos_but f_map subs) map subs (-1) t | None -> (match kind_of_term t with App(f,args) -> mk_clos_app_but f_map subs f args 0 | Prod _ -> mk_clos_deep (mk_clos_but f_map) subs t | _ -> mk_atom t) and mk_clos_app_but f_map subs f args n = if n >= Array.length args then mk_atom(mkApp(f, args)) else let fargs, args' = array_chop n args in let f' = mkApp(f,fargs) in match f_map f' with Some map -> mk_clos_deep (fun s' -> unmark_arg (tag_arg (mk_clos_but f_map s') map s')) subs (mkApp (mark_arg (-1) f', Array.mapi mark_arg args')) | None -> mk_clos_app_but f_map subs f args (n+1) let interp_map l c = try let (im,am) = List.assoc c l in Some(fun i -> if List.mem i im then Eval else if List.mem i am then Prot else if i = -1 then Eval else Rec) with Not_found -> None let interp_map l t = try Some(List.assoc t l) with Not_found -> None let protect_maps = ref Stringmap.empty let add_map s m = protect_maps := Stringmap.add s m !protect_maps let lookup_map map = try Stringmap.find map !protect_maps with Not_found -> errorlabstrm"lookup_map"(str"map "++qs map++str"not found") let protect_red map env sigma c = kl (create_clos_infos betadeltaiota env) (mk_clos_but (lookup_map map c) (Esubst.ESID 0) c);; let protect_tac map = Tactics.reduct_option (protect_red map,DEFAULTcast) None ;; let protect_tac_in map id = Tactics.reduct_option (protect_red map,DEFAULTcast) (Some(id,InHyp));; TACTIC EXTEND protect_fv [ "protect_fv" string(map) "in" ident(id) ] -> [ protect_tac_in map id ] | [ "protect_fv" string(map) ] -> [ protect_tac map ] END;; (****************************************************************************) let closed_term t l = let l = List.map constr_of_global l in let cs = List.fold_right Quote.ConstrSet.add l Quote.ConstrSet.empty in if Quote.closed_under cs t then tclIDTAC else tclFAIL 0 (mt()) ;; TACTIC EXTEND closed_term [ "closed_term" constr(t) "[" ne_reference_list(l) "]" ] -> [ closed_term t l ] END ;; TACTIC EXTEND echo | [ "echo" constr(t) ] -> [ Pp.msg (Termops.print_constr t); Tacinterp.eval_tactic (TacId []) ] END;; (* let closed_term_ast l = TacFun([Some(id_of_string"t")], TacAtom(dummy_loc,TacExtend(dummy_loc,"closed_term", [Genarg.in_gen Genarg.wit_constr (mkVar(id_of_string"t")); Genarg.in_gen (Genarg.wit_list1 Genarg.wit_ref) l]))) *) let closed_term_ast l = let l = List.map (fun gr -> ArgArg(dummy_loc,gr)) l in TacFun([Some(id_of_string"t")], TacAtom(dummy_loc,TacExtend(dummy_loc,"closed_term", [Genarg.in_gen Genarg.globwit_constr (RVar(dummy_loc,id_of_string"t"),None); Genarg.in_gen (Genarg.wit_list1 Genarg.globwit_ref) l]))) (* let _ = add_tacdef false ((dummy_loc,id_of_string"ring_closed_term" *) (****************************************************************************) let ic c = let env = Global.env() and sigma = Evd.empty in Constrintern.interp_constr sigma env c let ty c = Typing.type_of (Global.env()) Evd.empty c let decl_constant na c = mkConst(declare_constant (id_of_string na) (DefinitionEntry { const_entry_body = c; const_entry_type = None; const_entry_opaque = true; const_entry_boxed = true}, IsProof Lemma)) (* Calling a global tactic *) let ltac_call tac (args:glob_tactic_arg list) = TacArg(TacCall(dummy_loc, ArgArg(dummy_loc, Lazy.force tac),args)) (* Calling a locally bound tactic *) let ltac_lcall tac args = TacArg(TacCall(dummy_loc, ArgVar(dummy_loc, id_of_string tac),args)) let ltac_letin (x, e1) e2 = TacLetIn(false,[(dummy_loc,id_of_string x),e1],e2) let ltac_apply (f:glob_tactic_expr) (args:glob_tactic_arg list) = Tacinterp.eval_tactic (ltac_letin ("F", Tacexp f) (ltac_lcall "F" args)) let ltac_record flds = TacFun([Some(id_of_string"proj")], ltac_lcall "proj" flds) let carg c = TacDynamic(dummy_loc,Pretyping.constr_in c) let dummy_goal env = {Evd.it = Evd.make_evar (named_context_val env) mkProp; Evd.sigma = Evd.empty} let exec_tactic env n f args = let lid = list_tabulate(fun i -> id_of_string("x"^string_of_int i)) n in let res = ref [||] in let get_res ist = let l = List.map (fun id -> List.assoc id ist.lfun) lid in res := Array.of_list l; TacId[] in let getter = Tacexp(TacFun(List.map(fun id -> Some id) lid, glob_tactic(tacticIn get_res))) in let _ = Tacinterp.eval_tactic(ltac_call f (args@[getter])) (dummy_goal env) in !res let constr_of = function | VConstr c -> c | _ -> failwith "Ring.exec_tactic: anomaly" let stdlib_modules = [["Coq";"Setoids";"Setoid"]; ["Coq";"Lists";"List"]; ["Coq";"Init";"Datatypes"]; ["Coq";"Init";"Logic"]; ] let coq_constant c = lazy (Coqlib.gen_constant_in_modules "Ring" stdlib_modules c) let coq_mk_Setoid = coq_constant "Build_Setoid_Theory" let coq_cons = coq_constant "cons" let coq_nil = coq_constant "nil" let coq_None = coq_constant "None" let coq_Some = coq_constant "Some" let coq_eq = coq_constant "eq" let lapp f args = mkApp(Lazy.force f,args) let dest_rel0 t = match kind_of_term t with | App(f,args) when Array.length args >= 2 -> let rel = mkApp(f,Array.sub args 0 (Array.length args - 2)) in if closed0 rel then (rel,args.