(************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) (* R->R) (ropp : R->R). Variable (rdiv : R->R->R) (rinv : R->R). Variable req : R -> R -> Prop. Notation "0" := rO : R_scope. Notation "1" := rI : R_scope. Infix "+" := radd : R_scope. Infix "-" := rsub : R_scope. Infix "*" := rmul : R_scope. Infix "/" := rdiv : R_scope. Notation "- x" := (ropp x) : R_scope. Notation "/ x" := (rinv x) : R_scope. Infix "==" := req (at level 70, no associativity) : R_scope. (* Equality properties *) Variable Rsth : Equivalence req. Variable Reqe : ring_eq_ext radd rmul ropp req. Variable SRinv_ext : forall p q, p == q -> / p == / q. (* Field properties *) Record almost_field_theory : Prop := mk_afield { AF_AR : almost_ring_theory rO rI radd rmul rsub ropp req; AF_1_neq_0 : ~ 1 == 0; AFdiv_def : forall p q, p / q == p * / q; AFinv_l : forall p, ~ p == 0 -> / p * p == 1 }. Section AlmostField. Variable AFth : almost_field_theory. Let ARth := AFth.(AF_AR). Let rI_neq_rO := AFth.(AF_1_neq_0). Let rdiv_def := AFth.(AFdiv_def). Let rinv_l := AFth.(AFinv_l). Add Morphism radd : radd_ext. Proof. exact (Radd_ext Reqe). Qed. Add Morphism rmul : rmul_ext. Proof. exact (Rmul_ext Reqe). Qed. Add Morphism ropp : ropp_ext. Proof. exact (Ropp_ext Reqe). Qed. Add Morphism rsub : rsub_ext. Proof. exact (ARsub_ext Rsth Reqe ARth). Qed. Add Morphism rinv : rinv_ext. Proof. exact SRinv_ext. Qed. Let eq_trans := Setoid.Seq_trans _ _ Rsth. Let eq_sym := Setoid.Seq_sym _ _ Rsth. Let eq_refl := Setoid.Seq_refl _ _ Rsth. Let radd_0_l := ARadd_0_l ARth. Let radd_comm := ARadd_comm ARth. Let radd_assoc := ARadd_assoc ARth. Let rmul_1_l := ARmul_1_l ARth. Let rmul_0_l := ARmul_0_l ARth. Let rmul_comm := ARmul_comm ARth. Let rmul_assoc := ARmul_assoc ARth. Let rdistr_l := ARdistr_l ARth. Let ropp_mul_l := ARopp_mul_l ARth. Let ropp_add := ARopp_add ARth. Let rsub_def := ARsub_def ARth. Let radd_0_r := ARadd_0_r Rsth ARth. Let rmul_0_r := ARmul_0_r Rsth ARth. Let rmul_1_r := ARmul_1_r Rsth ARth. Let ropp_0 := ARopp_zero Rsth Reqe ARth. Let rdistr_r := ARdistr_r Rsth Reqe ARth. (* Coefficients : C *) Variable C: Type. Bind Scope C_scope with C. Delimit Scope C_scope with coef. Variable (cO cI: C) (cadd cmul csub : C->C->C) (copp : C->C). Variable ceqb : C->C->bool. Variable phi : C -> R. Variable CRmorph : ring_morph rO rI radd rmul rsub ropp req cO cI cadd cmul csub copp ceqb phi. Notation "0" := cO : C_scope. Notation "1" := cI : C_scope. Infix "+" := cadd : C_scope. Infix "-" := csub : C_scope. Infix "*" := cmul : C_scope. Notation "- x" := (copp x) : C_scope. Infix "=?" := ceqb : C_scope. Notation "[ x ]" := (phi x) (at level 0). Let phi_0 := CRmorph.(morph0). Let phi_1 := CRmorph.(morph1). Lemma ceqb_spec c c' : BoolSpec ([c] == [c']) True (c =? c')%coef. Proof. generalize (CRmorph.(morph_eq) c c'). destruct (c =? c')%coef; auto. Qed. (* Power coefficients : Cpow *) Variable Cpow : Type. Variable Cp_phi : N -> Cpow. Variable rpow : R -> Cpow -> R. Variable pow_th : power_theory rI rmul req Cp_phi rpow. (* sign function *) Variable get_sign : C -> option C. Variable get_sign_spec : sign_theory copp ceqb get_sign. Variable cdiv:C -> C -> C*C. Variable cdiv_th : div_theory req cadd cmul phi cdiv. Let rpow_pow := pow_th.(rpow_pow_N). (* Polynomial expressions : (PExpr C) *) Bind Scope PE_scope with PExpr. Delimit Scope PE_scope with poly. Notation NPEeval := (PEeval rO rI radd rmul rsub ropp phi Cp_phi rpow). Notation "P @ l" := (NPEeval l P) (at level 10, no associativity). Arguments PEc _ _%coef. Notation "0" := (PEc 0) : PE_scope. Notation "1" := (PEc 1) : PE_scope. Infix "+" := PEadd : PE_scope. Infix "-" := PEsub : PE_scope. Infix "*" := PEmul : PE_scope. Notation "- e" := (PEopp e) : PE_scope. Infix "^" := PEpow : PE_scope. Definition NPEequiv e e' := forall l, e@l == e'@l. Infix "===" := NPEequiv (at level 70, no associativity) : PE_scope. Instance NPEequiv_eq : Equivalence NPEequiv. Proof. split; red; unfold NPEequiv; intros; [reflexivity|symmetry|etransitivity]; eauto. Qed. Instance NPEeval_ext : Proper (eq ==> NPEequiv ==> req) NPEeval. Proof. intros l l' <- e e' He. now rewrite (He l). Qed. Notation Nnorm := (norm_subst cO cI cadd cmul csub copp ceqb cdiv). Notation NPphi_dev := (Pphi_dev rO rI radd rmul rsub ropp cO cI ceqb phi get_sign). Notation NPphi_pow := (Pphi_pow rO rI radd rmul rsub ropp cO cI ceqb phi Cp_phi rpow get_sign). (* add abstract semi-ring to help with some proofs *) Add Ring Rring : (ARth_SRth ARth). (* additional ring properties *) Lemma rsub_0_l r : 0 - r == - r. Proof. rewrite rsub_def; ring. Qed. Lemma rsub_0_r r : r - 0 == r. Proof. rewrite rsub_def, ropp_0; ring. Qed. (*************************************************************************** Properties of division ***************************************************************************) Theorem rdiv_simpl p q : ~ q == 0 -> q * (p / q) == p. Proof. intros. rewrite rdiv_def. transitivity (/ q * q * p); [ ring | ]. now rewrite rinv_l. Qed. Instance rdiv_ext: Proper (req ==> req ==> req) rdiv. Proof. intros p1 p2 Ep q1 q2 Eq. now rewrite !rdiv_def, Ep, Eq. Qed. Lemma rmul_reg_l p q1 q2 : ~ p == 0 -> p * q1 == p * q2 -> q1 == q2. Proof. intros H EQ. assert (H' : p * (q1 / p) == p * (q2 / p)). { now rewrite !rdiv_def, !rmul_assoc, EQ. } now rewrite !rdiv_simpl in H'. Qed. Theorem field_is_integral_domain r1 r2 : ~ r1 == 0 -> ~ r2 == 0 -> ~ r1 * r2 == 0. Proof. intros H1 H2. contradict H2. transitivity (/r1 * r1 * r2). - now rewrite rinv_l. - now rewrite <- rmul_assoc, H2. Qed. Theorem ropp_neq_0 r : ~ -(1) == 0 -> ~ r == 0 -> ~ -r == 0. Proof. intros. setoid_replace (- r) with (- (1) * r). - apply field_is_integral_domain; trivial. - now rewrite <- ropp_mul_l, rmul_1_l. Qed. Theorem rdiv_r_r r : ~ r == 0 -> r / r == 1. Proof. intros. rewrite rdiv_def, rmul_comm. now apply rinv_l. Qed. Theorem rdiv1 r : r == r / 1. Proof. transitivity (1 * (r / 1)). - symmetry; apply rdiv_simpl. apply rI_neq_rO. - apply rmul_1_l. Qed. Theorem rdiv2 a b c d : ~ b == 0 -> ~ d == 0 -> a / b + c / d == (a * d + c * b) / (b * d). Proof. intros H H0. assert (~ b * d == 0) by now apply field_is_integral_domain. apply rmul_reg_l with (b * d); trivial. rewrite rdiv_simpl; trivial. rewrite rdistr_r. apply radd_ext. - now rewrite <- rmul_assoc, (rmul_comm