(************************************************************************) (* * The Coq Proof Assistant / The Coq Development Team *) (* v * INRIA, CNRS and contributors - Copyright 1999-2018 *) (* (varmap A L) -> A}. Then, the tactic \texttt{quote f} will replace an expression \texttt{e} of type \texttt{A} by \texttt{(f vm t)} such that \texttt{e} and \texttt{(f vm t)} are convertible. The problem is then inverting the function \texttt{f}. The tactic works when: \begin{itemize} \item L is a simple inductive datatype. The constructors of L may have one of the three following forms: \begin{enumerate} \item ordinary recursive constructors like: \verb|Cplus : L -> L -> L| \item variable leaf like: \verb|Cvar : index -> L| \item constant leaf like \verb|Cconst : A -> L| \end{enumerate} The definition of \texttt{L} must contain at most one variable leaf and at most one constant leaf. When there are both a variable leaf and a constant leaf, there is an ambiguity on inversion. The term t can be either the interpretation of \texttt{(Cconst t)} or the interpretation of (\texttt{Cvar}~$i$) in a variable map containing the binding $i \rightarrow$~\texttt{t}. How to discriminate between these choices? To solve the dilemma, one gives to \texttt{quote} a list of \emph{constant constructors}: a term will be considered as a constant if it is either a constant constructor or the application of a constant constructor to constants. For example the list \verb+[S, O]+ defines the closed natural numbers. \texttt{(S (S O))} is a constant when \texttt{(S x)} is not. The definition of constants vary for each application of the tactic, so it can even be different for two applications of \texttt{quote} with the same function. \item \texttt{f} is a quite simple fixpoint on \texttt{L}. In particular, \texttt{f} must verify: \begin{verbatim} (f (Cvar i)) = (varmap_find vm default_value i) \end{verbatim} \begin{verbatim} (f (Cconst c)) = c \end{verbatim} where \texttt{index} and \texttt{varmap\_find} are those defined the \texttt{Quote} module. \emph{The tactic won't work with user's own variables map!!} It is mandatory to use the variable map defined in module \texttt{Quote}. \end{itemize} The method to proceed is then clear: \begin{itemize} \item Start with an empty hashtable of "registed leafs" that maps constr to integers and a "variable counter" equal to 0. \item Try to match the term with every right hand side of the definition of \texttt{f}. If there is one match, returns the correponding left hand side and call yourself recursively to get the arguments of this left hand side. If there is no match, we are at a leaf. That is the interpretation of either a variable or a constant. If it is a constant, return \texttt{Cconst} applied to that constant. If not, it is a variable. Look in the hashtable if this leaf has been already encountered. If not, increment the variable counter and add an entry to the hashtable; then return \texttt{(Cvar !variables\_counter)} \end{itemize} *) (*i*) open CErrors open Util open Names open Constr open EConstr open Pattern open Patternops open Constr_matching open Tacmach open Proofview.Notations (*i*) (*s First, we need to access some Coq constants We do that lazily, because this code can be linked before the constants are loaded in the environment *) let constant dir s = EConstr.of_constr @@ UnivGen.constr_of_global @@ Coqlib.coq_reference "Quote" ("quote"::dir) s let coq_Empty_vm = lazy (constant ["Quote"] "Empty_vm") let coq_Node_vm = lazy (constant ["Quote"] "Node_vm") let coq_varmap_find = lazy (constant ["Quote"] "varmap_find") let coq_Right_idx = lazy (constant ["Quote"] "Right_idx") let coq_Left_idx = lazy (constant ["Quote"] "Left_idx") let coq_End_idx = lazy (constant ["Quote"] "End_idx") (*s Then comes the stuff to decompose the body of interpetation function and pre-compute the inversion data. For a function like: \begin{verbatim} Fixpoint interp (vm:varmap Prop) (f:form) := match