(************************************************************************) (* * The Coq Proof Assistant / The Coq Development Team *) (* v * INRIA, CNRS and contributors - Copyright 1999-2018 *) (* (p ?= q) = Gt. Proof. intros. rewrite <- Pos.compare_succ_succ. now apply Pos.lt_gt, Pos.lt_lt_succ, Pos.gt_lt. Qed. Lemma Psucc_Gt : forall p, (Pos.succ p ?= p) = Gt. Proof. intros. apply Pos.lt_gt, Pos.lt_succ_diag_r. Qed. Fixpoint Lget (A:Set) (n:nat) (l:list A) {struct l}:option A := match l with nil => None | x::q => match n with O => Some x | S m => Lget A m q end end . Arguments Lget [A] n l. Lemma map_app : forall (A B:Set) (f:A -> B) l m, List.map f (l ++ m) = List.map f l ++ List.map f m. induction l. reflexivity. simpl. intro m ; apply f_equal;apply IHl. Qed. Lemma length_map : forall (A B:Set) (f:A -> B) l, length (List.map f l) = length l. induction l. reflexivity. simpl; apply f_equal;apply IHl. Qed. Lemma Lget_map : forall (A B:Set) (f:A -> B) i l, Lget i (List.map f l) = match Lget i l with Some a => Some (f a) | None => None end. induction i;intros [ | x l ] ;trivial. simpl;auto. Qed. Lemma Lget_app : forall (A:Set) (a:A) l i, Lget i (l ++ a :: nil) = if Arith.EqNat.beq_nat i (length l) then Some a else Lget i l. Proof. induction l;simpl Lget;simpl length. intros [ | i];simpl;reflexivity. intros [ | i];simpl. reflexivity. auto. Qed. Lemma Lget_app_Some : forall (A:Set) l delta i (a: A), Lget i l = Some a -> Lget i (l ++ delta) = Some a. induction l;destruct i;simpl;try congruence;auto. Qed. Section Store. Variable A:Type. Inductive Poption : Type:= PSome : A -> Poption | PNone : Poption. Inductive Tree : Type := Tempty : Tree | Branch0 : Tree -> Tree -> Tree | Branch1 : A -> Tree -> Tree -> Tree. Fixpoint Tget (p:positive) (T:Tree) {struct p} : Poption := match T with Tempty => PNone | Branch0 T1 T2 => match p with xI pp => Tget pp T2 | xO pp => Tget pp T1 | xH => PNone end | Branch1 a T1 T2 => match p with xI pp => Tget pp T2 | xO pp => Tget pp T1 | xH => PSome a end end. Fixpoint Tadd (p:positive) (a:A) (T:Tree) {struct p}: Tree := match T with | Tempty => match p with | xI pp => Branch0 Tempty (Tadd pp a Tempty) | xO pp => Branch0 (Tadd pp a Tempty) Tempty | xH => Branch1 a Tempty Tempty end | Branch0 T1 T2 => match p with | xI pp => Branch0 T1 (Tadd pp a T2) | xO pp => Branch0 (Tadd pp a T1) T2 | xH => Branch1 a T1 T2 end | Branch1 b T1 T2 => match p with | xI pp => Branch1 b T1 (Tadd pp a T2) | xO pp => Branch1 b (Tadd pp a T1) T2 | xH => Branch1 a T1 T2 end end. Definition mkBranch0 (T1 T2:Tree) := match T1,T2 with Tempty ,Tempty => Tempty | _,_ => Branch0 T1 T2 end. Fixpoint Tremove (p:positive) (T:Tree) {struct p}: Tree := match T with | Tempty => Tempty | Branch0 T1 T2 => match p with | xI pp => mkBranch0 T1 (Tremove pp T2) | xO pp => mkBranch0 (Tremove pp T1) T2 | xH => T end | Branch1 b T1 T2 => match p with | xI pp => Branch1 b T1 (Tremove pp T2) | xO pp => Branch1 b (Tremove pp T1) T2 | xH => mkBranch0 T1 T2 end end. Theorem Tget_Tempty: forall (p : positive), Tget p (Tempty) = PNone. destruct p;reflexivity. Qed. Theorem Tget_Tadd: forall i j a T, Tget i (Tadd j a T) = match (i ?= j) with Eq => PSome a | Lt => Tget i T | Gt => Tget i T end. Proof. intros i j. case_eq (i ?= j). intro H;rewrite (Pos.compare_eq _ _ H);intros a;clear i H. induction j;destruct T;simpl;try (apply IHj);congruence. unfold Pos.compare. generalize i;clear i;induction j;destruct T;simpl in H|-*; destruct i;simpl;try rewrite (IHj _ H);try (destruct i;simpl;congruence);reflexivity|| congruence. unfold Pos.compare. generalize i;clear i;induction j;destruct T;simpl in H|-*; destruct i;simpl;try rewrite (IHj _ H);try (destruct i;simpl;congruence);reflexivity|| congruence. Qed. Record Store : Type := mkStore {index:positive;contents:Tree}. Definition empty := mkStore xH Tempty. Definition push a S := mkStore (Pos.succ (index S)) (Tadd (index S) a (contents S)). Definition get i S := Tget i (contents S). Lemma get_empty : forall i, get i empty = PNone. intro i; case i; unfold empty,get; simpl;reflexivity. Qed. Inductive Full : Store -> Type:= F_empty : Full empty | F_push : forall a S, Full S -> Full (push a S). Theorem get_Full_Gt : forall S, Full S -> forall i, (i ?