d), rmul_assoc, rdiv_simpl. - now rewrite (rmul_comm c), <- rmul_assoc, rdiv_simpl. Qed. Theorem rdiv2b a b c d e : ~ (b*e) == 0 -> ~ (d*e) == 0 -> a / (b*e) + c / (d*e) == (a * d + c * b) / (b * (d * e)). Proof. intros H H0. assert (~ b == 0) by (contradict H; rewrite H; ring). assert (~ e == 0) by (contradict H; rewrite H; ring). assert (~ d == 0) by (contradict H0; rewrite H0; ring). assert (~ b * (d * e) == 0) by (repeat apply field_is_integral_domain; trivial). apply rmul_reg_l with (b * (d * e)); trivial. rewrite rdiv_simpl; trivial. rewrite rdistr_r. apply radd_ext. - transitivity ((b * e) * (a / (b * e)) * d); [ ring | now rewrite rdiv_simpl ]. - transitivity ((d * e) * (c / (d * e)) * b); [ ring | now rewrite rdiv_simpl ]. Qed. Theorem rdiv5 a b : - (a / b) == - a / b. Proof. now rewrite !rdiv_def, ropp_mul_l. Qed. Theorem rdiv3b a b c d e : ~ (b * e) == 0 -> ~ (d * e) == 0 -> a / (b*e) - c / (d*e) == (a * d - c * b) / (b * (d * e)). Proof. intros H H0. rewrite !rsub_def, rdiv5, ropp_mul_l. now apply rdiv2b. Qed. Theorem rdiv6 a b : ~ a == 0 -> ~ b == 0 -> / (a / b) == b / a. Proof. intros H H0. assert (Hk : ~ a / b == 0). { contradict H. transitivity (b * (a / b)). - now rewrite rdiv_simpl. - rewrite H. apply rmul_0_r. } apply rmul_reg_l with (a / b); trivial. rewrite (rmul_comm (a / b)), rinv_l; trivial. rewrite !rdiv_def. transitivity (/ a * a * (/ b * b)); [ | ring ]. now rewrite !rinv_l, rmul_1_l. Qed. Theorem rdiv4 a b c d : ~ b == 0 -> ~ d == 0 -> (a / b) * (c / d) == (a * c) / (b * d). Proof. intros H H0. assert (~ b * d == 0) by now apply field_is_integral_domain. apply rmul_reg_l with (b * d); trivial. rewrite rdiv_simpl; trivial. transitivity (b * (a / b) * (d * (c / d))); [ ring | ]. rewrite !rdiv_simpl; trivial. Qed. Theorem rdiv4b a b c d e f : ~ b * e == 0 -> ~ d * f == 0 -> ((a * f) / (b * e)) * ((c * e) / (d * f)) == (a * c) / (b * d). Proof. intros H H0. assert (~ b == 0) by (contradict H; rewrite H; ring). assert (~ e == 0) by (contradict H; rewrite H; ring). assert (~ d == 0) by (contradict H0; rewrite H0; ring). assert (~ f == 0) by (contradict H0; rewrite H0; ring). assert (~ b*d == 0) by now apply field_is_integral_domain. assert (~ e*f == 0) by now apply field_is_integral_domain. rewrite rdiv4; trivial. transitivity ((e * f) * (a * c) / ((e * f) * (b * d))). - apply rdiv_ext; ring. - rewrite <- rdiv4, rdiv_r_r; trivial. Qed. Theorem rdiv7 a b c d : ~ b == 0 -> ~ c == 0 -> ~ d == 0 -> (a / b) / (c / d) == (a * d) / (b * c). Proof. intros. rewrite (rdiv_def (a / b)). rewrite rdiv6; trivial. apply rdiv4; trivial. Qed. Theorem rdiv7b a b c d e f : ~ b * f == 0 -> ~ c * e == 0 -> ~ d * f == 0 -> ((a * e) / (b * f)) / ((c * e) / (d * f)) == (a * d) / (b * c). Proof. intros Hbf Hce Hdf. assert (~ c==0) by (contradict Hce; rewrite Hce; ring). assert (~ e==0) by (contradict Hce; rewrite Hce; ring). assert (~ b==0) by (contradict Hbf; rewrite Hbf; ring). assert (~ f==0) by (contradict Hbf; rewrite Hbf; ring). assert (~ b*c==0) by now apply field_is_integral_domain. assert (~ e*f==0) by now apply field_is_integral_domain. rewrite rdiv7; trivial. transitivity ((e * f) * (a * d) / ((e * f) * (b * c))). - apply rdiv_ext; ring. - now rewrite <- rdiv4, rdiv_r_r. Qed. Theorem rinv_nz a : ~ a == 0 -> ~ /a == 0. Proof. intros H H0. apply rI_neq_rO. rewrite <- (rdiv_r_r H), rdiv_def, H0. apply rmul_0_r. Qed. Theorem rdiv8 a b : ~ b == 0 -> a == 0 -> a / b == 0. Proof. intros H H0. now rewrite rdiv_def, H0, rmul_0_l. Qed. Theorem cross_product_eq a b c d : ~ b == 0 -> ~ d == 0 -> a * d == c * b -> a / b == c / d. Proof. intros. transitivity (a / b * (d / d)). - now rewrite rdiv_r_r, rmul_1_r. - now rewrite rdiv4, H1, (rmul_comm b d), <- rdiv4, rdiv_r_r. Qed. (* Results about [pow_pos] and [pow_N] *) Instance pow_ext : Proper (req ==> eq ==> req) (pow_pos rmul). Proof. intros x y H p p' <-. induction p as [p IH| p IH|];simpl; trivial; now rewrite !IH, ?H. Qed. Instance pow_N_ext : Proper (req ==> eq ==> req) (pow_N rI rmul). Proof. intros x y H n n' <-. destruct n; simpl; trivial. now apply pow_ext. Qed. Lemma pow_pos_0 p : pow_pos rmul 0 p == 0. Proof. induction p;simpl;trivial; now rewrite !IHp. Qed. Lemma pow_pos_1 p : pow_pos rmul 1 p == 1. Proof. induction p;simpl;trivial; ring [IHp]. Qed. Lemma pow_pos_cst c p : pow_pos rmul [c] p == [pow_pos cmul c p]. Proof. induction p;simpl;trivial; now rewrite !CRmorph.(morph_mul), !IHp. Qed. Lemma pow_pos_mul_l x y p : pow_pos rmul (x * y) p == pow_pos rmul x p * pow_pos rmul y p. Proof. induction p;simpl;trivial; ring [IHp]. Qed. Lemma pow_pos_add_r x p1 p2 : pow_pos rmul x (p1+p2) == pow_pos rmul x p1 * pow_pos rmul x p2. Proof. exact (Ring_theory.pow_pos_add Rsth rmul_ext rmul_assoc x p1 p2). Qed. Lemma pow_pos_mul_r x p1 p2 : pow_pos rmul x (p1*p2) == pow_pos rmul (pow_pos rmul x p1) p2. Proof. induction p1;simpl;intros; rewrite ?pow_pos_mul_l, ?pow_pos_add_r; simpl; trivial; ring [IHp1]. Qed. Lemma pow_pos_nz x p : ~x==0 -> ~pow_pos rmul x p == 0. Proof. intros Hx. induction p;simpl;trivial; repeat (apply field_is_integral_domain; trivial). Qed. Lemma pow_pos_div a b p : ~ b == 0 -> pow_pos rmul (a / b) p == pow_pos rmul a p / pow_pos rmul b p. Proof. intros. induction p; simpl; trivial. - rewrite IHp. assert (nz := pow_pos_nz p H). rewrite !rdiv4; trivial. apply field_is_integral_domain; trivial. - rewrite IHp. assert (nz := pow_pos_nz p H). rewrite !rdiv4; trivial. Qed. (* === is a morphism *) Instance PEadd_ext : Proper (NPEequiv ==> NPEequiv ==> NPEequiv) (@PEadd C). Proof. intros ? ? E ? ? E' l. simpl. now rewrite E, E'. Qed. Instance PEsub_ext : Proper (NPEequiv ==> NPEequiv ==> NPEequiv) (@PEsub C). Proof. intros ? ? E ? ? E' l. simpl. now rewrite E, E'. Qed. Instance PEmul_ext : Proper (NPEequiv ==> NPEequiv ==> NPEequiv) (@PEmul C). Proof. intros ? ? E ? ? E' l. simpl. now rewrite E, E'. Qed. Instance PEopp_ext : Proper (NPEequiv ==> NPEequiv) (@PEopp C). Proof. intros ? ? E l. simpl. now rewrite E. Qed. Instance PEpow_ext : Proper (NPEequiv ==> eq ==> NPEequiv) (@PEpow C). Proof. intros ? ? E ? ? <- l. simpl. rewrite !rpow_pow. apply pow_N_ext; trivial. Qed. Lemma PE_1_l (e : PExpr C) : (1 * e === e)%poly. Proof. intros l. simpl. rewrite phi_1. apply rmul_1_l. Qed. Lemma PE_1_r (e : PExpr C) : (e * 1 === e)%poly. Proof. intros l. simpl. rewrite phi_1. apply rmul_1_r. Qed. Lemma PEpow_0_r (e : PExpr C) : (e ^ 0 === 1)%poly. Proof. intros l. simpl. now rewrite !rpow_pow. Qed. Lemma PEpow_1_r (e : PExpr C) : (e ^ 1 === e)%poly. Proof. intros l. simpl. now rewrite !rpow_pow. Qed. Lemma PEpow_1_l n : (1 ^ n === 1)%poly. Proof. intros l. simpl. rewrite rpow_pow. destruct n; simpl. - now rewrite phi_1. - now rewrite phi_1, pow_pos_1. Qed. Lemma PEpow_add_r (e : PExpr C) n n' : (e ^ (n+n') === e ^ n * e ^ n')%poly. Proof. intros l. simpl. rewrite !rpow_pow. destruct n; simpl. - rewrite rmul_1_l. trivial. - destruct n'; simpl. + rewrite rmul_1_r. trivial. + apply pow_pos_add_r. Qed. Lemma PEpow_mul_l (e e' : PExpr C) n : ((e * e') ^ n === e ^ n * e' ^ n)%poly. Proof. intros l. simpl. rewrite !rpow_pow. destruct n; simpl; trivial. - symmetry; apply rmul_1_l. - apply pow_pos_mul_l. Qed. Lemma PEpow_mul_r (e : PExpr C) n n' : (e ^ (n * n') === (e ^ n) ^ n')%poly. Proof. intros l. simpl. rewrite !rpow_pow. destruct n, n'; simpl; trivial. - now rewrite pow_pos_1. - apply pow_pos_mul_r. Qed. Lemma PEpow_nz l e n : ~ e @ l == 0 -> ~ (e^n) @ l == 0. Proof. intros. simpl. rewrite rpow_pow. destruct n; simpl. - apply rI_neq_rO. - now apply pow_pos_nz. Qed. (*************************************************************************** Some equality test ***************************************************************************) Local Notation "a &&& b" := (if a then b else false) (at level 40, left associativity). (* equality test *) Fixpoint PExpr_eq (e e' : PExpr C) {struct e} : bool := match e, e' with | PEc c, PEc c' => ceqb c c' | PEX _ p, PEX _ p' => Pos.eqb p p' | e1 + e2, e1' + e2' => PExpr_eq e1 e1' &&& PExpr_eq e2 e2' | e1 - e2, e1' - e2' => PExpr_eq e1 e1' &&& PExpr_eq e2 e2' | e1 * e2, e1' * e2' => PExpr_eq e1 e1' &&& PExpr_eq e2 e2' | - e, - e' => PExpr_eq e e' | e ^ n, e' ^ n' => N.eqb n n' &&& PExpr_eq e e' | _, _ => false end%poly. Lemma if_true (a b : bool) : a &&& b = true -> a = true /\ b = true. Proof. destruct a, b; split; trivial. Qed. Theorem PExpr_eq_semi_ok e e' : PExpr_eq e e' = true -> (e === e')%poly. Proof. revert e'; induction e; destruct e'; simpl; try discriminate. - intros H l. now apply (morph_eq CRmorph). - case Pos.eqb_spec; intros; now subst. - intros H; destruct (if_true _ _ H). now rewrite IHe1, IHe2. - intros H; destruct (if_true _ _ H). now rewrite IHe1, IHe2. - intros H; destruct (if_true _ _ H). now rewrite IHe1, IHe2. - intros H. now rewrite IHe. - intros H. destruct (if_true _ _ H). apply N.eqb_eq in H0. now rewrite IHe, H0. Qed. Lemma PExpr_eq_spec e e' : BoolSpec (e === e')%poly True (PExpr_eq e e'). Proof. assert (H := PExpr_eq_semi_ok e e'). destruct PExpr_eq; constructor; intros; trivial. now apply H. Qed. (** Smart constructors for polynomial expression, with reduction of constants *) Definition NPEadd e1 e2 := match e1, e2 with | PEc c1, PEc c2 => PEc (c1 + c2) | PEc c, _ => if (c =? 0)%coef then e2 else e1 + e2 | _, PEc c => if (c =? 0)%coef then e1 else e1 + e2 (* Peut t'on factoriser ici ??? *) | _, _ => (e1 + e2) end%poly. Infix "++" := NPEadd (at level 60, right associativity). Theorem NPEadd_ok e1 e2 : (e1 ++ e2 === e1 + e2)%poly. Proof. intros l. destruct e1, e2; simpl; try reflexivity; try (case ceqb_spec); try intro H; try rewrite H; simpl; try apply eq_refl; try (ring [phi_0]). apply (morph_add CRmorph). Qed. Definition NPEsub e1 e2 := match e1, e2 with | PEc c1, PEc c2 => PEc (c1 - c2) | PEc c, _ => if (c =? 0)%coef then - e2 else e1 - e2 | _, PEc c => if (c =? 0)%coef then e1 else e1 - e2 (* Peut-on factoriser ici *) | _, _ => e1 - e2 end%poly. Infix "--" := NPEsub (at level 50, left associativity). Theorem NPEsub_ok e1 e2: (e1 -- e2 === e1 - e2)%poly. Proof. intros l. destruct e1, e2; simpl; try reflexivity; try case ceqb_spec; try intro H; try rewrite H; simpl; try rewrite phi_0; try reflexivity; try (symmetry; apply rsub_0_l); try (symmetry; apply rsub_0_r). apply (morph_sub CRmorph). Qed. Definition NPEopp e1 := match e1 with PEc c1 => PEc (- c1) | _ => - e1 end%poly. Theorem NPEopp_ok e : (NPEopp e === -e)%poly. Proof. intros l. destruct e; simpl; trivial. apply (morph_opp CRmorph). Qed. Definition NPEpow x n := match n with | N0 => 1 | Npos p => if (p =? 1)%positive then x else match x with | PEc c => if (c =? 1)%coef then 1 else if (c =? 0)%coef then 0 else PEc (pow_pos cmul c p) | _ => x ^ n end end%poly. Infix "^^" := NPEpow (at level 35, right associativity). Theorem NPEpow_ok e n : (e ^^ n === e ^ n)%poly. Proof. intros l. unfold NPEpow; destruct n. - simpl; now rewrite rpow_pow. - case Pos.eqb_spec; [intro; subst | intros _]. + simpl. now rewrite rpow_pow. + destruct e;simpl;trivial. repeat case ceqb_spec; intros; rewrite ?rpow_pow, ?H; simpl. * now rewrite phi_1, pow_pos_1. * now rewrite phi_0, pow_pos_0. * now rewrite pow_pos_cst. Qed. Fixpoint NPEmul (x y : PExpr C) {struct x} : PExpr C := match x, y with | PEc c1, PEc c2 => PEc (c1 * c2) | PEc c, _ => if (c =? 1)%coef then y else if (c =? 0)%coef then 0 else x * y | _, PEc c => if (c =? 1)%coef then x else if (c =? 0)%coef then 0 else x * y | e1 ^ n1, e2 ^ n2 => if (n1 =? n2)%N then (NPEmul e1 e2)^^n1 else x * y | _, _ => x * y end%poly. Infix "**" := NPEmul (at level 40, left associativity). Theorem NPEmul_ok e1 e2 : (e1 ** e2 === e1 * e2)%poly. Proof. intros l. revert e2; induction e1;destruct e2; simpl;try reflexivity; repeat (case ceqb_spec; intro H; try rewrite H; clear H); simpl; try reflexivity; try ring [phi_0 phi_1]. apply (morph_mul CRmorph). case N.eqb_spec; [intros <- | reflexivity]. rewrite NPEpow_ok. simpl. rewrite !rpow_pow. rewrite IHe1. destruct n; simpl; [ ring | apply pow_pos_mul_l ]. Qed. (* simplification *) Fixpoint PEsimp (e : PExpr C) : PExpr C := match e with | e1 + e2 => (PEsimp e1) ++ (PEsimp e2) | e1 * e2 => (PEsimp e1) ** (PEsimp e2) | e1 - e2 => (PEsimp e1) -- (PEsimp e2) | - e1 => NPEopp (PEsimp e1) | e1 ^ n1 => (PEsimp e1) ^^ n1 | _ => e end%poly. Theorem PEsimp_ok e : (PEsimp e === e)%poly. Proof. induction e; simpl. - reflexivity. - reflexivity. - intro l; trivial. - intro l; trivial. - rewrite NPEadd_ok. now f_equiv. - rewrite NPEsub_ok. now f_equiv. - rewrite NPEmul_ok. now f_equiv. - rewrite NPEopp_ok. now f_equiv. - rewrite NPEpow_ok. now