f with | f_and f1 f1 f2 => (interp f1) /\ (interp f2) | f_or f1 f1 f2 => (interp f1) \/ (interp f2) | f_var i => varmap_find Prop default_v i vm | f_const c => c end. \end{verbatim} With the constant constructors \texttt{C1}, \dots, \texttt{Cn}, the corresponding scheme will be: \begin{verbatim} {normal_lhs_rhs = [ "(f_and ?1 ?2)", "?1 /\ ?2"; "(f_or ?1 ?2)", " ?1 \/ ?2";]; return_type = "Prop"; constants = Some [C1,...Cn]; variable_lhs = Some "(f_var ?1)"; constant_lhs = Some "(f_const ?1)" } \end{verbatim} If there is no constructor for variables in the type \texttt{form}, then [variable_lhs] is [None]. Idem for constants and [constant_lhs]. Both cannot be equal to [None]. The metas in the RHS must correspond to those in the LHS (one cannot exchange ?1 and ?2 in the example above) *) module ConstrSet = Set.Make(Constr) type inversion_scheme = { normal_lhs_rhs : (constr * constr_pattern) list; variable_lhs : constr option; return_type : constr; constants : ConstrSet.t; constant_lhs : constr option } (*s [compute_ivs gl f cs] computes the inversion scheme associated to [f:constr] with constants list [cs:constr list] in the context of goal [gl]. This function uses the auxiliary functions [i_can't_do_that], [decomp_term], [compute_lhs] and [compute_rhs]. *) let i_can't_do_that () = user_err Pp.(str "Quote: not a simple fixpoint") let decomp_term sigma c = EConstr.kind sigma (Termops.strip_outer_cast sigma c) (*s [compute_lhs typ i nargsi] builds the term \texttt{(C ?nargsi ... ?2 ?1)}, where \texttt{C} is the [i]-th constructor of inductive type [typ] *) let coerce_meta_out id = let s = Id.to_string id in int_of_string (String.sub s 1 (String.length s - 1)) let coerce_meta_in n = Id.of_string ("M" ^ string_of_int n) let compute_lhs sigma typ i nargsi = match EConstr.kind sigma typ with | Ind((sp,0),u) -> let argsi = Array.init nargsi (fun j -> mkMeta (nargsi - j)) in mkApp (mkConstructU (((sp,0),i+1),u), argsi) | _ -> i_can't_do_that () (*s This function builds the pattern from the RHS. Recursive calls are replaced by meta-variables ?i corresponding to those in the LHS *) let compute_rhs env sigma bodyi index_of_f = let rec aux c = match EConstr.kind sigma c with | App (j, args) when isRel sigma j && Int.equal (destRel sigma j) index_of_f (* recursive call *) -> let i = destRel sigma (Array.last args) in PMeta (Some (coerce_meta_in i)) | App (f,args) -> PApp (pattern_of_constr env sigma (EConstr.to_constr sigma f), Array.map aux args) | Cast (c,_,_) -> aux c | _ -> pattern_of_constr env sigma (EConstr.to_constr sigma c) in aux bodyi (*s Now the function [compute_ivs] itself *) let compute_ivs f cs gl = let env = Proofview.Goal.env gl in let sigma = Tacmach.New.project gl in let (cst, u) = try destConst sigma f with DestKO -> i_can't_do_that () in let u = EInstance.kind sigma u in let body = Environ.constant_value_in (Global.env()) (cst, u) in let body = EConstr.of_constr body in match decomp_term sigma body with | Fix(([| len |], 0), ([| name |], [| typ |], [| body2 |])) -> let (args3, body3) = decompose_lam sigma body2 in let nargs3 = List.length args3 in let is_conv = Reductionops.is_conv env sigma in begin match decomp_term sigma body3 with | Case(_,p,c,lci) -> (*

Case c of c1 ... cn end *) let n_lhs_rhs = ref [] and v_lhs = ref (None : constr option) and c_lhs = ref (None : constr option) in Array.iteri (fun i ci -> let argsi, bodyi = decompose_lam sigma ci in let nargsi = List.length argsi in (* REL (narg3 + nargsi + 1) is f *) (* REL nargsi+1 to REL nargsi + nargs3 are arguments of f *) (* REL 1 to REL nargsi are argsi (reverse order) *) (* First we test if the RHS is the RHS for constants *) if isRel sigma bodyi && Int.equal (destRel sigma bodyi) 1 then c_lhs := Some (compute_lhs sigma (snd (List.hd args3)) i nargsi) (* Then we test if the RHS is the RHS for variables *) else begin match decompose_app sigma bodyi with | vmf, [_; _; a3; a4 ] when isRel sigma a3 && isRel