(Array.length args - 2),args.(Array.length args - 1)) else error "ring: cannot find relation (not closed)" | _ -> error "ring: cannot find relation" let rec dest_rel t = match kind_of_term t with | Prod(_,_,c) -> dest_rel c | _ -> dest_rel0 t (****************************************************************************) (* Library linking *) let plugin_dir = "setoid_ring" let cdir = ["Coq";plugin_dir] let plugin_modules = List.map (fun d -> cdir@d) [["Ring_theory"];["Ring_polynom"]; ["Ring_tac"];["InitialRing"]; ["Field_tac"]; ["Field_theory"] ] let my_constant c = lazy (Coqlib.gen_constant_in_modules "Ring" plugin_modules c) let new_ring_path = make_dirpath (List.map id_of_string ["Ring_tac";plugin_dir;"Coq"]) let ltac s = lazy(make_kn (MPfile new_ring_path) (make_dirpath []) (mk_label s)) let znew_ring_path = make_dirpath (List.map id_of_string ["InitialRing";plugin_dir;"Coq"]) let zltac s = lazy(make_kn (MPfile znew_ring_path) (make_dirpath []) (mk_label s)) let mk_cst l s = lazy (Coqlib.gen_constant "newring" l s);; let pol_cst s = mk_cst [plugin_dir;"Ring_polynom"] s ;; (* Ring theory *) (* almost_ring defs *) let coq_almost_ring_theory = my_constant "almost_ring_theory" (* setoid and morphism utilities *) let coq_eq_setoid = my_constant "Eqsth" let coq_eq_morph = my_constant "Eq_ext" let coq_eq_smorph = my_constant "Eq_s_ext" (* ring -> almost_ring utilities *) let coq_ring_theory = my_constant "ring_theory" let coq_mk_reqe = my_constant "mk_reqe" (* semi_ring -> almost_ring utilities *) let coq_semi_ring_theory = my_constant "semi_ring_theory" let coq_mk_seqe = my_constant "mk_seqe" let ltac_inv_morph_gen = zltac"inv_gen_phi" let ltac_inv_morphZ = zltac"inv_gen_phiZ" let ltac_inv_morphN = zltac"inv_gen_phiN" let ltac_inv_morphNword = zltac"inv_gen_phiNword" let coq_abstract = my_constant"Abstract" let coq_comp = my_constant"Computational" let coq_morph = my_constant"Morphism" (* morphism *) let coq_ring_morph = my_constant "ring_morph" let coq_semi_morph = my_constant "semi_morph" (* power function *) let ltac_inv_morph_nothing = zltac"inv_morph_nothing" let coq_pow_N_pow_N = my_constant "pow_N_pow_N" (* hypothesis *) let coq_mkhypo = my_constant "mkhypo" let coq_hypo = my_constant "hypo" (* Equality: do not evaluate but make recursive call on both sides *) let map_with_eq arg_map c = let (req,_,_) = dest_rel c in interp_map ((req,(function -1->Prot|_->Rec)):: List.map (fun (c,map) -> (Lazy.force c,map)) arg_map) let _ = add_map "ring" (map_with_eq [coq_cons,(function -1->Eval|2->Rec|_->Prot); coq_nil, (function -1->Eval|_ -> Prot); (* Pphi_dev: evaluate polynomial and coef operations, protect ring operations and make recursive call on the var map *) pol_cst "Pphi_dev", (function -1|8|9|10|11|12|14->Eval|13->Rec|_->Prot); pol_cst "Pphi_pow", (function -1|8|9|10|11|13|15|17->Eval|16->Rec|_->Prot); (* PEeval: evaluate morphism and polynomial, protect ring operations and make recursive call on the var map *) pol_cst "PEeval", (function -1|7|9|12->Eval|11->Rec|_->Prot)]) (****************************************************************************) (* Ring database *) type ring_info = { ring_carrier : types; ring_req : constr; ring_setoid : constr; ring_ext : constr; ring_morph : constr; ring_th : constr; ring_cst_tac : glob_tactic_expr; ring_pow_tac : glob_tactic_expr; ring_lemma1 : constr; ring_lemma2 : constr; ring_pre_tac : glob_tactic_expr; ring_post_tac : glob_tactic_expr } module Cmap = Map.Make(struct type t = constr let compare = compare end) let from_carrier = ref Cmap.empty let from_relation = ref Cmap.empty let from_name = ref Spmap.empty let ring_for_carrier r = Cmap.find r !from_carrier let ring_for_relation rel = Cmap.find rel !from_relation let ring_lookup_by_name ref = Spmap.find (Nametab.locate_obj (snd(qualid_of_reference ref))) !from_name let find_ring_structure env sigma l oname = match oname, l with Some rf, _ -> (try ring_lookup_by_name rf with Not_found -> errorlabstrm "ring" (str "found no ring named "++pr_reference rf)) | None, t::cl' -> let ty = Retyping.get_type_of env sigma t in let check c = let ty' = Retyping.get_type_of