(************************************************************************) (* * The Coq Proof Assistant / The Coq Development Team *) (* v * INRIA, CNRS and contributors - Copyright 1999-2018 *) (* 0 <= x -> 0 <= y. Proof. now intros ->. Qed. Lemma OMEGA2 x y : 0 <= x -> 0 <= y -> 0 <= x + y. Proof. Z.order_pos. Qed. Lemma OMEGA3 x y k : k > 0 -> x = y * k -> x = 0 -> y = 0. Proof. intros LT -> EQ. apply Z.mul_eq_0 in EQ. destruct EQ; now subst. Qed. Lemma OMEGA4 x y z : x > 0 -> y > x -> z * y + x <> 0. Proof. Z.swap_greater. intros Hx Hxy. rewrite Z.add_move_0_l, <- Z.mul_opp_l. destruct (Z.lt_trichotomy (-z) 1) as [LT|[->|GT]]. - intro. revert LT. apply Z.le_ngt, (Z.le_succ_l 0). apply Z.mul_pos_cancel_r with y; Z.order. - Z.nzsimpl. Z.order. - rewrite (Z.mul_lt_mono_pos_r y), Z.mul_1_l in GT; Z.order. Qed. Lemma OMEGA5 x y z : x = 0 -> y = 0 -> x + y * z = 0. Proof. now intros -> ->. Qed. Lemma OMEGA6 x y z : 0 <= x -> y = 0 -> 0 <= x + y * z. Proof. intros H ->. now Z.nzsimpl. Qed. Lemma OMEGA7 x y z t : z > 0 -> t > 0 -> 0 <= x -> 0 <= y -> 0 <= x * z + y * t. Proof. intros. Z.swap_greater. Z.order_pos. Qed. Lemma OMEGA8 x y : 0 <= x -> 0 <= y -> x = - y -> x = 0. Proof. intros H1 H2 H3. rewrite <- Z.opp_nonpos_nonneg in H2. Z.order. Qed. Lemma OMEGA9 x y z t : y = 0 -> x = z -> y + (- x + z) * t = 0. Proof. intros. subst. now rewrite Z.add_opp_diag_l. Qed. Lemma OMEGA10 v c1 c2 l1 l2 k1 k2 : (v * c1 + l1) * k1 + (v * c2 + l2) * k2 = v * (c1 * k1 + c2 * k2) + (l1 * k1 + l2 * k2). Proof. rewrite ?Z.mul_add_distr_r, ?Z.mul_add_distr_l, ?Z.mul_assoc. rewrite <- !Z.add_assoc. f_equal. apply Z.add_shuffle3. Qed. Lemma OMEGA11 v1 c1 l1 l2 k1 : (v1 * c1 + l1) * k1 + l2 = v1 * (c1 * k1) + (l1 * k1 + l2). Proof. rewrite ?Z.mul_add_distr_r, ?Z.mul_add_distr_l, ?Z.mul_assoc. now rewrite Z.add_assoc. Qed. Lemma OMEGA12 v2 c2 l1 l2 k2 : l1 + (v2 * c2 + l2) * k2 = v2 * (c2 * k2) + (l1 + l2 * k2). Proof. rewrite ?Z.mul_add_distr_r, ?Z.mul_add_distr_l, ?Z.mul_assoc. apply Z.add_shuffle3. Qed. Lemma OMEGA13 (v l1 l2 : Z) (x : positive) : v * Zpos x + l1 + (v * Zneg x + l2) = l1 + l2. Proof. rewrite Z.add_shuffle1. rewrite <- Z.mul_add_distr_l, <- Pos2Z.opp_neg, Z.add_opp_diag_r. now Z.nzsimpl. Qed. Lemma OMEGA14 (v l1 l2 : Z) (x : positive) : v * Zneg x + l1 + (v * Zpos x + l2) = l1 + l2. Proof. rewrite Z.add_shuffle1. rewrite <- Z.mul_add_distr_l, <- Pos2Z.opp_neg, Z.add_opp_diag_r. now Z.nzsimpl. Qed. Lemma OMEGA15 v c1 c2 l1 l2 k2 : v * c1 + l1 + (v * c2 + l2) * k2 = v * (c1 + c2 * k2) + (l1 + l2 * k2). Proof. rewrite ?Z.mul_add_distr_r, ?Z.mul_add_distr_l, ?Z.mul_assoc. apply Z.add_shuffle1. Qed. Lemma OMEGA16 v c l k : (v * c + l) * k = v * (c * k) + l * k. Proof. now rewrite ?Z.mul_add_distr_r, ?Z.mul_add_distr_l, ?Z.mul_assoc. Qed. Lemma OMEGA17 x y z : Zne x 0 -> y = 0 -> Zne (x + y * z) 0. Proof. unfold Zne, not. intros NE EQ. subst. now Z.nzsimpl. Qed. Lemma OMEGA18 x y k : x = y * k -> Zne x 0 -> Zne y 0. Proof. unfold Zne, not. intros. subst; auto. Qed. Lemma OMEGA19 x : Zne x 0 -> 0 <= x + -1 \/ 0 <= x * -1 + -1. Proof. unfold Zne. intros Hx. apply Z.lt_gt_cases in Hx. destruct Hx as [LT|GT]. - right. change (-1) with (-(1)). rewrite Z.mul_opp_r, <- Z.opp_add_distr. Z.nzsimpl. rewrite Z.opp_nonneg_nonpos. now apply Z.le_succ_l. - left. now apply Z.lt_le_pred. Qed. Lemma OMEGA20 x y z : Zne x 0 -> y = 0 -> Zne (x + y * z) 0. Proof. unfold Zne, not. intros