(************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) (* Const (C2Ml.q_to_num z) | PEX v -> Var ("x"^(string_of_int (C2Ml.index v))) | PEmul(p1,p2) -> let p1 = expr_to_term p1 in let p2 = expr_to_term p2 in let res = Mul(p1,p2) in res | PEadd(p1,p2) -> Add(expr_to_term p1, expr_to_term p2) | PEsub(p1,p2) -> Sub(expr_to_term p1, expr_to_term p2) | PEpow(p,n) -> Pow(expr_to_term p , C2Ml.n n) | PEopp p -> Opp (expr_to_term p) end open M open Mutils let rec canonical_sum_to_string = function s -> failwith "not implemented" let print_canonical_sum m = Format.print_string (canonical_sum_to_string m) let print_list_term o l = output_string o "print_list_term\n"; List.iter (fun (e,k) -> Printf.fprintf o "q: %s %s ;" (string_of_poly (poly_of_term (expr_to_term e))) (match k with Mc.Equal -> "= " | Mc.Strict -> "> " | Mc.NonStrict -> ">= " | _ -> failwith "not_implemented")) (List.map (fun (e, o) -> Mc.denorm e , o) l) ; output_string o "\n" let partition_expr l = let rec f i = function | [] -> ([],[],[]) | (e,k)::l -> let (eq,ge,neq) = f (i+1) l in match k with | Mc.Equal -> ((e,i)::eq,ge,neq) | Mc.NonStrict -> (eq,(e,Axiom_le i)::ge,neq) | Mc.Strict -> (* e > 0 == e >= 0 /\ e <> 0 *) (eq, (e,Axiom_lt i)::ge,(e,Axiom_lt i)::neq) | Mc.NonEqual -> (eq,ge,(e,Axiom_eq i)::neq) (* Not quite sure -- Coq interface has changed *) in f 0 l let rec sets_of_list l = match l with | [] -> [[]] | e::l -> let s = sets_of_list l in s@(List.map (fun s0 -> e::s0) s) (* The exploration is probably not complete - for simple cases, it works... *) let real_nonlinear_prover d l = let l = List.map (fun (e,op) -> (Mc.denorm e,op)) l in try let (eq,ge,neq) = partition_expr l in let rec elim_const = function [] -> [] | (x,y)::l -> let p = poly_of_term (expr_to_term x) in if poly_isconst p then elim_const l else (p,y)::(elim_const l) in let eq = elim_const eq in let peq = List.map fst eq in let pge = List.map (fun (e,psatz) -> poly_of_term (expr_to_term e),psatz) ge in let monoids = List.map (fun m -> (List.fold_right (fun (p,kd) y -> let p = poly_of_term (expr_to_term p) in match kd with | Axiom_lt i -> poly_mul p y | Axiom_eq i -> poly_mul (poly_pow p 2) y | _ -> failwith "monoids") m (poly_const (Int 1)) , List.map snd m)) (sets_of_list neq) in let (cert_ideal, cert_cone,monoid) = deepen_until d (fun d -> list_try_find (fun m -> let (ci,cc) = real_positivnullstellensatz_general false d peq pge (poly_neg (fst m) ) in (ci,cc,snd m)) monoids) 0 in let proofs_ideal = List.map2 (fun q i -> Eqmul(term_of_poly q,Axiom_eq i)) cert_ideal (List.map snd eq) in let proofs_cone = List.map term_of_sos cert_cone in let proof_ne = let (neq , lt) = List.partition (function Axiom_eq _ -> true | _ -> false ) monoid in let sq = match (List.map (function Axiom_eq i -> i | _ -> failwith "error") neq) with | [] -> Rational_lt (Int 1) | l -> Monoid l in List.fold_right (fun x y -> Product(x,y)) lt sq in let proof = list_fold_right_elements (fun s t -> Sum(s,t)) (proof_ne :: proofs_ideal @ proofs_cone) in S (Some proof) with | Sos_lib.TooDeep -> S None | x -> F (Printexc.to_string x) (* This is somewhat buggy, over Z, strict inequality vanish... *) let pure_sos l = let l = List.map (fun (e,o) -> Mc.denorm e, o) l in (* If there is no strict inequality, I should nonetheless be able to try something - over Z > is equivalent to -1 >= *) try let l = List.combine l (interval 0 (List.length l -1)) in let (lt,i) = try (List.find (fun (x,_) -> snd x = Mc.Strict) l) with Not_found -> List.hd l in let plt = poly_neg (poly_of_term (expr_to_term (fst lt))) in let (n,polys) = sumofsquares plt in (* n * (ci * pi^2) *) let pos = Product (Rational_lt n, List.fold_right (fun (c,p) rst -> Sum (Product (Rational_lt c, Square (term_of_poly p)), rst)) polys (Rational_lt (Int 0))) in let proof = Sum(Axiom_lt i, pos) in (* let s,proof' = scale_certificate proof in let cert = snd (cert_of_pos proof') in *) S (Some proof) with (* | Sos.CsdpNotFound -> F "Sos.CsdpNotFound" *) | x -> (* May be that could be refined *) S None let run_prover prover pb = match prover with | "real_nonlinear_prover", Some d -> real_nonlinear_prover d pb | "pure_sos", None -> pure_sos pb | prover, _ -> (Printf.printf "unknown prover: %s\n" prover; exit 1) let output_csdp_certificate o = function | S None -> output_string o "S None" | S (Some p) -> Printf.fprintf o "S (Some %a)" output_psatz p | F s -> Printf.fprintf o "F %s" s let main () = try let (prover,poly) = (input_value stdin : provername * micromega_polys) in let cert = run_prover prover poly in (* Printf.fprintf chan "%a -> %a" print_list_term poly output_csdp_certificate cert ; close_out chan ; *) output_value stdout (cert:csdp_certificate); flush stdout ; Marshal.to_channel chan (cert:csdp_certificate) [] ; flush chan ; exit 0 with x -> (Printf.fprintf chan "error %s" (Printexc.to_string x) ; exit 1) ;; let _ = main () in () (* Local Variables: *) (* coding: utf-8 *) (* End: *)