env sigma c in if not (Reductionops.is_conv env sigma ty ty') then errorlabstrm "ring" (str"arguments of ring_simplify do not have all the same type") in List.iter check cl'; (try ring_for_carrier ty with Not_found -> errorlabstrm "ring" (str"cannot find a declared ring structure over"++ spc()++str"\""++pr_constr ty++str"\"")) | None, [] -> assert false (* let (req,_,_) = dest_rel cl in (try ring_for_relation req with Not_found -> errorlabstrm "ring" (str"cannot find a declared ring structure for equality"++ spc()++str"\""++pr_constr req++str"\"")) *) let _ = Summary.declare_summary "tactic-new-ring-table" { Summary.freeze_function = (fun () -> !from_carrier,!from_relation,!from_name); Summary.unfreeze_function = (fun (ct,rt,nt) -> from_carrier := ct; from_relation := rt; from_name := nt); Summary.init_function = (fun () -> from_carrier := Cmap.empty; from_relation := Cmap.empty; from_name := Spmap.empty); Summary.survive_module = false; Summary.survive_section = false } let add_entry (sp,_kn) e = (* let _ = ty e.ring_lemma1 in let _ = ty e.ring_lemma2 in *) from_carrier := Cmap.add e.ring_carrier e !from_carrier; from_relation := Cmap.add e.ring_req e !from_relation; from_name := Spmap.add sp e !from_name let subst_th (_,subst,th) = let c' = subst_mps subst th.ring_carrier in let eq' = subst_mps subst th.ring_req in let set' = subst_mps subst th.ring_setoid in let ext' = subst_mps subst th.ring_ext in let morph' = subst_mps subst th.ring_morph in let th' = subst_mps subst th.ring_th in let thm1' = subst_mps subst th.ring_lemma1 in let thm2' = subst_mps subst th.ring_lemma2 in let tac'= subst_tactic subst th.ring_cst_tac in let pow_tac'= subst_tactic subst th.ring_pow_tac in let pretac'= subst_tactic subst th.ring_pre_tac in let posttac'= subst_tactic subst th.ring_post_tac in if c' == th.ring_carrier && eq' == th.ring_req && set' = th.ring_setoid && ext' == th.ring_ext && morph' == th.ring_morph && th' == th.ring_th && thm1' == th.ring_lemma1 && thm2' == th.ring_lemma2 && tac' == th.ring_cst_tac && pow_tac' == th.ring_pow_tac && pretac' == th.ring_pre_tac && posttac' == th.ring_post_tac then th else { ring_carrier = c'; ring_req = eq'; ring_setoid = set'; ring_ext = ext'; ring_morph = morph'; ring_th = th'; ring_cst_tac = tac'; ring_pow_tac = pow_tac'; ring_lemma1 = thm1'; ring_lemma2 = thm2'; ring_pre_tac = pretac'; ring_post_tac = posttac' } let (theory_to_obj, obj_to_theory) = let cache_th (name,th) = add_entry name th and export_th x = Some x in declare_object {(default_object "tactic-new-ring-theory") with open_function = (fun i o -> if i=1 then cache_th o); cache_function = cache_th; subst_function = subst_th; classify_function = (fun (_,x) -> Substitute x); export_function = export_th } let setoid_of_relation env a r = let evm = Evd.empty in try lapp coq_mk_Setoid [|a ; r ; Class_tactics.get_reflexive_proof env evm a r ; Class_tactics.get_symmetric_proof env evm a r ; Class_tactics.get_transitive_proof env evm a r |] with Not_found -> error "cannot find setoid relation" let op_morph r add mul opp req m1 m2 m3 = lapp coq_mk_reqe [| r; add; mul; opp; req; m1; m2; m3 |] let op_smorph r add mul req m1 m2 = lapp coq_mk_seqe [| r; add; mul; req; m1; m2 |] (* let default_ring_equality (r,add,mul,opp,req) = *) (* let is_setoid = function *) (* {rel_refl=Some _; rel_sym=Some _;rel_trans=Some _;rel_aeq=rel} -> *) (* eq_constr req rel (\* Qu: use conversion ? *\) *) (* | _ -> false in *) (* match default_relation_for_carrier ~filter:is_setoid r with *) (* Leibniz _ -> *) (* let setoid = lapp coq_eq_setoid [|r|] in *) (* let op_morph = *) (* match opp with *) (* Some opp -> lapp coq_eq_morph [|r;add;mul;opp|] *) (* | None -> lapp coq_eq_smorph [|r;add;mul|] in *) (* (setoid,op_morph) *) (* | Relation rel -> *) (* let setoid = setoid_of_relation rel in *) (* let is_endomorphism = function *) (* { args=args } -> List.for_all *) (* (function (var,Relation rel) -> *) (* var=None && eq_constr req rel *) (* | _ -> false) args in *) (* let add_m = *) (* try default_morphism ~filter:is_endomorphism add *) (* with Not_found -> *) (* error "ring addition should be declared as a morphism" in *) (* let mul_m = *) (* try default_morphism ~filter:is_endomorphism mul *) (* with Not_found -> *) (* error "ring multiplication should be declared as a morphism" in *) (* let op_morph = *) (* match opp with *) (* | Some opp -> *) (* (let opp_m = *) (* try default_morphism ~filter:is_endomorphism opp *) (* with Not_found -> *) (* error "ring opposite should be declared as a morphism" in *) (* let