(************************************************************************) (* * The Coq Proof Assistant / The Coq Development Team *) (* v * INRIA, CNRS and contributors - Copyright 1999-2018 *) (* bool index_eq_prop: (n,m:index)(index_eq n m)=true -> n=m index_lt : index -> bool varmap : Type -> Type. varmap_find : (A:Type)A -> index -> (varmap A) -> A. The first arg. of varmap_find is the default value to take if the object is not found in the varmap. index_lt defines a total well-founded order, but we don't prove that. ***********************************************************************) Set Implicit Arguments. Section variables_map. Variable A : Type. Inductive varmap : Type := | Empty_vm : varmap | Node_vm : A -> varmap -> varmap -> varmap. Inductive index : Set := | Left_idx : index -> index | Right_idx : index -> index | End_idx : index. Fixpoint varmap_find (default_value:A) (i:index) (v:varmap) {struct v} : A := match i, v with | End_idx, Node_vm x _ _ => x | Right_idx i1, Node_vm x v1 v2 => varmap_find default_value i1 v2 | Left_idx i1, Node_vm x v1 v2 => varmap_find default_value i1 v1 | _, _ => default_value end. Fixpoint index_eq (n m:index) {struct m} : bool := match n, m with | End_idx, End_idx => true | Left_idx n', Left_idx m' => index_eq n' m' | Right_idx n', Right_idx m' => index_eq n' m' | _, _ => false end. Fixpoint index_lt (n m:index) {struct m} : bool := match n, m with | End_idx, Left_idx _ => true | End_idx, Right_idx _ => true | Left_idx n', Right_idx m' => true | Right_idx n', Right_idx m' => index_lt n' m' | Left_idx n', Left_idx m' => index_lt n' m' | _, _ => false end. Lemma index_eq_prop : forall n m:index, index_eq n m = true -> n = m. simple induction n; simple induction m; simpl; intros. rewrite (H i0 H1); reflexivity. discriminate. discriminate. discriminate. rewrite (H i0 H1); reflexivity. discriminate. discriminate. discriminate. reflexivity. Qed. End variables_map. Unset Implicit Arguments.