f_equiv. Qed. (**************************************************************************** Datastructure ***************************************************************************) (* The input: syntax of a field expression *) Inductive FExpr : Type := | FEO : FExpr | FEI : FExpr | FEc: C -> FExpr | FEX: positive -> FExpr | FEadd: FExpr -> FExpr -> FExpr | FEsub: FExpr -> FExpr -> FExpr | FEmul: FExpr -> FExpr -> FExpr | FEopp: FExpr -> FExpr | FEinv: FExpr -> FExpr | FEdiv: FExpr -> FExpr -> FExpr | FEpow: FExpr -> N -> FExpr . Fixpoint FEeval (l : list R) (pe : FExpr) {struct pe} : R := match pe with | FEO => rO | FEI => rI | FEc c => phi c | FEX x => BinList.nth 0 x l | FEadd x y => FEeval l x + FEeval l y | FEsub x y => FEeval l x - FEeval l y | FEmul x y => FEeval l x * FEeval l y | FEopp x => - FEeval l x | FEinv x => / FEeval l x | FEdiv x y => FEeval l x / FEeval l y | FEpow x n => rpow (FEeval l x) (Cp_phi n) end. Strategy expand [FEeval]. (* The result of the normalisation *) Record linear : Type := mk_linear { num : PExpr C; denum : PExpr C; condition : list (PExpr C) }. (*************************************************************************** Semantics and properties of side condition ***************************************************************************) Fixpoint PCond (l : list R) (le : list (PExpr C)) {struct le} : Prop := match le with | nil => True | e1 :: nil => ~ req (e1 @ l) rO | e1 :: l1 => ~ req (e1 @ l) rO /\ PCond l l1 end. Theorem PCond_cons l a l1 : PCond l (a :: l1) <-> ~ a @ l == 0 /\ PCond l l1. Proof. destruct l1. - simpl. split; [split|destruct 1]; trivial. - reflexivity. Qed. Theorem PCond_cons_inv_l l a l1 : PCond l (a::l1) -> ~ a @ l == 0. Proof. rewrite PCond_cons. now destruct 1. Qed. Theorem PCond_cons_inv_r l a l1 : PCond l (a :: l1) -> PCond l l1. Proof. rewrite PCond_cons. now destruct 1. Qed. Theorem PCond_app l l1 l2 : PCond l (l1 ++ l2) <-> PCond l l1 /\ PCond l l2. Proof. induction l1. - simpl. split; [split|destruct 1]; trivial. - simpl app. rewrite !PCond_cons, IHl1. symmetry; apply and_assoc. Qed. (* An unsatisfiable condition: issued when a division by zero is detected *) Definition absurd_PCond := cons 0%poly nil. Lemma absurd_PCond_bottom : forall l, ~ PCond l absurd_PCond. Proof. unfold absurd_PCond; simpl. red; intros. apply H. apply phi_0. Qed. (*************************************************************************** Normalisation ***************************************************************************) Definition default_isIn e1 p1 e2 p2 := if PExpr_eq e1 e2 then match Z.pos_sub p1 p2 with | Zpos p => Some (Npos p, 1%poly) | Z0 => Some (N0, 1%poly) | Zneg p => Some (N0, e2 ^^ Npos p) end else None. Fixpoint isIn e1 p1 e2 p2 {struct e2}: option (N * PExpr C) := match e2 with | e3 * e4 => match isIn e1 p1 e3 p2 with | Some (N0, e5) => Some (N0, e5 ** (e4 ^^ Npos p2)) | Some (Npos p, e5) => match isIn e1 p e4 p2 with | Some (n, e6) => Some (n, e5 ** e6) | None => Some (Npos p, e5 ** (e4 ^^ Npos p2)) end | None => match isIn e1 p1 e4 p2 with | Some (n, e5) => Some (n, (e3 ^^ Npos p2) ** e5) | None => None end end | e3 ^ N0 => None | e3 ^ Npos p3 => isIn e1 p1 e3 (Pos.mul p3 p2) | _ => default_isIn e1 p1 e2 p2 end%poly. Definition ZtoN z := match z with Zpos p => Npos p | _ => N0 end. Definition NtoZ n := match n with Npos p => Zpos p | _ => Z0 end. Lemma Z_pos_sub_gt p q : (p > q)%positive -> Z.pos_sub p q = Zpos (p - q). Proof. intros; now apply Z.pos_sub_gt, Pos.gt_lt. Qed. Ltac simpl_pos_sub := rewrite ?Z_pos_sub_gt in * by assumption. Lemma default_isIn_ok e1 e2 p1 p2 : match default_isIn e1 p1 e2 p2 with | Some(n, e3) => let n' := ZtoN (Zpos p1 - NtoZ n) in (e2 ^ N.pos p2 === e1 ^ n' * e3)%poly /\ (Zpos p1 > NtoZ n)%Z | _ => True end. Proof. unfold default_isIn. case PExpr_eq_spec; trivial. intros EQ. rewrite Z.pos_sub_spec. case Pos.compare_spec;intros H; split; try reflexivity. - simpl. now rewrite PE_1_r, H, EQ. - rewrite NPEpow_ok, EQ, <- PEpow_add_r. f_equiv. simpl. f_equiv. now rewrite Pos.add_comm, Pos.sub_add. - simpl. rewrite PE_1_r, EQ. f_equiv. rewrite Z.pos_sub_gt by now apply Pos.sub_decr. simpl. f_equiv. rewrite Pos.sub_sub_distr, Pos.add_comm; trivial. rewrite Pos.add_sub; trivial. apply Pos.sub_decr; trivial. - simpl. now apply Z.lt_gt, Pos.sub_decr. Qed. Ltac npe_simpl := rewrite ?NPEmul_ok, ?NPEpow_ok, ?PEpow_mul_l. Ltac npe_ring := intro l; simpl; ring. Theorem isIn_ok e1 p1 e2 p2 : match isIn e1 p1 e2 p2 with | Some(n, e3) => let n' := ZtoN (Zpos p1 - NtoZ n) in (e2 ^ N.pos p2 === e1 ^ n' * e3)%poly /\ (Zpos p1 > NtoZ n)%Z | _ => True end. Proof. Opaque NPEpow. revert p1 p2. induction e2; intros p1 p2; try refine (default_isIn_ok e1 _ p1 p2); simpl isIn. - specialize (IHe2_1 p1 p2). destruct isIn as [([|p],e)|]. + split; [|reflexivity]. clear IHe2_2. destruct IHe2_1 as (IH,_). npe_simpl. rewrite IH. npe_ring. + specialize (IHe2_2 p p2). destruct isIn as [([|p'],e')|]. * destruct IHe2_1 as (IH1,GT1). destruct IHe2_2 as (IH2,GT2). split; [|simpl; apply Zgt_trans with (Z.pos p); trivial]. npe_simpl. rewrite IH1, IH2. simpl. simpl_pos_sub. simpl. replace (N.pos p1) with (N.pos p + N.pos (p1 - p))%N. rewrite PEpow_add_r; npe_ring. { simpl. f_equal. rewrite Pos.add_comm, Pos.sub_add. trivial. now apply Pos.gt_lt. } * destruct IHe2_1 as (IH1,GT1). destruct IHe2_2 as (IH2,GT2). assert (Z.pos p1 > Z.pos p')%Z by (now apply Zgt_trans with (Zpos p)). split; [|simpl; trivial]. npe_simpl. rewrite IH1, IH2. simpl. simpl_pos_sub. simpl. replace (N.pos (p1 - p')) with (N.pos (p1 - p) + N.pos (p - p'))%N. rewrite PEpow_add_r; npe_ring. { simpl. f_equal. rewrite Pos.add_sub_assoc, Pos.sub_add; trivial. now apply Pos.gt_lt. now apply Pos.gt_lt. } * destruct IHe2_1 as (IH,GT). split; trivial. npe_simpl. rewrite IH. npe_ring. + specialize (IHe2_2 p1 p2). destruct isIn as [(n,e)|]; trivial. destruct IHe2_2 as (IH,GT). split; trivial. set (d := ZtoN (Z.pos p1 - NtoZ n)) in *; clearbody d. npe_simpl. rewrite IH. npe_ring. - destruct n; trivial. specialize (IHe2 p1 (p * p2)%positive). destruct isIn as [(n,e)|]; trivial. destruct IHe2 as (IH,GT). split; trivial. set (d := ZtoN (Z.pos p1 - NtoZ n)) in *; clearbody d. now rewrite <- PEpow_mul_r. Qed. Record rsplit : Type := mk_rsplit { rsplit_left : PExpr C; rsplit_common : PExpr C; rsplit_right : PExpr C}. (* Stupid name clash *) Notation left := rsplit_left. Notation right := rsplit_right. Notation common := rsplit_common. Fixpoint split_aux e1 p e2 {struct e1}: rsplit := match e1 with | e3 * e4 => let r1 := split_aux e3 p e2 in let r2 := split_aux e4 p (right r1) in mk_rsplit (left r1 ** left r2) (common r1 ** common r2) (right r2) | e3 ^ N0 => mk_rsplit 1 1 e2 | e3 ^ Npos p3 => split_aux e3 (Pos.mul p3 p) e2 | _ => match isIn e1 p e2 1 with | Some (N0,e3) => mk_rsplit 1 (e1 ^^ Npos p) e3 | Some (Npos q, e3) => mk_rsplit (e1 ^^ Npos q) (e1 ^^ Npos (p - q)) e3 | None => mk_rsplit (e1 ^^ Npos p) 1 e2 end end%poly. Lemma split_aux_ok1 e1 p e2 : (let res := match isIn e1 p e2 1 with | Some (N0,e3) => mk_rsplit 1 (e1 ^^ Npos p) e3 | Some (Npos q, e3) => mk_rsplit (e1 ^^ Npos q) (e1 ^^ Npos (p - q)) e3 | None => mk_rsplit (e1 ^^ Npos p) 1 e2 end in e1 ^ Npos p === left res * common res /\ e2 === right res * common res)%poly. Proof. Opaque NPEpow NPEmul. intros. unfold res;clear res; generalize (isIn_ok e1 p e2 xH). destruct (isIn e1 p e2 1) as [([|p'],e')|]; simpl. - intros (H1,H2); split; npe_simpl. + now rewrite PE_1_l. + rewrite PEpow_1_r in H1. rewrite H1. npe_ring. - intros (H1,H2); split; npe_simpl. + rewrite <- PEpow_add_r. f_equiv. simpl. f_equal. rewrite Pos.add_comm, Pos.sub_add; trivial. now apply Z.gt_lt in H2. + rewrite PEpow_1_r in H1. rewrite H1. simpl_pos_sub. simpl. npe_ring. - intros _; split; npe_simpl; now rewrite PE_1_r. Qed. Theorem split_aux_ok: forall e1 p e2, (e1 ^ Npos p === left (split_aux e1 p e2) * common (split_aux e1 p e2) /\ e2 === right (split_aux e1 p e2) * common (split_aux e1 p e2))%poly. Proof. induction e1;intros k e2; try refine (split_aux_ok1 _ k e2);simpl. destruct (IHe1_1 k e2) as (H1,H2). destruct (IHe1_2 k (right (split_aux e1_1 k e2))) as (H3,H4). clear IHe1_1 IHe1_2. - npe_simpl; split. * rewrite H1, H3. npe_ring. * rewrite H2 at 1. rewrite H4 at 1. npe_ring. - destruct n; simpl. + rewrite PEpow_0_r, PEpow_1_l, !PE_1_r. now split. + rewrite <- PEpow_mul_r. simpl. apply IHe1. Qed. Definition split e1 e2 := split_aux e1 xH e2. Theorem split_ok_l e1 e2 : (e1 === left (split e1 e2) * common (split e1 e2))%poly. Proof. destruct (split_aux_ok e1 xH e2) as (H,_). now rewrite <- H, PEpow_1_r. Qed. Theorem split_ok_r e1 e2 : (e2 === right (split e1 e2) * common (split e1 e2))%poly. Proof. destruct (split_aux_ok e1 xH e2) as (_,H). trivial. Qed. Lemma split_nz_l l e1 e2 : ~ e1 @ l == 0 -> ~ left (split e1 e2) @ l == 0. Proof. intros H. contradict H. rewrite (split_ok_l e1 e2); simpl. now rewrite H, rmul_0_l. Qed. Lemma split_nz_r l e1 e2 : ~ e2 @ l == 0 -> ~ right (split e1 e2) @ l == 0. Proof. intros H. contradict H. rewrite (split_ok_r e1 e2); simpl. now rewrite H, rmul_0_l. Qed. Fixpoint Fnorm (e : FExpr) : linear := match e with | FEO => mk_linear 0 1 nil | FEI => mk_linear 1 1 nil | FEc c => mk_linear (PEc c) 1 nil | FEX x => mk_linear (PEX C x) 1 nil | FEadd e1 e2 => let x := Fnorm e1 in let y := Fnorm e2 in let s := split (denum x) (denum y) in mk_linear ((num x ** right s) ++ (num y ** left s)) (left s ** (right s ** common s)) (condition x ++ condition y)%list | FEsub e1 e2 => let x := Fnorm e1 in let y := Fnorm e2 in let s := split (denum x) (denum y) in mk_linear ((num x ** right s) -- (num y ** left s)) (left s ** (right s ** common s)) (condition x ++ condition y)%list | FEmul e1 e2 => let x := Fnorm e1 in let y := Fnorm e2 in let s1 := split (num x) (denum y) in let s2 := split (num y) (denum x) in mk_linear (left s1 ** left s2) (right s2 ** right s1) (condition x ++ condition y)%list | FEopp e1 => let x := Fnorm e1 in mk_linear (NPEopp (num x)) (denum x) (condition x) | FEinv e1 => let x := Fnorm e1 in mk_linear (denum x) (num x) (num x :: condition x) | FEdiv e1 e2 => let x := Fnorm e1 in let y := Fnorm e2 in let s1 := split (num x) (num y) in let s2 := split (denum x) (denum y) in mk_linear (left s1 ** right s2) (left s2 ** right s1) (num y :: condition x ++ condition y)%list | FEpow e1 n => let x := Fnorm e1 in mk_linear ((num x)^^n) ((denum x)^^n) (condition x) end. (* Example *) (* Eval compute in (Fnorm (FEdiv (FEc cI) (FEadd (FEinv (FEX xH%positive)) (FEinv (FEX (xO xH)%positive))))). *) Theorem Pcond_Fnorm l e : PCond l (condition (Fnorm e)) -> ~ (denum (Fnorm e))@l == 0. Proof. induction e; simpl condition; rewrite ?PCond_cons, ?PCond_app; simpl denum; intros (Hc1,Hc2) || intros Hc; rewrite ?NPEmul_ok. - simpl. rewrite phi_1; exact rI_neq_rO. - simpl. rewrite phi_1; exact rI_neq_rO. - simpl; intros. rewrite phi_1; exact rI_neq_rO. - simpl; intros. rewrite phi_1; exact rI_neq_rO. - rewrite <- split_ok_r. simpl. apply field_is_integral_domain. + apply split_nz_l, IHe1, Hc1. + apply IHe2, Hc2. - rewrite <- split_ok_r. simpl. apply field_is_integral_domain. + apply split_nz_l, IHe1, Hc1. + apply IHe2, Hc2. - simpl. apply field_is_integral_domain. + apply split_nz_r, IHe1, Hc1. + apply split_nz_r, IHe2, Hc2. - now apply IHe. - trivial. - destruct Hc2 as (Hc2,_). simpl. apply field_is_integral_domain. + apply split_nz_l, IHe1, Hc2. + apply split_nz_r, Hc1. - rewrite NPEpow_ok. apply PEpow_nz, IHe, Hc. Qed. (*************************************************************************** Main theorem ***************************************************************************) Ltac uneval := repeat match goal with | |- context [ ?x @ ?l * ?y @ ?l ] => change (x@l * y@l) with ((x*y)@l) | |- context [ ?x @ ?l + ?y @ ?l ] => change (x@l + y@l) with ((x+y)@l) end. Theorem Fnorm_FEeval_PEeval l fe: PCond l (condition (Fnorm fe)) -> FEeval l fe == (num (Fnorm fe)) @ l / (denum (Fnorm fe)) @ l. Proof. induction fe; simpl condition; rewrite ?PCond_cons, ?PCond_app; simpl; intros (Hc1,Hc2) || intros Hc; try (specialize (IHfe1 Hc1);apply Pcond_Fnorm in Hc1); try (specialize (IHfe2 Hc2);apply Pcond_Fnorm in Hc2); try set (F1 := Fnorm fe1) in *; try set (F2 := Fnorm fe2) in *. - now rewrite phi_1, phi_0, rdiv_def. - now rewrite phi_1; apply rdiv1. - rewrite phi_1; apply rdiv1. - rewrite phi_1; apply rdiv1. - rewrite NPEadd_ok, !NPEmul_ok. simpl. rewrite <- rdiv2b; uneval; rewrite <- ?split_ok_l, <- ?split_ok_r; trivial. now f_equiv. - rewrite NPEsub_ok, !NPEmul_ok. simpl. rewrite <- rdiv3b; uneval; rewrite <- ?split_ok_l, <- ?split_ok_r; trivial. now f_equiv. - rewrite !NPEmul_ok. simpl. rewrite IHfe1, IHfe2. rewrite (split_ok_l (num F1) (denum F2) l), (split_ok_r (num F1) (denum F2) l), (split_ok_l (num F2) (denum F1) l), (split_ok_r (num F2) (denum F1) l) in *. apply rdiv4b; trivial. - rewrite NPEopp_ok; simpl; rewrite (IHfe Hc); apply rdiv5. - rewrite (IHfe Hc2); apply rdiv6; trivial; apply Pcond_Fnorm; trivial. - destruct Hc2 as (Hc2,Hc3). rewrite !NPEmul_ok. simpl. assert (U1 := split_ok_l (num F1) (num F2) l). assert (U2 := split_ok_r (num F1) (num F2) l). assert (U3 := split_ok_l (denum F1) (denum F2) l). assert (U4 := split_ok_r (denum F1) (denum F2) l). rewrite (IHfe1 Hc2), (IHfe2 Hc3), U1, U2, U3, U4; apply rdiv7b; rewrite <- ?U2, <- ?U3, <- ?U4; try apply Pcond_Fnorm; trivial. - rewrite !NPEpow_ok. simpl. rewrite !rpow_pow, (IHfe Hc). destruct n; simpl. + apply rdiv1. + apply pow_pos_div. apply Pcond_Fnorm; trivial. Qed. Theorem Fnorm_crossproduct l fe1 fe2 : let nfe1 := Fnorm fe1 in let nfe2 := Fnorm fe2 in (num nfe1 * denum nfe2) @ l == (num nfe2 * denum nfe1) @ l -> PCond l (condition nfe1 ++ condition nfe2) -> FEeval l fe1 == FEeval l fe2. Proof. simpl. rewrite PCond_app. intros Hcrossprod (Hc1,Hc2). rewrite !Fnorm_FEeval_PEeval; trivial. apply cross_product_eq; trivial; apply Pcond_Fnorm; trivial. Qed. (* Correctness lemmas of reflexive tactics *) Notation Ninterp_PElist := (interp_PElist rO rI radd rmul rsub ropp req phi Cp_phi rpow). Notation Nmk_monpol_list := (mk_monpol_list cO cI cadd cmul csub copp ceqb cdiv). Theorem Fnorm_ok: forall n l lpe fe, Ninterp_PElist l lpe -> Peq ceqb (Nnorm n (Nmk_monpol_list lpe) (num (Fnorm fe))) (Pc cO) = true -> PCond l (condition (Fnorm fe)) -> FEeval l fe == 0. Proof. intros n l lpe fe Hlpe H H1. rewrite (Fnorm_FEeval_PEeval l fe H1). apply rdiv8. apply Pcond_Fnorm; trivial. transitivity (0@l); trivial. rewrite (norm_subst_ok Rsth Reqe ARth CRmorph pow_th cdiv_th n l lpe); trivial. change (0 @ l) with (Pphi 0 radd rmul phi l (Pc cO)). apply (Peq_ok Rsth Reqe CRmorph); trivial. Qed. Notation ring_rw_correct := (ring_rw_correct Rsth Reqe ARth CRmorph pow_th cdiv_th get_sign_spec). Notation ring_rw_pow_correct := (ring_rw_pow_correct Rsth Reqe ARth CRmorph pow_th cdiv_th get_sign_spec). Notation ring_correct := (ring_correct Rsth Reqe ARth CRmorph pow_th cdiv_th). (* simplify a field expression into a fraction *) (* TODO: simplify when den is constant... *) Definition display_linear l num den := NPphi_dev l num / NPphi_dev l den. Definition display_pow_linear l num den := NPphi_pow l num / NPphi_pow l den. Theorem Field_rw_correct n lpe l : Ninterp_PElist l lpe -> forall lmp, Nmk_monpol_list lpe = lmp -> forall fe nfe, Fnorm fe = nfe -> PCond l (condition nfe) -> FEeval l fe == display_linear l (Nnorm n lmp (num nfe)) (Nnorm n lmp (denum nfe)). Proof. intros Hlpe lmp lmp_eq fe nfe eq_nfe H; subst nfe lmp. rewrite (Fnorm_FEeval_PEeval _ _ H). unfold display_linear; apply rdiv_ext; eapply ring_rw_correct; eauto. Qed. Theorem Field_rw_pow_correct n lpe l : Ninterp_PElist l lpe -> forall lmp, Nmk_monpol_list lpe = lmp -> forall fe nfe, Fnorm fe = nfe -> PCond l (condition nfe) -> FEeval l fe == display_pow_linear l (Nnorm n lmp (num nfe)) (Nnorm n lmp (denum nfe)). Proof. intros Hlpe lmp lmp_eq fe nfe eq_nfe H; subst nfe lmp. rewrite (Fnorm_FEeval_PEeval _ _ H). unfold display_pow_linear; apply rdiv_ext; eapply ring_rw_pow_correct;eauto. Qed. Theorem Field_correct n l lpe fe1 fe2 : Ninterp_PElist l lpe -> forall lmp, Nmk_monpol_list lpe = lmp -> forall nfe1, Fnorm fe1 = nfe1 -> forall nfe2, Fnorm fe2 = nfe2 -> Peq ceqb (Nnorm n lmp (num nfe1 * denum nfe2)) (Nnorm n lmp (num nfe2 * denum nfe1)) = true -> PCond l (condition nfe1 ++ condition nfe2) -> FEeval l fe1 == FEeval l fe2. Proof. intros Hlpe lmp eq_lmp nfe1 eq1 nfe2 eq2 Hnorm Hcond; subst nfe1 nfe2 lmp. apply Fnorm_crossproduct; trivial. eapply ring_correct; eauto. Qed. (* simplify a field equation : generate the crossproduct and simplify polynomials *) Theorem Field_simplify_eq_correct : forall n l lpe fe1 fe2, Ninterp_PElist l lpe -> forall lmp, Nmk_monpol_list lpe = lmp -> forall nfe1, Fnorm fe1 = nfe1 -> forall nfe2, Fnorm fe2 = nfe2 -> forall den, split (denum nfe1) (denum nfe2) = den -> NPphi_dev l (Nnorm n lmp (num nfe1 * right den)) == NPphi_dev l (Nnorm n lmp (num nfe2 * left den)) -> PCond l (condition nfe1 ++ condition nfe2) -> FEeval l fe1 == FEeval l fe2. Proof. intros n l lpe fe1 fe2 Hlpe lmp Hlmp nfe1 eq1 nfe2 eq2 den eq3 Hcrossprod Hcond. apply Fnorm_crossproduct; rewrite ?eq1, ?eq2; trivial. simpl. rewrite (split_ok_l (denum nfe1) (denum nfe2) l), eq3. rewrite (split_ok_r (denum nfe1) (denum nfe2) l), eq3. simpl. rewrite !rmul_assoc. apply rmul_ext; trivial. rewrite (ring_rw_correct n lpe l Hlpe Logic.eq_refl (num nfe1 * right den) Logic.eq_refl), (ring_rw_correct n lpe l Hlpe Logic.eq_refl (num nfe2 * left den) Logic.eq_refl). rewrite Hlmp. apply Hcrossprod. Qed. Theorem Field_simplify_eq_pow_correct : forall n l lpe fe1 fe2, Ninterp_PElist l lpe -> forall lmp, Nmk_monpol_list lpe = lmp -> forall nfe1, Fnorm fe1 = nfe1 -> forall nfe2, Fnorm fe2 = nfe2 -> forall den, split (denum nfe1) (denum nfe2) = den -> NPphi_pow l (Nnorm n lmp (num nfe1 * right den)) == NPphi_pow l (Nnorm n lmp (num nfe2 * left den)) -> PCond l (condition nfe1 ++ condition nfe2) -> FEeval l fe1 == FEeval l fe2. Proof. intros n l lpe fe1 fe2 Hlpe lmp Hlmp nfe1 eq1 nfe2 eq2 den eq3 Hcrossprod Hcond. apply Fnorm_crossproduct; rewrite ?eq1, ?eq2; trivial. simpl. rewrite (split_ok_l (denum nfe1) (denum nfe2) l), eq3. rewrite (split_ok_r (denum nfe1) (denum nfe2) l), eq3. simpl. rewrite !rmul_assoc. apply rmul_ext; trivial. rewrite (ring_rw_pow_correct n lpe l Hlpe Logic.eq_refl (num nfe1 * right den) Logic.eq_refl), (ring_rw_pow_correct n lpe l Hlpe Logic.eq_refl (num nfe2 * left den) Logic.eq_refl). rewrite Hlmp. apply Hcrossprod. Qed. Theorem Field_simplify_aux_ok l fe1 fe2 den : FEeval l fe1 == FEeval l fe2 -> split (denum (Fnorm fe1)) (denum (Fnorm fe2)) = den -> PCond l (condition (Fnorm fe1) ++ condition (Fnorm fe2)) -> (num (Fnorm fe1) * right den) @ l == (num (Fnorm fe2) * left den) @ l. Proof. rewrite PCond_app; intros Hfe Hden (Hc1,Hc2); simpl. assert (Hc1' := Pcond_Fnorm _ _ Hc1). assert (Hc2' := Pcond_Fnorm _ _ Hc2). set (N1 := num (Fnorm fe1)) in *. set (N2 := num (Fnorm fe2)) in *. set (D1 := denum (Fnorm fe1)) in *. set (D2 := denum (Fnorm fe2)) in *. assert (~ (common den) @ l == 0). { intro H. apply Hc1'. rewrite (split_ok_l D1 D2 l). rewrite Hden. simpl. ring [H]. } apply (@rmul_reg_l ((common den) @ l)); trivial. rewrite !