op_morph = *) (* op_morph r add mul opp req add_m.lem mul_m.lem opp_m.lem in *) (* msgnl *) (* (str"Using setoid \""++pr_constr rel.rel_aeq++str"\""++spc()++ *) (* str"and morphisms \""++pr_constr add_m.morphism_theory++ *) (* str"\","++spc()++ str"\""++pr_constr mul_m.morphism_theory++ *) (* str"\""++spc()++str"and \""++pr_constr opp_m.morphism_theory++ *) (* str"\""); *) (* op_morph) *) (* | None -> *) (* (msgnl *) (* (str"Using setoid \""++pr_constr rel.rel_aeq++str"\"" ++ spc() ++ *) (* str"and morphisms \""++pr_constr add_m.morphism_theory++ *) (* str"\""++spc()++str"and \""++ *) (* pr_constr mul_m.morphism_theory++str"\""); *) (* op_smorph r add mul req add_m.lem mul_m.lem) in *) (* (setoid,op_morph) *) let ring_equality (r,add,mul,opp,req) = match kind_of_term req with | App (f, [| _ |]) when eq_constr f (Lazy.force coq_eq) -> let setoid = lapp coq_eq_setoid [|r|] in let op_morph = match opp with Some opp -> lapp coq_eq_morph [|r;add;mul;opp|] | None -> lapp coq_eq_smorph [|r;add;mul|] in (setoid,op_morph) | _ -> let setoid = setoid_of_relation (Global.env ()) r req in let signature = [Some (r,req);Some (r,req)],Some(Lazy.lazy_from_val (r,req)) in let add_m, add_m_lem = try Class_tactics.default_morphism signature add with Not_found -> error "ring addition should be declared as a morphism" in let mul_m, mul_m_lem = try Class_tactics.default_morphism signature mul with Not_found -> error "ring multiplication should be declared as a morphism" in let op_morph = match opp with | Some opp -> (let opp_m,opp_m_lem = try Class_tactics.default_morphism ([Some(r,req)],Some(Lazy.lazy_from_val (r,req))) opp with Not_found -> error "ring opposite should be declared as a morphism" in let op_morph = op_morph r add mul opp req add_m_lem mul_m_lem opp_m_lem in Flags.if_verbose msgnl (str"Using setoid \""++pr_constr req++str"\""++spc()++ str"and morphisms \""++pr_constr add_m_lem ++ str"\","++spc()++ str"\""++pr_constr mul_m_lem++ str"\""++spc()++str"and \""++pr_constr opp_m_lem++ str"\""); op_morph) | None -> (Flags.if_verbose msgnl (str"Using setoid \""++pr_constr req ++str"\"" ++ spc() ++ str"and morphisms \""++pr_constr add_m_lem ++ str"\""++spc()++str"and \""++ pr_constr mul_m_lem++str"\""); op_smorph r add mul req add_m_lem mul_m_lem) in (setoid,op_morph) let build_setoid_params r add mul opp req eqth = match eqth with Some th -> th | None -> ring_equality (r,add,mul,opp,req) let dest_ring env sigma th_spec = let th_typ = Retyping.get_type_of env sigma th_spec in match kind_of_term th_typ with App(f,[|r;zero;one;add;mul;sub;opp;req|]) when f = Lazy.force coq_almost_ring_theory -> (None,r,zero,one,add,mul,Some sub,Some opp,req) | App(f,[|r;zero;one;add;mul;req|]) when f = Lazy.force coq_semi_ring_theory -> (Some true,r,zero,one,add,mul,None,None,req) | App(f,[|r;zero;one;add;mul;sub;opp;req|]) when f = Lazy.force coq_ring_theory -> (Some false,r,zero,one,add,mul,Some sub,Some opp,req) | _ -> error "bad ring structure" let dest_morph env sigma m_spec = let m_typ = Retyping.get_type_of env sigma m_spec in match kind_of_term m_typ with App(f,[|r;zero;one;add;mul;sub;opp;req; c;czero;cone;cadd;cmul;csub;copp;ceqb;phi|]) when f = Lazy.force coq_ring_morph -> (c,czero,cone,cadd,cmul,Some csub,Some copp,ceqb,phi) | App(f,[|r;zero;one;add;mul;req;c;czero;cone;cadd;cmul;ceqb;phi|]) when f = Lazy.force coq_semi_morph -> (c,czero,cone,cadd,cmul,None,None,ceqb,phi) | _ -> error "bad morphism structure" type coeff_spec = Computational of constr (* equality test *) | Abstract (* coeffs = Z *) | Morphism of constr (* general morphism *) let reflect_coeff rkind = (* We build an ill-typed terms on purpose... *) match rkind with Abstract -> Lazy.force coq_abstract | Computational c -> lapp coq_comp [|c|] | Morphism m -> lapp coq_morph [|m|] type cst_tac_spec = CstTac of raw_tactic_expr | Closed of reference list let interp_cst_tac env sigma rk kind (zero,one,add,mul,opp) cst_tac = match cst_tac with Some (CstTac t) -> Tacinterp.glob_tactic t | Some (Closed lc) -> closed_term_ast (List.map Syntax_def.global_with_alias lc) | None -> (match rk, opp, kind with Abstract, None, _ -> let t = ArgArg(dummy_loc,Lazy.force ltac_inv_morphN) in TacArg(TacCall(dummy_loc,t,List.map carg [zero;one;add;mul])) | Abstract, Some opp, Some _ -> let t = ArgArg(dummy_loc, Lazy.force ltac_inv_morphZ) in TacArg(TacCall(dummy_loc,t,List.map carg [zero;one;add;mul;opp])) | Abstract, Some opp, None -> let t = ArgArg(dummy_loc, Lazy.force ltac_inv_morphNword) in TacArg (TacCall(dummy_loc,t,List.map carg [zero;one;add;mul;opp])) | Computational _,_,_ -> let t = ArgArg(dummy_loc, Lazy.force ltac_inv_morph_gen) in TacArg (TacCall(dummy_loc,t,List.map carg [zero;one;zero;one])) | Morphism mth,_,_ -> let (_,czero,cone,_,_,_,_,_,_) = dest_morph env sigma mth in let t = ArgArg(dummy_loc, Lazy.force ltac_inv_morph_gen) in TacArg (TacCall(dummy_loc,t,List.map carg [zero;one;czero;cone]))) let make_hyp env c = let t = Retyping.get_type_of env Evd.empty c in lapp coq_mkhypo [|t;c|] let make_hyp_list env lH = let carrier = Lazy.force coq_hypo in List.fold_right (fun c l -> lapp coq_cons [|carrier; (make_hyp env c); l|]) lH (lapp coq_nil [|carrier|]) let interp_power env pow = let carrier = Lazy.force coq_hypo in match pow with | None -> let t = ArgArg(dummy_loc, Lazy.force ltac_inv_morph_nothing) in (TacArg(TacCall(dummy_loc,t,[])), lapp coq_None [|carrier|]) | Some (tac, spec) -> let tac = match tac with | CstTac t -> Tacinterp.glob_tactic t | Closed lc -> closed_term_ast (List.map Syntax_def.global_with_alias lc) in let spec = make_hyp env (ic spec) in (tac, lapp coq_Some [|carrier; spec|]) let interp_sign env sign = let carrier = Lazy.force coq_hypo in match sign with | None -> lapp coq_None [|carrier|] | Some spec -> let spec = make_hyp env (ic spec) in lapp coq_Some [|carrier;spec|] (* Same remark on ill-typed terms ... *) let interp_div env div = let carrier = Lazy.force coq_hypo in match div with | None -> lapp coq_None [|carrier|] | Some spec -> let spec = make_hyp env (ic spec) in lapp coq_Some [|carrier;spec|] (* Same remark on ill-typed terms ... *) let add_theory name rth eqth morphth cst_tac (pre,post) power sign div = check_required_library (cdir@["Ring_base"]); let env = Global.env() in let sigma = Evd.empty in let (kind,r,zero,one,add,mul,sub,opp,req) = dest_ring env sigma rth in let (sth,ext) = build_setoid_params r add mul opp req eqth in let (pow_tac, pspec) = interp_power env power in let sspec = interp_sign env sign in let dspec = interp_div env div in let rk = reflect_coeff morphth in let params = exec_tactic env 5 (zltac "ring_lemmas") (List.map carg[sth;ext;rth;pspec;sspec;dspec;rk]) in let lemma1 = constr_of params.(3) in let lemma2 = constr_of params.(4) in let lemma1 = decl_constant (string_of_id name^"_ring_lemma1") lemma1 in let lemma2 = decl_constant (string_of_id name^"_ring_lemma2") lemma2 in let cst_tac = interp_cst_tac env sigma morphth kind (zero,one,add,mul,opp) cst_tac in let pretac = match pre with Some t -> Tacinterp.glob_tactic t | _ -> TacId [] in let posttac = match post with Some t -> Tacinterp.glob_tactic t | _ -> TacId [] in let _ = Lib.add_leaf name (theory_to_obj { ring_carrier = r; ring_req = req; ring_setoid = sth; ring_ext = constr_of params.(1); ring_morph = constr_of params.(2); ring_th = constr_of params.(0); ring_cst_tac = cst_tac; ring_pow_tac = pow_tac; ring_lemma1 = lemma1; ring_lemma2 = lemma2; ring_pre_tac = pretac; ring_post_tac = posttac }) in () type ring_mod = Ring_kind of coeff_spec | Const_tac of cst_tac_spec | Pre_tac of raw_tactic_expr | Post_tac of raw_tactic_expr | Setoid of Topconstr.constr_expr * Topconstr.constr_expr | Pow_spec of cst_tac_spec * Topconstr.constr_expr (* Syntaxification tactic , correctness lemma *) | Sign_spec of Topconstr.constr_expr | Div_spec of Topconstr.constr_expr VERNAC ARGUMENT EXTEND ring_mod | [ "decidable" constr(eq_test) ] -> [ Ring_kind(Computational (ic eq_test)) ] | [ "abstract" ] -> [ Ring_kind Abstract ] | [ "morphism" constr(morph) ] -> [ Ring_kind(Morphism (ic morph)) ] | [ "constants" "[" tactic(cst_tac) "]" ] -> [ Const_tac(CstTac cst_tac) ] | [ "closed" "[" ne_global_list(l) "]" ] -> [ Const_tac(Closed l) ] | [ "preprocess" "[" tactic(pre) "]" ] -> [ Pre_tac pre ] | [ "postprocess" "[" tactic(post) "]" ] -> [ Post_tac post ] | [ "setoid" constr(sth) constr(ext) ] -> [ Setoid(sth,ext) ] | [ "sign" constr(sign_spec) ] -> [ Sign_spec sign_spec ] | [ "power" constr(pow_spec) "[" ne_global_list(l) "]" ] -> [ Pow_spec (Closed l, pow_spec) ] | [ "power_tac" constr(pow_spec) "[" tactic(cst_tac) "]" ] -> [ Pow_spec (CstTac cst_tac, pow_spec) ] | [ "div" constr(div_spec) ] -> [ Div_spec div_spec ] END let set_once s r v = if !r = None then r := Some v else error (s^" cannot be set twice") let process_ring_mods l = let kind = ref None in let set = ref None in let cst_tac = ref None in let pre = ref None in let post = ref None in let sign = ref None in let power = ref None in let div = ref None in List.iter(function Ring_kind k -> set_once "ring kind" kind k | Const_tac t -> set_once "tactic recognizing