(************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) (* ,=,<>,<=,>=} pExpr2 * where pExpr1, pExpr2 are polynomial expressions (see Micromega). pExprs are * parametrized by 'cst, which is used as the type of constants. *) type 'cst atom = 'cst Micromega.formula (** * Micromega's encoding of formulas. * By order of appearance: boolean constants, variables, atoms, conjunctions, * disjunctions, negation, implication. *) type 'cst formula = | TT | FF | X of Term.constr | A of 'cst atom * tag * Term.constr | C of 'cst formula * 'cst formula | D of 'cst formula * 'cst formula | N of 'cst formula | I of 'cst formula * Names.Id.t option * 'cst formula (** * Formula pretty-printer. *) let rec pp_formula o f = match f with | TT -> output_string o "tt" | FF -> output_string o "ff" | X c -> output_string o "X " | A(_,t,_) -> Printf.fprintf o "A(%a)" Tag.pp t | C(f1,f2) -> Printf.fprintf o "C(%a,%a)" pp_formula f1 pp_formula f2 | D(f1,f2) -> Printf.fprintf o "D(%a,%a)" pp_formula f1 pp_formula f2 | I(f1,n,f2) -> Printf.fprintf o "I(%a%s,%a)" pp_formula f1 (match n with | Some id -> Names.Id.to_string id | None -> "") pp_formula f2 | N(f) -> Printf.fprintf o "N(%a)" pp_formula f let rec map_atoms fct f = match f with | TT -> TT | FF -> FF | X x -> X x | A (at,tg,cstr) -> A(fct at,tg,cstr) | C (f1,f2) -> C(map_atoms fct f1, map_atoms fct f2) | D (f1,f2) -> D(map_atoms fct f1, map_atoms fct f2) | N f -> N(map_atoms fct f) | I(f1,o,f2) -> I(map_atoms fct f1, o , map_atoms fct f2) (** * Collect the identifiers of a (string of) implications. Implication labels * are inherited from Coq/CoC's higher order dependent type constructor (Pi). *) let rec ids_of_formula f = match f with | I(f1,Some id,f2) -> id::(ids_of_formula f2) | _ -> [] (** * A clause is a list of (tagged) nFormulas. * nFormulas are normalized formulas, i.e., of the form: * cPol {=,<>,>,>=} 0 * with cPol compact polynomials (see the Pol inductive type in EnvRing.v). *) type 'cst clause = ('cst Micromega.nFormula * tag) list (** * A CNF is a list of clauses. *) type 'cst cnf = ('cst clause) list (** * True and False are empty cnfs and clauses. *) let tt : 'cst cnf = [] let ff : 'cst cnf = [ [] ] (** * A refinement of cnf with tags left out. This is an intermediary form * between the cnf tagged list representation ('cst cnf) used to solve psatz, * and the freeform formulas ('cst formula) that is retrieved from Coq. *) module Mc = Micromega type 'cst mc_cnf = ('cst Mc.nFormula) list list (** * From a freeform formula, build a cnf. * The parametric functions negate and normalize are theory-dependent, and * originate in micromega.ml (extracted, e.g. for rnegate, from RMicromega.v * and RingMicromega.v). *) type 'a tagged_option = T of tag list | S of 'a let cnf (negate: 'cst atom -> 'cst mc_cnf) (normalise:'cst atom -> 'cst mc_cnf) (unsat : 'cst Mc.nFormula -> bool) (deduce : 'cst Mc.nFormula -> 'cst Mc.nFormula -> 'cst Mc.nFormula option) (f:'cst formula) = let negate a t = List.map (fun cl -> List.map (fun x -> (x,t)) cl) (negate a) in let normalise a t = List.map (fun cl -> List.map (fun x -> (x,t)) cl) (normalise a) in let and_cnf x y = x @ y in let rec add_term t0 = function | [] -> (match deduce (fst t0) (fst t0) with | Some u -> if unsat u then T [snd t0] else S (t0::[]) | None -> S (t0::[])) | t'::cl0 -> (match deduce (fst t0) (fst t') with | Some u -> if unsat u then T [snd t0 ; snd t'] else (match add_term t0 cl0 with | S cl' -> S (t'::cl') | T l -> T l) | None -> (match add_term t0 cl0 with | S cl' -> S (t'::cl') | T l -> T l)) in let rec or_clause cl1 cl2 = match cl1 with | [] -> S cl2 | t0::cl -> (match add_term t0 cl2 with | S cl' -> or_clause cl cl' | T l -> T l) in let or_clause_cnf t f = List.fold_right (fun e (acc,tg) -> match or_clause t e with | S cl -> (cl :: acc,tg) | T l -> (acc,tg@l)) f ([],[]) in let rec or_cnf f f' = match f with | [] -> tt,[] | e :: rst -> let (rst_f',t) = or_cnf rst f' in let (e_f', t') = or_clause_cnf e f' in (rst_f' @ e_f', t @ t') in let rec xcnf (polarity : bool) f = match f with | TT -> if polarity then (tt,[]) else (ff,[]) | FF -> if polarity then (ff,[]) else (tt,[]) | X p -> if polarity then (ff,[]) else (ff,[]) | A(x,t,_) -> ((if polarity then normalise x t else negate x t),[]) | N(e) -> xcnf (not polarity) e | C(e1,e2) -> let e1,t1 = xcnf polarity e1 in let e2,t2 = xcnf polarity e2 in if polarity then and_cnf e1 e2, t1 @ t2 else let f',t' = or_cnf e1 e2 in (f', t1 @ t2 @ t') | D(e1,e2) -> let e1,t1 = xcnf polarity e1 in let e2,t2 = xcnf polarity e2 in if polarity then let f',t' = or_cnf e1 e2 in (f', t1 @ t2 @ t') else and_cnf e1 e2, t1 @ t2 | I(e1,_,e2) -> let e1 , t1 = (xcnf (not polarity) e1) in let e2 , t2 = (xcnf polarity e2) in if polarity then let f',t' = or_cnf e1 e2 in (f', t1 @ t2 @ t') else and_cnf e1 e2, t1 @ t2 in xcnf true f (** * MODULE: Ordered set of integers. *) module ISet = Set.Make(Int) (** * Given a set of integers s={i0,...,iN} and a list m, return the list of * elements of m that are at position i0,...,iN. *) let selecti s m = let rec xselecti i m = match m with | [] -> [] | e::m -> if ISet.mem i s then e::(xselecti (i+1) m) else xselecti (i+1) m in xselecti 0 m (** * MODULE: Mapping of the Coq data-strustures into Caml and Caml extracted * code. This includes initializing Caml variables based on Coq terms, parsing * various Coq expressions into Caml, and dumping Caml expressions into Coq. * * Opened here and in csdpcert.ml. *) module M = struct open Coqlib open Term (** * Location of the Coq libraries. *) let logic_dir = ["Coq";"Logic";"Decidable"] let coq_modules = init_modules @ [logic_dir] @ arith_modules @ zarith_base_modules @ [ ["Coq";"Lists";"List"]; ["ZMicromega"]; ["Tauto"]; ["RingMicromega"]; ["EnvRing"]; ["Coq"; "micromega"; "ZMicromega"]; ["Coq"; "micromega"; "RMicromega"]; ["Coq" ; "micromega" ; "Tauto"]; ["Coq" ; "micromega" ; "RingMicromega"]; ["Coq" ; "micromega" ; "EnvRing"]; ["Coq";"QArith"; "QArith_base"]; ["Coq";"Reals" ; "Rdefinitions"]; ["Coq";"Reals" ; "Rpow_def"]; ["LRing_normalise"]] let bin_module = [["Coq";"Numbers";"BinNums"]] let r_modules = [["Coq";"Reals" ; "Rdefinitions"]; ["Coq";"Reals" ; "Rpow_def"] ; ] let z_modules = [["Coq";"ZArith";"BinInt"]] (** * Initialization : a large amount of Caml symbols are derived from * ZMicromega.v *) let init_constant = gen_constant_in_modules "ZMicromega" init_modules let constant = gen_constant_in_modules "ZMicromega" coq_modules let bin_constant = gen_constant_in_modules "ZMicromega" bin_module let r_constant = gen_constant_in_modules "ZMicromega" r_modules let z_constant = gen_constant_in_modules "ZMicromega" z_modules (* let constant = gen_constant_in_modules "Omicron" coq_modules *) let coq_and = lazy (init_constant "and") let coq_or = lazy (init_constant "or") let coq_not = lazy (init_constant "not") let coq_iff = lazy (init_constant "iff") let coq_True = lazy (init_constant "True") let coq_False = lazy (init_constant "False") let coq_cons = lazy (constant "cons") let coq_nil = lazy (constant "nil") let coq_list = lazy (constant "list") let coq_O = lazy (init_constant "O") let coq_S = lazy (init_constant "S") let coq_nat = lazy (init_constant "nat") let coq_N0 = lazy (bin_constant "N0") let coq_Npos = lazy (bin_constant "Npos") let coq_pair = lazy (init_constant "pair") let coq_None = lazy (init_constant "None") let coq_option = lazy (init_constant "option") let coq_positive = lazy (bin_constant "positive") let coq_xH = lazy (bin_constant "xH") let coq_xO = lazy (bin_constant "xO") let coq_xI = lazy (bin_constant "xI") let coq_Z = lazy (bin_constant "Z") let coq_ZERO = lazy (bin_constant "Z0") let coq_POS = lazy (bin_constant "Zpos") let coq_NEG = lazy (bin_constant "Zneg") let coq_Q = lazy (constant "Q") let coq_R = lazy (constant "R") let coq_Build_Witness = lazy (constant "Build_Witness") let coq_Qmake = lazy (constant "Qmake") let coq_Rcst = lazy (constant "Rcst") let coq_C0 = lazy (constant "C0") let coq_C1 = lazy (constant "C1") let coq_CQ = lazy (constant "CQ") let coq_CZ = lazy (constant "CZ") let coq_CPlus = lazy (constant "CPlus") let coq_CMinus = lazy (constant "CMinus") let coq_CMult = lazy (constant "CMult") let coq_CInv = lazy (constant "CInv") let coq_COpp = lazy (constant "COpp") let coq_R0 = lazy (constant "R0") let coq_R1 = lazy (constant "R1") let coq_proofTerm = lazy (constant "ZArithProof") let coq_doneProof = lazy (constant "DoneProof") let coq_ratProof = lazy (constant "RatProof") let coq_cutProof = lazy (constant "CutProof") let coq_enumProof = lazy (constant "EnumProof") let coq_Zgt = lazy (z_constant "Z.gt") let coq_Zge = lazy (z_constant "Z.ge") let coq_Zle = lazy (z_constant "Z.le") let coq_Zlt = lazy (z_constant "Z.lt") let coq_Eq = lazy (init_constant "eq") let coq_Zplus = lazy (z_constant "Z.add") let coq_Zminus = lazy (z_constant "Z.sub") let coq_Zopp = lazy (z_constant "Z.opp") let coq_Zmult = lazy (z_constant "Z.mul") let coq_Zpower = lazy (z_constant "Z.pow") let coq_Qgt = lazy (constant "Qgt") let coq_Qge = lazy (constant "Qge") let coq_Qle = lazy (constant "Qle") let coq_Qlt = lazy (constant "Qlt") let coq_Qeq = lazy (constant "Qeq") let coq_Qplus = lazy (constant "Qplus") let coq_Qminus = lazy (constant "Qminus") let coq_Qopp = lazy (constant "Qopp") let coq_Qmult = lazy (constant "Qmult") let coq_Qpower = lazy (constant "Qpower") let coq_Rgt = lazy (r_constant "Rgt") let coq_Rge = lazy (r_constant "Rge") let coq_Rle = lazy (r_constant "Rle") let coq_Rlt = lazy (r_constant "Rlt") let coq_Rplus = lazy (r_constant "Rplus") let coq_Rminus = lazy (r_constant "Rminus") let coq_Ropp = lazy (r_constant "Ropp") let coq_Rmult = lazy (r_constant "Rmult") let coq_Rdiv = lazy (r_constant "Rdiv") let coq_Rinv = lazy (r_constant "Rinv") let coq_Rpower = lazy (r_constant "pow") let coq_IQR = lazy (constant "IQR") let coq_IZR = lazy (constant "IZR") let coq_PEX = lazy (constant "PEX" ) let coq_PEc = lazy (constant"PEc") let coq_PEadd = lazy (constant "PEadd") let coq_PEopp = lazy (constant "PEopp") let coq_PEmul = lazy (constant "PEmul") let coq_PEsub = lazy (constant "PEsub") let coq_PEpow = lazy (constant "PEpow") let coq_PX = lazy (constant "PX" ) let coq_Pc = lazy (constant"Pc") let coq_Pinj = lazy (constant "Pinj") let coq_OpEq = lazy (constant "OpEq") let coq_OpNEq = lazy (constant "OpNEq") let coq_OpLe = lazy (constant "OpLe") let coq_OpLt = lazy (constant "OpLt") let coq_OpGe = lazy (constant "OpGe") let coq_OpGt = lazy (constant "OpGt") let coq_PsatzIn = lazy (constant "PsatzIn") let coq_PsatzSquare = lazy (constant "PsatzSquare") let coq_PsatzMulE = lazy (constant "PsatzMulE") let coq_PsatzMultC = lazy (constant "PsatzMulC") let coq_PsatzAdd = lazy (constant "PsatzAdd") let coq_PsatzC = lazy (constant "PsatzC") let coq_PsatzZ = lazy (constant "PsatzZ") let coq_coneMember = lazy (constant "coneMember") let coq_make_impl = lazy (gen_constant_in_modules "Zmicromega" [["Refl"]] "make_impl") let coq_make_conj = lazy (gen_constant_in_modules "Zmicromega" [["Refl"]] "make_conj") let coq_TT = lazy (gen_constant_in_modules "ZMicromega" [["Coq" ; "micromega" ; "Tauto"];["Tauto"]] "TT") let coq_FF = lazy (gen_constant_in_modules "ZMicromega" [["Coq" ; "micromega" ; "Tauto"];["Tauto"]] "FF") let coq_And = lazy (gen_constant_in_modules "ZMicromega" [["Coq" ; "micromega" ; "Tauto"];["Tauto"]] "Cj") let coq_Or = lazy (gen_constant_in_modules "ZMicromega" [["Coq" ; "micromega" ; "Tauto"];["Tauto"]] "D") let coq_Neg = lazy (gen_constant_in_modules "ZMicromega" [["Coq" ; "micromega" ; "Tauto"];["Tauto"]] "N") let coq_Atom = lazy (gen_constant_in_modules "ZMicromega" [["Coq" ; "micromega" ; "Tauto"];["Tauto"]] "A") let coq_X = lazy (gen_constant_in_modules "ZMicromega" [["Coq" ; "micromega" ; "Tauto"];["Tauto"]] "X") let coq_Impl = lazy (gen_constant_in_modules "ZMicromega" [["Coq" ; "micromega" ; "Tauto"];["Tauto"]] "I") let coq_Formula = lazy (gen_constant_in_modules "ZMicromega" [["Coq" ; "micromega" ; "Tauto"];["Tauto"]] "BFormula") (** * Initialization : a few Caml symbols are derived from other libraries; * QMicromega, ZArithRing, RingMicromega. *) let coq_QWitness = lazy (gen_constant_in_modules "QMicromega" [["Coq"; "micromega"; "QMicromega"]] "QWitness") let coq_ZWitness = lazy (gen_constant_in_modules "QMicromega" [["Coq"; "micromega"; "ZMicromega"]] "ZWitness") let coq_N_of_Z = lazy (gen_constant_in_modules "ZArithRing" [["Coq";"setoid_ring";"ZArithRing"]] "N_of_Z") let coq_Build = lazy (gen_constant_in_modules "RingMicromega" [["Coq" ; "micromega" ; "RingMicromega"] ; ["RingMicromega"] ] "Build_Formula") let coq_Cstr = lazy (gen_constant_in_modules "RingMicromega" [["Coq" ; "micromega" ; "RingMicromega"] ; ["RingMicromega"] ] "Formula") (** * Parsing and dumping : transformation functions between Caml and Coq * data-structures. * * dump_* functions go from Micromega to Coq terms * parse_* functions go from Coq to Micromega terms * pp_* functions pretty-print Coq terms. *) (* Error datastructures *) type parse_error = | Ukn | BadStr of string | BadNum of int | BadTerm of Term.constr | Msg of string | Goal of (Term.constr list ) * Term.constr * parse_error let string_of_error = function | Ukn -> "ukn" | BadStr s -> s | BadNum i -> string_of_int i | BadTerm _ -> "BadTerm" | Msg s -> s | Goal _ -> "Goal" exception ParseError (* A simple but useful getter function *) let get_left_construct term = match Term.kind_of_term term with | Term.Construct(_,i) -> (i,[| |]) | Term.App(l,rst) -> (match Term.kind_of_term l with | Term.Construct(_,i) -> (i,rst) | _ -> raise ParseError ) | _ -> raise ParseError (* Access the Micromega module *) (* parse/dump/print from numbers up to expressions and formulas *) let rec parse_nat term = let (i,c) = get_left_construct term in match i with | 1 -> Mc.O | 2 -> Mc.S (parse_nat (c.(0))) | i -> raise ParseError let pp_nat o n = Printf.fprintf o "%i" (CoqToCaml.nat n) let rec dump_nat x = match x with | Mc.O -> Lazy.force coq_O | Mc.S p -> Term.mkApp(Lazy.force coq_S,[| dump_nat p |]) let rec parse_positive term = let (i,c) = get_left_construct term in match i with | 1 -> Mc.XI (parse_positive c.(0)) | 2 -> Mc.XO (parse_positive c.(0)) | 3 -> Mc.XH | i -> raise ParseError let rec dump_positive x = match x with | Mc.XH -> Lazy.force coq_xH | Mc.XO p -> Term.mkApp(Lazy.force coq_xO,[| dump_positive p |]) | Mc.XI p -> Term.mkApp(Lazy.force coq_xI,[| dump_positive p |]) let pp_positive o x = Printf.fprintf o "%i" (CoqToCaml.positive x) let dump_n x = match x with | Mc.N0 -> Lazy.force coq_N0 | Mc.Npos p -> Term.mkApp(Lazy.force coq_Npos,[| dump_positive p|]) let rec dump_index x = match x with | Mc.XH -> Lazy.force coq_xH | Mc.XO p -> Term.mkApp(Lazy.force coq_xO,[| dump_index p |]) | Mc.XI p -> Term.mkApp(Lazy.force coq_xI,[| dump_index p |]) let pp_index o x = Printf.fprintf o "%i" (CoqToCaml.index x) let pp_n o x = output_string o (string_of_int (CoqToCaml.n x)) let dump_pair t1 t2 dump_t1 dump_t2 (x,y) = Term.mkApp(Lazy.force coq_pair,[| t1 ; t2 ; dump_t1 x ; dump_t2 y|]) let parse_z term = let (i,c) = get_left_construct term in match i with | 1 -> Mc.Z0 | 2 -> Mc.Zpos (parse_positive c.(0)) | 3 -> Mc.Zneg (parse_positive c.