(rmul_comm ((common den) @ l)), <- !rmul_assoc. change (N1@l * (right den * common den) @ l == N2@l * (left den * common den) @ l). rewrite <- Hden, <- split_ok_l, <- split_ok_r. apply (@rmul_reg_l (/ D2@l)). { apply rinv_nz; trivial. } rewrite (rmul_comm (/ D2 @ l)), <- !rmul_assoc. rewrite <- rdiv_def, rdiv_r_r, rmul_1_r by trivial. apply (@rmul_reg_l (/ (D1@l))). { apply rinv_nz; trivial. } rewrite !(rmul_comm (/ D1@l)), <- !rmul_assoc. rewrite <- !rdiv_def, rdiv_r_r, rmul_1_r by trivial. rewrite (rmul_comm (/ D2@l)), <- rdiv_def. unfold N1,N2,D1,D2; rewrite <- !Fnorm_FEeval_PEeval; trivial. Qed. Theorem Field_simplify_eq_pow_in_correct : forall n l lpe fe1 fe2, Ninterp_PElist l lpe -> forall lmp, Nmk_monpol_list lpe = lmp -> forall nfe1, Fnorm fe1 = nfe1 -> forall nfe2, Fnorm fe2 = nfe2 -> forall den, split (denum nfe1) (denum nfe2) = den -> forall np1, Nnorm n lmp (num nfe1 * right den) = np1 -> forall np2, Nnorm n lmp (num nfe2 * left den) = np2 -> FEeval l fe1 == FEeval l fe2 -> PCond l (condition nfe1 ++ condition nfe2) -> NPphi_pow l np1 == NPphi_pow l np2. Proof. intros. subst nfe1 nfe2 lmp np1 np2. rewrite !(Pphi_pow_ok Rsth Reqe ARth CRmorph pow_th get_sign_spec). repeat (rewrite <- (norm_subst_ok Rsth Reqe ARth CRmorph pow_th);trivial). simpl. apply Field_simplify_aux_ok; trivial. Qed. Theorem Field_simplify_eq_in_correct : forall n l lpe fe1 fe2, Ninterp_PElist l lpe -> forall lmp, Nmk_monpol_list lpe = lmp -> forall nfe1, Fnorm fe1 = nfe1 -> forall nfe2, Fnorm fe2 = nfe2 -> forall den, split (denum nfe1) (denum nfe2) = den -> forall np1, Nnorm n lmp (num nfe1 * right den) = np1 -> forall np2, Nnorm n lmp (num nfe2 * left den) = np2 -> FEeval l fe1 == FEeval l fe2 -> PCond l (condition nfe1 ++ condition nfe2) -> NPphi_dev l np1 == NPphi_dev l np2. Proof. intros. subst nfe1 nfe2 lmp np1 np2. rewrite !(Pphi_dev_ok Rsth Reqe ARth CRmorph get_sign_spec). repeat (rewrite <- (norm_subst_ok Rsth Reqe ARth CRmorph pow_th);trivial). apply Field_simplify_aux_ok; trivial. Qed. Section Fcons_impl. Variable Fcons : PExpr C -> list (PExpr C) -> list (PExpr C). Hypothesis PCond_fcons_inv : forall l a l1, PCond l (Fcons a l1) -> ~ a @ l == 0 /\ PCond l l1. Fixpoint Fapp (l m:list (PExpr C)) {struct l} : list (PExpr C) := match l with | nil => m | cons a l1 => Fcons a (Fapp l1 m) end. Lemma fcons_ok : forall l l1, (forall lock, lock = PCond l -> lock (Fapp l1 nil)) -> PCond l l1. Proof. intros l l1 h1; assert (H := h1 (PCond l) (refl_equal _));clear h1. induction l1; simpl; intros. trivial. elim PCond_fcons_inv with (1 := H); intros. destruct l1; trivial. split; trivial. apply IHl1; trivial. Qed. End Fcons_impl. Section Fcons_simpl. (* Some general simpifications of the condition: eliminate duplicates, split multiplications *) Fixpoint Fcons (e:PExpr C) (l:list (PExpr C)) {struct l} : list (PExpr C) := match l with nil => cons e nil | cons a l1 => if PExpr_eq e a then l else cons a (Fcons e l1) end. Theorem PFcons_fcons_inv: forall l a l1, PCond l (Fcons a l1) -> ~ a @ l == 0 /\ PCond l l1. Proof. induction l1 as [|e l1]; simpl Fcons. - simpl; now split. - case PExpr_eq_spec; intros H; rewrite !PCond_cons; intros (H1,H2); repeat split; trivial. + now rewrite H. + now apply IHl1. + now apply IHl1. Qed. (* equality of normal forms rather than syntactic equality *) Fixpoint Fcons0 (e:PExpr C) (l:list (PExpr C)) {struct l} : list (PExpr C) := match l with nil => cons e nil | cons a l1 => if Peq ceqb (Nnorm O nil e) (Nnorm O nil a) then l else cons a (Fcons0 e l1) end. Theorem PFcons0_fcons_inv: forall l a l1, PCond l (Fcons0 a l1) -> ~ a @ l == 0 /\ PCond l l1. Proof. induction l1 as [|e l1]; simpl Fcons0. - simpl; now split. - generalize (ring_correct O l nil a e). lazy zeta; simpl Peq. case Peq; intros H; rewrite !PCond_cons; intros (H1,H2); repeat split; trivial. + now rewrite H. + now apply IHl1. + now apply IHl1. Qed. (* split factorized denominators *) Fixpoint Fcons00 (e:PExpr C) (l:list (PExpr C)) {struct e} : list (PExpr C) := match e with PEmul e1 e2 => Fcons00 e1 (Fcons00 e2 l) | PEpow e1 _ => Fcons00 e1 l | _ => Fcons0 e l end. Theorem PFcons00_fcons_inv: forall l a l1, PCond l (Fcons00 a l1) -> ~ a @ l == 0 /\ PCond l l1. Proof. intros l a; elim a; try (intros; apply PFcons0_fcons_inv; trivial; fail). - intros p H p0 H0 l1 H1. simpl in H1. destruct (H _ H1) as (H2,H3). destruct (H0 _ H3) as (H4,H5). split; trivial. simpl. apply field_is_integral_domain; trivial. - intros. destruct (H _ H0). split; trivial. apply PEpow_nz; trivial. Qed. Definition Pcond_simpl_gen := fcons_ok _ PFcons00_fcons_inv. (* Specific case when the equality test of coefs is complete w.r.t. the field equality: non-zero coefs can be eliminated, and opposite can be simplified (if -1 <> 0) *) Hypothesis ceqb_complete : forall c1 c2, [c1] == [c2] -> ceqb c1 c2 = true. Lemma ceqb_spec' c1 c2 : Bool.reflect ([c1] == [c2]) (ceqb c1 c2). Proof. assert (H := morph_eq CRmorph c1 c2). assert (H' := @ceqb_complete c1 c2). destruct (ceqb c1 c2); constructor. - now apply H. - intro E. specialize (H' E). discriminate. Qed. Fixpoint Fcons1 (e:PExpr C) (l:list (PExpr C)) {struct e} : list (PExpr C) := match e with | PEmul e1 e2 => Fcons1 e1 (Fcons1 e2 l) | PEpow e _ => Fcons1 e l | PEopp e => if (-(1) =? 0)%coef then absurd_PCond else Fcons1 e l | PEc c => if (c =? 