constants" cst_tac t | Pre_tac t -> set_once "preprocess tactic" pre t | Post_tac t -> set_once "postprocess tactic" post t | Setoid(sth,ext) -> set_once "setoid" set (ic sth,ic ext) | Pow_spec(t,spec) -> set_once "power" power (t,spec) | Sign_spec t -> set_once "sign" sign t | Div_spec t -> set_once "div" div t) l; let k = match !kind with Some k -> k | None -> Abstract in (k, !set, !cst_tac, !pre, !post, !power, !sign, !div) VERNAC COMMAND EXTEND AddSetoidRing | [ "Add" "Ring" ident(id) ":" constr(t) ring_mods(l) ] -> [ let (k,set,cst,pre,post,power,sign, div) = process_ring_mods l in add_theory id (ic t) set k cst (pre,post) power sign div] END (*****************************************************************************) (* The tactics consist then only in a lookup in the ring database and call the appropriate ltac. *) let make_args_list rl t = match rl with | [] -> let (_,t1,t2) = dest_rel0 t in [t1;t2] | _ -> rl let make_term_list carrier rl = List.fold_right (fun x l -> lapp coq_cons [|carrier;x;l|]) rl (lapp coq_nil [|carrier|]) let ltac_ring_structure e = let req = carg e.ring_req in let sth = carg e.ring_setoid in let ext = carg e.ring_ext in let morph = carg e.ring_morph in let th = carg e.ring_th in let cst_tac = Tacexp e.ring_cst_tac in let pow_tac = Tacexp e.ring_pow_tac in let lemma1 = carg e.ring_lemma1 in let lemma2 = carg e.ring_lemma2 in let pretac = Tacexp(TacFun([None],e.ring_pre_tac)) in let posttac = Tacexp(TacFun([None],e.ring_post_tac)) in [req;sth;ext;morph;th;cst_tac;pow_tac; lemma1;lemma2;pretac;posttac] let ring_lookup (f:glob_tactic_expr) lH rl t gl = let env = pf_env gl in let sigma = project gl in let rl = make_args_list rl t in let e = find_ring_structure env sigma rl None in let rl = carg (make_term_list e.ring_carrier rl) in let lH = carg (make_hyp_list env lH) in let ring = ltac_ring_structure e in ltac_apply f (ring@[lH;rl]) gl TACTIC EXTEND ring_lookup | [ "ring_lookup" tactic0(f) "[" constr_list(lH) "]" ne_constr_list(lrt) ] -> [ let (t,lr) = list_sep_last lrt in ring_lookup (fst f) lH lr t] END (***********************************************************************) let new_field_path = make_dirpath (List.map id_of_string ["Field_tac";plugin_dir;"Coq"]) let field_ltac s = lazy(make_kn (MPfile new_field_path) (make_dirpath []) (mk_label s)) let _ = add_map "field" (map_with_eq [coq_cons,(function -1->Eval|2->Rec|_->Prot); coq_nil, (function -1->Eval|_ -> Prot); (* display_linear: evaluate polynomials and coef operations, protect field operations and make recursive call on the var map *) my_constant "display_linear", (function -1|9|10|11|12|13|15|16->Eval|14->Rec|_->Prot); my_constant "display_pow_linear", (function -1|9|10|11|12|13|14|16|18|19->Eval|17->Rec|_->Prot); (* Pphi_dev: evaluate polynomial and coef operations, protect ring operations and make recursive call on the var map *) pol_cst "Pphi_dev", (function -1|8|9|10|11|12|14->Eval|13->Rec|_->Prot); pol_cst "Pphi_pow", (function -1|8|9|10|11|13|15|17->Eval|16->Rec|_->Prot); (* PEeval: evaluate morphism and polynomial, protect ring operations and make recursive call on the var map *) pol_cst "PEeval", (function -1|7|9|12->Eval|11->Rec|_->Prot); (* FEeval: evaluate morphism, protect field operations and make recursive call on the var map *) my_constant "FEeval", (function -1|8|9|10|11|14->Eval|13->Rec|_->Prot)]);; let _ = add_map "field_cond" (map_with_eq [coq_cons,(function -1->Eval|2->Rec|_->Prot); coq_nil, (function -1->Eval|_ -> Prot); (* PCond: evaluate morphism and denum list, protect ring operations and make recursive call on the var map *) my_constant "PCond", (function -1|8|10|13->Eval|12->Rec|_->Prot)]);; (* (function -1|8|10->Eval|9->Rec|_->Prot)]);;*) let _ = Redexpr.declare_red_expr "simpl_field_expr" (protect_red "field") let afield_theory = my_constant "almost_field_theory" let field_theory = my_constant "field_theory" let sfield_theory = my_constant "semi_field_theory" let af_ar = my_constant"AF_AR" let f_r = my_constant"F_R" let sf_sr = my_constant"SF_SR" let dest_field env sigma th_spec = let th_typ = Retyping.get_type_of env sigma th_spec in match kind_of_term th_typ with | App(f,[|r;zero;one;add;mul;sub;opp;div;inv;req|]) when f = Lazy.force afield_theory -> let rth = lapp af_ar [|r;zero;one;add;mul;sub;opp;div;inv;req;th_spec|] in (None,r,zero,one,add,mul,Some sub,Some opp,div,inv,req,rth) | App(f,[|r;zero;one;add;mul;sub;opp;div;inv;req|]) when f = Lazy.force field_theory -> let rth = lapp f_r [|r;zero;one;add;mul;sub;opp;div;inv;req;th_spec|] in (Some