H1 H2 H3; apply H1; rewrite H2 in H3; simpl in H3; rewrite Z.add_0_r in H3; trivial with arith. Qed. Definition fast_Zplus_comm (x y : Z) (P : Z -> Prop) (H : P (y + x)) := eq_ind_r P H (Z.add_comm x y). Definition fast_Zplus_assoc_reverse (n m p : Z) (P : Z -> Prop) (H : P (n + (m + p))) := eq_ind_r P H (Zplus_assoc_reverse n m p). Definition fast_Zplus_assoc (n m p : Z) (P : Z -> Prop) (H : P (n + m + p)) := eq_ind_r P H (Z.add_assoc n m p). Definition fast_Zplus_permute (n m p : Z) (P : Z -> Prop) (H : P (m + (n + p))) := eq_ind_r P H (Z.add_shuffle3 n m p). Definition fast_OMEGA10 (v c1 c2 l1 l2 k1 k2 : Z) (P : Z -> Prop) (H : P (v * (c1 * k1 + c2 * k2) + (l1 * k1 + l2 * k2))) := eq_ind_r P H (OMEGA10 v c1 c2 l1 l2 k1 k2). Definition fast_OMEGA11 (v1 c1 l1 l2 k1 : Z) (P : Z -> Prop) (H : P (v1 * (c1 * k1) + (l1 * k1 + l2))) := eq_ind_r P H (OMEGA11 v1 c1 l1 l2 k1). Definition fast_OMEGA12 (v2 c2 l1 l2 k2 : Z) (P : Z -> Prop) (H : P (v2 * (c2 * k2) + (l1 + l2 * k2))) := eq_ind_r P H (OMEGA12 v2 c2 l1 l2 k2). Definition fast_OMEGA15 (v c1 c2 l1 l2 k2 : Z) (P : Z -> Prop) (H : P (v * (c1 + c2 * k2) + (l1 + l2 * k2))) := eq_ind_r P H (OMEGA15 v c1 c2 l1 l2 k2). Definition fast_OMEGA16 (v c l k : Z) (P : Z -> Prop) (H : P (v * (c * k) + l * k)) := eq_ind_r P H (OMEGA16 v c l k). Definition fast_OMEGA13 (v l1 l2 : Z) (x : positive) (P : Z -> Prop) (H : P (l1 + l2)) := eq_ind_r P H (OMEGA13 v l1 l2 x). Definition fast_OMEGA14 (v l1 l2 : Z) (x : positive) (P : Z -> Prop) (H : P (l1 + l2)) := eq_ind_r P H (OMEGA14 v l1 l2 x). Definition fast_Zred_factor0 (x : Z) (P : Z -> Prop) (H : P (x * 1)) := eq_ind_r P H (Zred_factor0 x). Definition fast_Zopp_eq_mult_neg_1 (x : Z) (P : Z -> Prop) (H : P (x * -1)) := eq_ind_r P H (Z.opp_eq_mul_m1 x). Definition fast_Zmult_comm (x y : Z) (P : Z -> Prop) (H : P (y * x)) := eq_ind_r P H (Z.mul_comm x y). Definition fast_Zopp_plus_distr (x y : Z) (P : Z -> Prop) (H : P (- x + - y)) := eq_ind_r P H (Z.opp_add_distr x y). Definition fast_Zopp_involutive (x : Z) (P : Z -> Prop) (H : P x) := eq_ind_r P H (Z.opp_involutive x). Definition fast_Zopp_mult_distr_r (x y : Z) (P : Z -> Prop) (H : P (x * - y)) := eq_ind_r P H (Zopp_mult_distr_r x y). Definition fast_Zmult_plus_distr_l (n m p : Z) (P : Z -> Prop) (H : P (n * p + m * p)) := eq_ind_r P H (Z.mul_add_distr_r n m p). Definition fast_Zmult_opp_comm (x y : Z) (P : Z -> Prop) (H : P (x * - y)) := eq_ind_r P H (Z.mul_opp_comm x y). Definition fast_Zmult_assoc_reverse (n m p : Z) (P : Z -> Prop) (H : P (n * (m * p))) := eq_ind_r P H (Zmult_assoc_reverse n m p). Definition fast_Zred_factor1 (x : Z) (P : Z -> Prop) (H : P (x * 2)) := eq_ind_r P H (Zred_factor1 x). Definition fast_Zred_factor2 (x y : Z) (P : Z -> Prop) (H : P (x * (1 + y))) := eq_ind_r P H (Zred_factor2 x y). Definition fast_Zred_factor3 (x y : Z) (P : Z -> Prop) (H : P (x * (1 + y))) := eq_ind_r P H (Zred_factor3 x y). Definition fast_Zred_factor4 (x y z : Z) (P : Z -> Prop) (H : P (x * (y + z))) := eq_ind_r P H (Zred_factor4 x y z). Definition fast_Zred_factor5 (x y : Z) (P : Z -> Prop) (H : P y) := eq_ind_r P H (Zred_factor5 x y). Definition fast_Zred_factor6 (x : Z) (P : Z -> Prop) (H : P (x + 0)) := eq_ind_r P H (Zred_factor6 x). Theorem intro_Z : forall n:nat, exists y : Z, Z.of_nat n = y /\ 0 <= y * 1 + 0. Proof. intros n; exists (Z.of_nat n); split; trivial. rewrite Z.mul_1_r, Z.add_0_r. apply Nat2Z.is_nonneg. Qed.