sigma a4 && is_conv vmf (Lazy.force coq_varmap_find) -> v_lhs := Some (compute_lhs sigma (snd (List.hd args3)) i nargsi) (* Third case: this is a normal LHS-RHS *) | _ -> n_lhs_rhs := (compute_lhs sigma (snd (List.hd args3)) i nargsi, compute_rhs env sigma bodyi (nargs3 + nargsi + 1)) :: !n_lhs_rhs end) lci; if Option.is_empty !c_lhs && Option.is_empty !v_lhs then i_can't_do_that (); (* The Cases predicate is a lambda; we assume no dependency *) let p = match EConstr.kind sigma p with | Lambda (_,_,p) -> Termops.pop p | _ -> p in { normal_lhs_rhs = List.rev !n_lhs_rhs; variable_lhs = !v_lhs; return_type = p; constants = List.fold_right ConstrSet.add cs ConstrSet.empty; constant_lhs = !c_lhs } | _ -> i_can't_do_that () end |_ -> i_can't_do_that () (* TODO for that function: \begin{itemize} \item handle the case where the return type is an argument of the function \item handle the case of simple mutual inductive (for example terms and lists of terms) formulas with the corresponding mutual recursvive interpretation functions. \end{itemize} *) (*s Stuff to build variables map, currently implemented as complete binary search trees (see file \texttt{Quote.v}) *) (* First the function to distinghish between constants (closed terms) and variables (open terms) *) let rec closed_under sigma cset t = (ConstrSet.mem (EConstr.Unsafe.to_constr t) cset) || (match EConstr.kind sigma t with | Cast(c,_,_) -> closed_under sigma cset c | App(f,l) -> closed_under sigma cset f && Array.for_all (closed_under sigma cset) l | _ -> false) (*s [btree_of_array [| c1; c2; c3; c4; c5 |]] builds the complete binary search tree containing the [ci], that is: \begin{verbatim} c1 / \ c2 c3 / \ c4 c5 \end{verbatim} The second argument is a constr (the common type of the [ci]) *) let btree_of_array a ty = let size_of_a = Array.length a in let semi_size_of_a = size_of_a lsr 1 in let node = Lazy.force coq_Node_vm and empty = mkApp (Lazy.force coq_Empty_vm, [| ty |]) in let rec aux n = if n > size_of_a then empty else if n > semi_size_of_a then mkApp (node, [| ty; a.(n-1); empty; empty |]) else mkApp (node, [| ty; a.(n-1); aux (2*n); aux (2*n+1) |]) in aux 1 (*s [btree_of_array] and [path_of_int] verify the following invariant:\\ {\tt (varmap\_find A dv }[(path_of_int n)] [(btree_of_array a ty)] = [a.(n)]\\ [n] must be [> 0] *) let path_of_int n = (* returns the list of digits of n in reverse order with initial 1 removed *) let rec digits_of_int n = if Int.equal n 1 then [] else (Int.equal (n mod 2) 1)::(digits_of_int (n lsr 1)) in List.fold_right (fun b c -> mkApp ((if b then Lazy.force coq_Right_idx else Lazy.force coq_Left_idx), [| c |])) (List.rev (digits_of_int n)) (Lazy.force coq_End_idx) (*s The tactic works with a list of subterms sharing the same variables map. We need to sort terms in order to avoid than strange things happen during replacement of terms by their 'abstract' counterparties. *) (* [subterm t t'] tests if constr [t'] occurs in [t] *) (* This function does not descend under binders (lambda and Cases) *) let rec subterm gl (t : constr) (t' : constr) = (pf_conv_x gl t t') || (match EConstr.kind (project gl) t with | App (f,args) -> Array.exists (fun t -> subterm gl t t') args | Cast(t,_,_) -> (subterm gl t t') | _ -> false) (*s We want to sort the list according to reverse subterm order. *) (* Since it's a partial order the algoritm of Sort.list won't work !! *) let rec sort_subterm gl l = let sigma = project gl in let rec insert c = function | [] -> [c] | (h::t as l) when EConstr.eq_constr sigma c h -> l (* Avoid doing the same work twice *) | h::t -> if subterm gl c h then c::h::t else h::(insert c t) in match l with | [] -> [] | h::t -> insert h (sort_subterm gl t) module Constrhash = Hashtbl.Make(Constr) let subst_meta subst c = let subst = List.map (fun (i, c) -> i, EConstr.Unsafe.to_constr c) subst in EConstr.of_constr (Termops.subst_meta subst (EConstr.Unsafe.to_constr c)) (*s Now we are able to do