false,r,zero,one,add,mul,Some sub,Some opp,div,inv,req,rth) | App(f,[|r;zero;one;add;mul;div;inv;req|]) when f = Lazy.force sfield_theory -> let rth = lapp sf_sr [|r;zero;one;add;mul;div;inv;req;th_spec|] in (Some true,r,zero,one,add,mul,None,None,div,inv,req,rth) | _ -> error "bad field structure" type field_info = { field_carrier : types; field_req : constr; field_cst_tac : glob_tactic_expr; field_pow_tac : glob_tactic_expr; field_ok : constr; field_simpl_eq_ok : constr; field_simpl_ok : constr; field_simpl_eq_in_ok : constr; field_cond : constr; field_pre_tac : glob_tactic_expr; field_post_tac : glob_tactic_expr } let field_from_carrier = ref Cmap.empty let field_from_relation = ref Cmap.empty let field_from_name = ref Spmap.empty let field_for_carrier r = Cmap.find r !field_from_carrier let field_for_relation rel = Cmap.find rel !field_from_relation let field_lookup_by_name ref = Spmap.find (Nametab.locate_obj (snd(qualid_of_reference ref))) !field_from_name let find_field_structure env sigma l oname = check_required_library (cdir@["Field_tac"]); match oname, l with Some rf, _ -> (try field_lookup_by_name rf with Not_found -> errorlabstrm "field" (str "found no field named "++pr_reference rf)) | None, t::cl' -> let ty = Retyping.get_type_of env sigma t in let check c = let ty' = Retyping.get_type_of env sigma c in if not (Reductionops.is_conv env sigma ty ty') then errorlabstrm "field" (str"arguments of field_simplify do not have all the same type") in List.iter check cl'; (try field_for_carrier ty with Not_found -> errorlabstrm "field" (str"cannot find a declared field structure over"++ spc()++str"\""++pr_constr ty++str"\"")) | None, [] -> assert false (* let (req,_,_) = dest_rel cl in (try field_for_relation req with Not_found -> errorlabstrm "field" (str"cannot find a declared field structure for equality"++ spc()++str"\""++pr_constr req++str"\"")) *) let _ = Summary.declare_summary "tactic-new-field-table" { Summary.freeze_function = (fun () -> !field_from_carrier,!field_from_relation,!field_from_name); Summary.unfreeze_function = (fun (ct,rt,nt) -> field_from_carrier := ct; field_from_relation := rt; field_from_name := nt); Summary.init_function = (fun () -> field_from_carrier := Cmap.empty; field_from_relation := Cmap.empty; field_from_name := Spmap.empty); Summary.survive_module = false; Summary.survive_section = false } let add_field_entry (sp,_kn) e = (* let _ = ty e.field_ok in let _ = ty e.field_simpl_eq_ok in let _ = ty e.field_simpl_ok in let _ = ty e.field_cond in *) field_from_carrier := Cmap.add e.field_carrier e !field_from_carrier; field_from_relation := Cmap.add e.field_req e !field_from_relation; field_from_name := Spmap.add sp e !field_from_name let subst_th (_,subst,th) = let c' = subst_mps subst th.field_carrier in let eq' = subst_mps subst th.field_req in let thm1' = subst_mps subst th.field_ok in let thm2' = subst_mps subst th.field_simpl_eq_ok in let thm3' = subst_mps subst th.field_simpl_ok in let thm4' = subst_mps subst th.field_simpl_eq_in_ok in let thm5' = subst_mps subst th.field_cond in let tac'= subst_tactic subst th.field_cst_tac in let pow_tac' = subst_tactic subst th.field_pow_tac in let pretac'= subst_tactic subst th.field_pre_tac in let posttac'= subst_tactic subst th.field_post_tac in if c' == th.field_carrier && eq' == th.field_req && thm1' == th.field_ok && thm2' == th.field_simpl_eq_ok && thm3' == th.field_simpl_ok && thm4' == th.field_simpl_eq_in_ok && thm5' == th.field_cond && tac' == th.field_cst_tac && pow_tac' == th.field_pow_tac && pretac' == th.field_pre_tac && posttac' == th.field_post_tac then th else { field_carrier = c'; field_req = eq'; field_cst_tac = tac'; field_pow_tac = pow_tac'; field_ok = thm1'; field_simpl_eq_ok = thm2'; field_simpl_ok = thm3'; field_simpl_eq_in_ok = thm4'; field_cond = thm5'; field_pre_tac = pretac'; field_post_tac = posttac' } let (ftheory_to_obj, obj_to_ftheory) = let cache_th (name,th) = add_field_entry name th and export_th x = Some x in declare_object {(default_object "tactic-new-field-theory") with open_function = (fun i o -> if i=1 then cache_th o); cache_function = cache_th; subst_function = subst_th; classify_function = (fun (_,x) -> Substitute x); export_function = export_th } let field_equality r inv req = match kind_of_term req with | App (f, [| _ |]) when eq_constr f (Lazy.force coq_eq) -> mkApp((Coqlib.build_coq_eq_data()).congr,[|r;r;inv|]) | _ -> let _setoid = setoid_of_relation (Global.env ()) r req in let signature = [Some (r,req)],Some(Lazy.lazy_from_val (r,req)) in let