0)%coef then absurd_PCond else l | _ => Fcons0 e l end. Theorem PFcons1_fcons_inv: forall l a l1, PCond l (Fcons1 a l1) -> ~ a @ l == 0 /\ PCond l l1. Proof. intros l a; elim a; try (intros; apply PFcons0_fcons_inv; trivial; fail). - simpl; intros c l1. case ceqb_spec'; intros H H0. + elim (@absurd_PCond_bottom l H0). + split; trivial. rewrite <- phi_0; trivial. - intros p H p0 H0 l1 H1. simpl in H1. destruct (H _ H1) as (H2,H3). destruct (H0 _ H3) as (H4,H5). split; trivial. simpl. apply field_is_integral_domain; trivial. - simpl; intros p H l1. case ceqb_spec'; intros H0 H1. + elim (@absurd_PCond_bottom l H1). + destruct (H _ H1). split; trivial. apply ropp_neq_0; trivial. rewrite (morph_opp CRmorph), phi_0, phi_1 in H0. trivial. - intros. destruct (H _ H0);split;trivial. apply PEpow_nz; trivial. Qed. Definition Fcons2 e l := Fcons1 (PEsimp e) l. Theorem PFcons2_fcons_inv: forall l a l1, PCond l (Fcons2 a l1) -> ~ a @ l == 0 /\ PCond l l1. Proof. unfold Fcons2; intros l a l1 H; split; case (PFcons1_fcons_inv l (PEsimp a) l1); trivial. intros H1 H2 H3; case H1. transitivity (a@l); trivial. apply PEsimp_ok. Qed. Definition Pcond_simpl_complete := fcons_ok _ PFcons2_fcons_inv. End Fcons_simpl. End AlmostField. Section FieldAndSemiField. Record field_theory : Prop := mk_field { F_R : ring_theory rO rI radd rmul rsub ropp req; F_1_neq_0 : ~ 1 == 0; Fdiv_def : forall p q, p / q == p * / q; Finv_l : forall p, ~ p == 0 -> / p * p == 1 }. Definition F2AF f := mk_afield (Rth_ARth Rsth Reqe f.(F_R)) f.(F_1_neq_0) f.(Fdiv_def) f.(Finv_l). Record semi_field_theory : Prop := mk_sfield { SF_SR : semi_ring_theory rO rI radd rmul req; SF_1_neq_0 : ~ 1 == 0; SFdiv_def : forall p q, p / q == p * / q; SFinv_l : forall p, ~ p == 0 -> / p * p == 1 }. End FieldAndSemiField. End MakeFieldPol. Definition SF2AF R (rO rI:R) radd rmul rdiv rinv req Rsth (sf:semi_field_theory rO rI radd rmul rdiv rinv req) := mk_afield _ _ (SRth_ARth Rsth sf.(SF_SR)) sf.(SF_1_neq_0) sf.(SFdiv_def) sf.(SFinv_l). Section Complete. Variable R : Type. Variable (rO rI : R) (radd rmul rsub: R->R->R) (ropp : R -> R). Variable (rdiv : R -> R -> R) (rinv : R -> R). Variable req : R -> R -> Prop. Notation "0" := rO. Notation "1" := rI. Notation "x + y" := (radd x y). Notation "x * y " := (rmul x y). Notation "x - y " := (rsub x y). Notation "- x" := (ropp x). Notation "x / y " := (rdiv x y). Notation "/ x" := (rinv x). Notation "x == y" := (req x y) (at level 70, no associativity). Variable Rsth : Setoid_Theory R req. Add Setoid R req Rsth as R_setoid3. Variable Reqe : ring_eq_ext radd rmul ropp req. Add Morphism radd : radd_ext3. exact (Radd_ext Reqe). Qed. Add Morphism rmul : rmul_ext3. exact (Rmul_ext Reqe). Qed. Add Morphism ropp : ropp_ext3. exact (Ropp_ext Reqe). Qed. Section AlmostField. Variable AFth : almost_field_theory rO rI radd rmul rsub ropp rdiv rinv req. Let ARth := AFth.(AF_AR). Let rI_neq_rO := AFth.(AF_1_neq_0). Let rdiv_def := AFth.(AFdiv_def). Let rinv_l := AFth.(AFinv_l). Hypothesis S_inj : forall x y, 1+x==1+y -> x==y. Hypothesis gen_phiPOS_not_0 : forall p, ~ gen_phiPOS1 rI radd rmul p == 0. Lemma add_inj_r p x y : gen_phiPOS1 rI radd rmul p + x == gen_phiPOS1 rI radd rmul p + y -> x==y. Proof. elim p using Pos.peano_ind; simpl; intros. apply S_inj; trivial. apply H. apply S_inj. rewrite !(ARadd_assoc ARth). rewrite <- (ARgen_phiPOS_Psucc Rsth Reqe ARth); trivial. Qed. Lemma gen_phiPOS_inj x y : gen_phiPOS rI radd rmul x == gen_phiPOS rI radd rmul y -> x = y. Proof. rewrite <- !(same_gen Rsth Reqe ARth). case (Pos.compare_spec x y). intros. trivial. intros. elim gen_phiPOS_not_0 with (y - x)%positive. apply add_inj_r with x. symmetry. rewrite (ARadd_0_r Rsth ARth). rewrite <- (ARgen_phiPOS_add Rsth Reqe ARth). now rewrite Pos.add_comm, Pos.sub_add. intros. elim gen_phiPOS_not_0 with (x - y)%positive. apply add_inj_r with y. rewrite (ARadd_0_r Rsth ARth). rewrite <- (ARgen_phiPOS_add Rsth Reqe ARth). now rewrite Pos.add_comm, Pos.sub_add. Qed. Lemma gen_phiN_inj x y : gen_phiN rO rI radd rmul x == gen_phiN rO rI radd rmul y -> x = y. Proof. destruct x; destruct y; simpl; intros; trivial. elim gen_phiPOS_not_0 with p. symmetry . rewrite (same_gen Rsth Reqe ARth); trivial. elim gen_phiPOS_not_0 with p. rewrite (same_gen Rsth Reqe ARth); trivial. rewrite gen_phiPOS_inj with (1 := H); trivial. Qed. Lemma gen_phiN_complete x y : gen_phiN rO rI radd rmul x == gen_phiN rO rI radd rmul y -> N.eqb x y = true. Proof. intros. now apply N.eqb_eq, gen_phiN_inj. Qed. End AlmostField. Section Field. Variable Fth : field_theory rO rI radd rmul rsub ropp rdiv rinv req. Let Rth := Fth.(F_R). Let rI_neq_rO := Fth.(F_1_neq_0). Let rdiv_def := Fth.(Fdiv_def). Let rinv_l := Fth.(Finv_l). Let AFth := F2AF Rsth Reqe Fth. Let ARth := Rth_ARth Rsth Reqe Rth. Lemma ring_S_inj x y : 1+x==1+y -> x==y. Proof. intros. rewrite <- (ARadd_0_l ARth x), <- (ARadd_0_l ARth y). rewrite <- (Ropp_def Rth 1), (ARadd_comm ARth 1). rewrite <- !(ARadd_assoc ARth). now apply (Radd_ext Reqe). Qed. Hypothesis gen_phiPOS_not_0 : forall p, ~ gen_phiPOS1 rI radd rmul p == 0. Let gen_phiPOS_inject := gen_phiPOS_inj AFth ring_S_inj gen_phiPOS_not_0. Lemma gen_phiPOS_discr_sgn x y : ~ gen_phiPOS rI radd rmul x == - gen_phiPOS rI radd rmul y. Proof. red; intros. apply gen_phiPOS_not_0 with (y + x)%positive. rewrite (ARgen_phiPOS_add Rsth Reqe ARth). transitivity (gen_phiPOS1 1 radd rmul y + - gen_phiPOS1 1 radd rmul y). apply (Radd_ext Reqe); trivial. reflexivity. rewrite (same_gen Rsth Reqe ARth). rewrite (same_gen Rsth Reqe ARth). trivial. apply (Ropp_def Rth). Qed. Lemma gen_phiZ_inj x y : gen_phiZ rO rI radd rmul ropp x == gen_phiZ rO rI radd rmul ropp y -> x = y. Proof. destruct x; destruct y; simpl; intros. trivial. elim gen_phiPOS_not_0 with p. rewrite (same_gen Rsth Reqe ARth). symmetry ; trivial. elim gen_phiPOS_not_0 with p. rewrite (same_gen Rsth Reqe ARth). rewrite <- (Ropp_opp Rsth Reqe Rth (gen_phiPOS 1 radd rmul p)). rewrite <- H. apply (ARopp_zero Rsth Reqe ARth). elim gen_phiPOS_not_0 with p. rewrite (same_gen Rsth Reqe ARth). trivial. rewrite gen_phiPOS_inject with (1 := H); trivial. elim gen_phiPOS_discr_sgn with (1 := H). elim gen_phiPOS_not_0 with p. rewrite (same_gen Rsth Reqe ARth). rewrite <- (Ropp_opp Rsth Reqe Rth (gen_phiPOS 1 radd rmul p)). rewrite H. apply (ARopp_zero Rsth Reqe ARth). elim gen_phiPOS_discr_sgn with p0 p. symmetry ; trivial. replace p0 with p; trivial. apply gen_phiPOS_inject. rewrite <- (Ropp_opp Rsth Reqe Rth (gen_phiPOS 1 radd rmul p)). rewrite <- (Ropp_opp Rsth Reqe Rth (gen_phiPOS 1 radd rmul p0)). rewrite H; trivial. reflexivity. Qed. Lemma gen_phiZ_complete x y : gen_phiZ rO rI radd rmul ropp x == gen_phiZ rO rI radd rmul ropp y -> Zeq_bool x y = true. Proof. intros. replace y with x. unfold Zeq_bool. rewrite Z.compare_refl; trivial. apply gen_phiZ_inj; trivial. Qed. End Field. End Complete. Arguments FEO [C]. Arguments FEI [C].