the inversion itself. We destructurate the term and use an imperative hashtable to store leafs that are already encountered. The type of arguments is:\\ [ivs : inversion_scheme]\\ [lc: constr list]\\ [gl: goal sigma]\\ *) let quote_terms env sigma ivs lc = Coqlib.check_required_library ["Coq";"quote";"Quote"]; let varhash = (Constrhash.create 17 : constr Constrhash.t) in let varlist = ref ([] : constr list) in (* list of variables *) let counter = ref 1 in (* number of variables created + 1 *) let rec aux c = let rec auxl l = match l with | (lhs, rhs)::tail -> begin try let s1 = Id.Map.bindings (matches env sigma rhs c) in let s2 = List.map (fun (i,c_i) -> (coerce_meta_out i,aux c_i)) s1 in subst_meta s2 lhs with PatternMatchingFailure -> auxl tail end | [] -> begin match ivs.variable_lhs with | None -> begin match ivs.constant_lhs with | Some c_lhs -> subst_meta [1, c] c_lhs | None -> anomaly (Pp.str "invalid inversion scheme for quote.") end | Some var_lhs -> begin match ivs.constant_lhs with | Some c_lhs when closed_under sigma ivs.constants c -> subst_meta [1, c] c_lhs | _ -> begin try Constrhash.find varhash (EConstr.Unsafe.to_constr c) with Not_found -> let newvar = subst_meta [1, (path_of_int !counter)] var_lhs in begin incr counter; varlist := c :: !varlist; Constrhash.add varhash (EConstr.Unsafe.to_constr c) newvar; newvar end end end end in auxl ivs.normal_lhs_rhs in let lp = List.map aux lc in (lp, (btree_of_array (Array.of_list (List.rev !varlist)) ivs.return_type )) (*s actually we could "quote" a list of terms instead of a single term. Ring for example needs that, but Ring doesn't use Quote yet. *) let pf_constrs_of_globals l = let rec aux l acc = match l with [] -> Proofview.tclUNIT (List.rev acc) | hd :: tl -> Tacticals.New.pf_constr_of_global hd >>= fun g -> aux tl (g :: acc) in aux l [] let quote f lid = Proofview.Goal.enter begin fun gl -> let fg = Tacmach.New.pf_global f gl in let clg = List.map (fun id -> Tacmach.New.pf_global id gl) lid in Tacticals.New.pf_constr_of_global fg >>= fun f -> pf_constrs_of_globals clg >>= fun cl -> Proofview.Goal.nf_enter begin fun gl -> let env = Proofview.Goal.env gl in let sigma = Tacmach.New.project gl in let ivs = compute_ivs f (List.map (EConstr.to_constr sigma) cl) gl in let concl = Proofview.Goal.concl gl in let quoted_terms = quote_terms env sigma ivs [concl] in let (p, vm) = match quoted_terms with | [p], vm -> (p,vm) | _ -> assert false in match ivs.variable_lhs with | None -> Tactics.convert_concl (mkApp (f, [| p |])) DEFAULTcast | Some _ -> Tactics.convert_concl (mkApp (f, [| vm; p |])) DEFAULTcast end end let gen_quote cont c f lid = Proofview.Goal.enter begin fun gl -> let fg = Tacmach.New.pf_global f gl in let clg = List.map (fun id -> Tacmach.New.pf_global id gl) lid in Tacticals.New.pf_constr_of_global fg >>= fun f -> pf_constrs_of_globals clg >>= fun cl -> Proofview.Goal.nf_enter begin fun gl -> let env = Proofview.Goal.env gl in let sigma = Tacmach.New.project gl in let cl = List.map (EConstr.to_constr sigma) cl in let ivs = compute_ivs f cl gl in let quoted_terms = quote_terms env sigma ivs [c] in let (p, vm) = match quoted_terms with | [p], vm -> (p,vm) | _ -> assert false in match ivs.variable_lhs with | None -> cont (mkApp (f, [| p |])) | Some _ -> cont (mkApp (f, [| vm; p |])) end end (*i Just testing ... #use "include.ml";; open Quote;; let r = glob_constr_of_string;; let ivs = { normal_lhs_rhs = [ r "(f_and ?1 ?2)", r "?1/\?2"; r "(f_not ?1)", r "~?1"]; variable_lhs = Some (r "(f_atom ?1)"); return_type = r "Prop"; constants = ConstrSet.empty; constant_lhs = (r "nat") };; let t1 = r "True/\(True /\ ~False)";; let t2 = r "True/\~~False";; quote_term ivs () t1;; quote_term ivs () t2;; let ivs2 = normal_lhs_rhs = [ r "(f_and ?1 ?2)", r "?1/\?2"; r "(f_not ?1)", r "~?1" r "True", r "f_true"]; variable_lhs = Some (r "(f_atom ?1)"); return_type = r "Prop"; constants = ConstrSet.empty; constant_lhs = (r "nat") i*)