inv_m, inv_m_lem = try Class_tactics.default_morphism signature inv with Not_found -> error "field inverse should be declared as a morphism" in inv_m_lem let add_field_theory name fth eqth morphth cst_tac inj (pre,post) power sign odiv = check_required_library (cdir@["Field_tac"]); let env = Global.env() in let sigma = Evd.empty in let (kind,r,zero,one,add,mul,sub,opp,div,inv,req,rth) = dest_field env sigma fth in let (sth,ext) = build_setoid_params r add mul opp req eqth in let eqth = Some(sth,ext) in let _ = add_theory name rth eqth morphth cst_tac (None,None) power sign odiv in let (pow_tac, pspec) = interp_power env power in let sspec = interp_sign env sign in let dspec = interp_div env odiv in let inv_m = field_equality r inv req in let rk = reflect_coeff morphth in let params = exec_tactic env 9 (field_ltac"field_lemmas") (List.map carg[sth;ext;inv_m;fth;pspec;sspec;dspec;rk]) in let lemma1 = constr_of params.(3) in let lemma2 = constr_of params.(4) in let lemma3 = constr_of params.(5) in let lemma4 = constr_of params.(6) in let cond_lemma = match inj with | Some thm -> mkApp(constr_of params.(8),[|thm|]) | None -> constr_of params.(7) in let lemma1 = decl_constant (string_of_id name^"_field_lemma1") lemma1 in let lemma2 = decl_constant (string_of_id name^"_field_lemma2") lemma2 in let lemma3 = decl_constant (string_of_id name^"_field_lemma3") lemma3 in let lemma4 = decl_constant (string_of_id name^"_field_lemma4") lemma4 in let cond_lemma = decl_constant (string_of_id name^"_lemma5") cond_lemma in let cst_tac = interp_cst_tac env sigma morphth kind (zero,one,add,mul,opp) cst_tac in let pretac = match pre with Some t -> Tacinterp.glob_tactic t | _ -> TacId [] in let posttac = match post with Some t -> Tacinterp.glob_tactic t | _ -> TacId [] in let _ = Lib.add_leaf name (ftheory_to_obj { field_carrier = r; field_req = req; field_cst_tac = cst_tac; field_pow_tac = pow_tac; field_ok = lemma1; field_simpl_eq_ok = lemma2; field_simpl_ok = lemma3; field_simpl_eq_in_ok = lemma4; field_cond = cond_lemma; field_pre_tac = pretac; field_post_tac = posttac }) in () type field_mod = Ring_mod of ring_mod | Inject of Topconstr.constr_expr VERNAC ARGUMENT EXTEND field_mod | [ ring_mod(m) ] -> [ Ring_mod m ] | [ "completeness" constr(inj) ] -> [ Inject inj ] END let process_field_mods l = let kind = ref None in let set = ref None in let cst_tac = ref None in let pre = ref None in let post = ref None in let inj = ref None in let sign = ref None in let power = ref None in let div = ref None in List.iter(function Ring_mod(Ring_kind k) -> set_once "field kind" kind k | Ring_mod(Const_tac t) -> set_once "tactic recognizing constants" cst_tac t | Ring_mod(Pre_tac t) -> set_once "preprocess tactic" pre t | Ring_mod(Post_tac t) -> set_once "postprocess tactic" post t | Ring_mod(Setoid(sth,ext)) -> set_once "setoid" set (ic sth,ic ext) | Ring_mod(Pow_spec(t,spec)) -> set_once "power" power (t,spec) | Ring_mod(Sign_spec t) -> set_once "sign" sign t | Ring_mod(Div_spec t) -> set_once "div" div t | Inject i -> set_once "infinite property" inj (ic i)) l; let k = match !kind with Some k -> k | None -> Abstract in (k, !set, !inj, !cst_tac, !pre, !post, !power, !sign, !div) VERNAC COMMAND EXTEND AddSetoidField | [ "Add" "Field" ident(id) ":" constr(t) field_mods(l) ] -> [ let (k,set,inj,cst_tac,pre,post,power,sign,div) = process_field_mods l in add_field_theory id (ic t) set k cst_tac inj (pre,post) power sign div] END let ltac_field_structure e = let req = carg e.field_req in let cst_tac = Tacexp e.field_cst_tac in let pow_tac = Tacexp e.field_pow_tac in let field_ok = carg e.field_ok in let field_simpl_ok = carg e.field_simpl_ok in let field_simpl_eq_ok = carg e.field_simpl_eq_ok in let field_simpl_eq_in_ok = carg e.field_simpl_eq_in_ok in let cond_ok = carg e.field_cond in let pretac = Tacexp(TacFun([None],e.field_pre_tac)) in let posttac = Tacexp(TacFun([None],e.field_post_tac)) in [req;cst_tac;pow_tac;field_ok;field_simpl_ok;field_simpl_eq_ok; field_simpl_eq_in_ok;cond_ok;pretac;posttac] let field_lookup (f:glob_tactic_expr) lH rl t gl = let env = pf_env gl in let sigma = project gl in let rl = make_args_list rl t in let e = find_field_structure env sigma rl None in let rl = carg (make_term_list e.field_carrier rl) in let lH = carg (make_hyp_list env lH) in let field = ltac_field_structure e in ltac_apply f (field@[lH;rl]) gl TACTIC EXTEND field_lookup | [ "field_lookup" tactic(f) "[" constr_list(lH) "]" ne_constr_list(lt) ] -> [ let (t,l) = list_sep_last lt in field_lookup (fst f) lH l t ] END