= index S) = Gt -> get i S = PNone. Proof. intros S W;induction W. unfold empty,index,get,contents;intros;apply Tget_Tempty. unfold index,get,push. simpl @contents. intros i e;rewrite Tget_Tadd. rewrite (Gt_Psucc _ _ e). unfold get in IHW. apply IHW;apply Gt_Psucc;assumption. Qed. Theorem get_Full_Eq : forall S, Full S -> get (index S) S = PNone. intros [index0 contents0] F. case F. unfold empty,index,get,contents;intros;apply Tget_Tempty. unfold push,index,get;simpl @contents. intros a S. rewrite Tget_Tadd. rewrite Psucc_Gt. intro W. change (get (Pos.succ (index S)) S =PNone). apply get_Full_Gt; auto. apply Psucc_Gt. Qed. Theorem get_push_Full : forall i a S, Full S -> get i (push a S) = match (i ?= index S) with Eq => PSome a | Lt => get i S | Gt => PNone end. Proof. intros i a S F. case_eq (i ?= index S). intro e;rewrite (Pos.compare_eq _ _ e). destruct S;unfold get,push,index;simpl @contents;rewrite Tget_Tadd. rewrite Pos.compare_refl;reflexivity. intros;destruct S;unfold get,push,index;simpl @contents;rewrite Tget_Tadd. simpl @index in H;rewrite H;reflexivity. intro H;generalize H;clear H. unfold get,push;simpl. rewrite Tget_Tadd;intro e;rewrite e. change (get i S=PNone). apply get_Full_Gt;auto. Qed. Lemma Full_push_compat : forall i a S, Full S -> forall x, get i S = PSome x -> get i (push a S) = PSome x. Proof. intros i a S F x H. case_eq (i ?= index S);intro test. rewrite (Pos.compare_eq _ _ test) in H. rewrite (get_Full_Eq _ F) in H;congruence. rewrite <- H. rewrite (get_push_Full i a). rewrite test;reflexivity. assumption. rewrite (get_Full_Gt _ F) in H;congruence. Qed. Lemma Full_index_one_empty : forall S, Full S -> index S = 1 -> S=empty. intros [ind cont] F one; inversion F. reflexivity. simpl @index in one;assert (h:=Pos.succ_not_1 (index S)). congruence. Qed. Lemma push_not_empty: forall a S, (push a S) <> empty. intros a [ind cont];unfold push,empty. intros [= H%Pos.succ_not_1]. assumption. Qed. Fixpoint In (x:A) (S:Store) (F:Full S) {struct F}: Prop := match F with F_empty => False | F_push a SS FF => x=a \/ In x SS FF end. Lemma get_In : forall (x:A) (S:Store) (F:Full S) i , get i S = PSome x -> In x S F. induction F. intro i;rewrite get_empty; congruence. intro i;rewrite get_push_Full;trivial. case_eq (i ?= index S);simpl. left;congruence. right;eauto. congruence. Qed. End Store. Arguments PNone [A]. Arguments PSome [A] _. Arguments Tempty [A]. Arguments Branch0 [A] _ _. Arguments Branch1 [A] _ _ _. Arguments Tget [A] p T. Arguments Tadd [A] p a T. Arguments Tget_Tempty [A] p. Arguments Tget_Tadd [A] i j a T. Arguments mkStore [A] index contents. Arguments index [A] s. Arguments contents [A] s. Arguments empty [A]. Arguments get [A] i S. Arguments push [A] a S. Arguments get_empty [A] i. Arguments get_push_Full [A] i a S _. Arguments Full [A] _. Arguments F_empty [A]. Arguments F_push [A] a S _. Arguments In [A] x S F. Section Map. Variables A B:Set. Variable f: A -> B. Fixpoint Tmap (T: Tree A) : Tree B := match T with Tempty => Tempty | Branch0 t1 t2 => Branch0 (Tmap t1) (Tmap t2) | Branch1 a t1 t2 => Branch1 (f a) (Tmap t1) (Tmap t2) end. Lemma Tget_Tmap: forall T i, Tget i (Tmap T)= match Tget i T with PNone => PNone | PSome a => PSome (f a) end. induction T;intro i;case i;simpl;auto. Defined. Lemma Tmap_Tadd: forall i a T, Tmap (Tadd i a T) = Tadd i (f a) (Tmap T). induction i;intros a T;case T;simpl;intros;try (rewrite IHi);simpl;reflexivity. Defined. Definition map (S:Store A) : Store B := mkStore (index S) (Tmap (contents S)). Lemma get_map: forall i S, get i (map S)= match get i S with PNone => PNone | PSome a => PSome (f a) end. destruct S;unfold get,map,contents,index;apply Tget_Tmap. Defined. Lemma map_push: forall a S, map (push a S) = push (f a) (map S). intros a S. case S. unfold push,map,contents,index. intros;rewrite Tmap_Tadd;reflexivity. Defined. Theorem Full_map : forall S, Full S -> Full (map S). intros S F. induction F. exact F_empty. rewrite map_push;constructor 2;assumption. Defined. End Map. Arguments Tmap [A B] f T. Arguments map [A B] f S. Arguments Full_map [A B f] S _. Notation "hyps \ A" := (push A hyps) (at level 72,left associativity).