(0)) | i -> raise ParseError let dump_z x = match x with | Mc.Z0 ->Lazy.force coq_ZERO | Mc.Zpos p -> Term.mkApp(Lazy.force coq_POS,[| dump_positive p|]) | Mc.Zneg p -> Term.mkApp(Lazy.force coq_NEG,[| dump_positive p|]) let pp_z o x = Printf.fprintf o "%s" (Big_int.string_of_big_int (CoqToCaml.z_big_int x)) let dump_num bd1 = Term.mkApp(Lazy.force coq_Qmake, [|dump_z (CamlToCoq.bigint (numerator bd1)) ; dump_positive (CamlToCoq.positive_big_int (denominator bd1)) |]) let dump_q q = Term.mkApp(Lazy.force coq_Qmake, [| dump_z q.Micromega.qnum ; dump_positive q.Micromega.qden|]) let parse_q term = match Term.kind_of_term term with | Term.App(c, args) -> if c = Lazy.force coq_Qmake then {Mc.qnum = parse_z args.(0) ; Mc.qden = parse_positive args.(1) } else raise ParseError | _ -> raise ParseError let rec pp_Rcst o cst = match cst with | Mc.C0 -> output_string o "C0" | Mc.C1 -> output_string o "C1" | Mc.CQ q -> output_string o "CQ _" | Mc.CZ z -> pp_z o z | Mc.CPlus(x,y) -> Printf.fprintf o "(%a + %a)" pp_Rcst x pp_Rcst y | Mc.CMinus(x,y) -> Printf.fprintf o "(%a - %a)" pp_Rcst x pp_Rcst y | Mc.CMult(x,y) -> Printf.fprintf o "(%a * %a)" pp_Rcst x pp_Rcst y | Mc.CInv t -> Printf.fprintf o "(/ %a)" pp_Rcst t | Mc.COpp t -> Printf.fprintf o "(- %a)" pp_Rcst t let rec dump_Rcst cst = match cst with | Mc.C0 -> Lazy.force coq_C0 | Mc.C1 -> Lazy.force coq_C1 | Mc.CQ q -> Term.mkApp(Lazy.force coq_CQ, [| dump_q q |]) | Mc.CZ z -> Term.mkApp(Lazy.force coq_CZ, [| dump_z z |]) | Mc.CPlus(x,y) -> Term.mkApp(Lazy.force coq_CPlus, [| dump_Rcst x ; dump_Rcst y |]) | Mc.CMinus(x,y) -> Term.mkApp(Lazy.force coq_CMinus, [| dump_Rcst x ; dump_Rcst y |]) | Mc.CMult(x,y) -> Term.mkApp(Lazy.force coq_CMult, [| dump_Rcst x ; dump_Rcst y |]) | Mc.CInv t -> Term.mkApp(Lazy.force coq_CInv, [| dump_Rcst t |]) | Mc.COpp t -> Term.mkApp(Lazy.force coq_COpp, [| dump_Rcst t |]) let rec parse_Rcst term = let (i,c) = get_left_construct term in match i with | 1 -> Mc.C0 | 2 -> Mc.C1 | 3 -> Mc.CQ (parse_q c.(0)) | 4 -> Mc.CPlus(parse_Rcst c.(0), parse_Rcst c.(1)) | 5 -> Mc.CMinus(parse_Rcst c.(0), parse_Rcst c.(1)) | 6 -> Mc.CMult(parse_Rcst c.(0), parse_Rcst c.(1)) | 7 -> Mc.CInv(parse_Rcst c.(0)) | 8 -> Mc.COpp(parse_Rcst c.(0)) | _ -> raise ParseError let rec parse_list parse_elt term = let (i,c) = get_left_construct term in match i with | 1 -> [] | 2 -> parse_elt c.(1) :: parse_list parse_elt c.(2) | i -> raise ParseError let rec dump_list typ dump_elt l = match l with | [] -> Term.mkApp(Lazy.force coq_nil,[| typ |]) | e :: l -> Term.mkApp(Lazy.force coq_cons, [| typ; dump_elt e;dump_list typ dump_elt l|]) let pp_list op cl elt o l = let rec _pp o l = match l with | [] -> () | [e] -> Printf.fprintf o "%a" elt e | e::l -> Printf.fprintf o "%a ,%a" elt e _pp l in Printf.fprintf o "%s%a%s" op _pp l cl let pp_var = pp_positive let dump_var = dump_positive let pp_expr pp_z o e = let rec pp_expr o e = match e with | Mc.PEX n -> Printf.fprintf o "V %a" pp_var n | Mc.PEc z -> pp_z o z | Mc.PEadd(e1,e2) -> Printf.fprintf o "(%a)+(%a)" pp_expr e1 pp_expr e2 | Mc.PEmul(e1,e2) -> Printf.fprintf o "%a*(%a)" pp_expr e1 pp_expr e2 | Mc.PEopp e -> Printf.fprintf o "-(%a)" pp_expr e | Mc.PEsub(e1,e2) -> Printf.fprintf o "(%a)-(%a)" pp_expr e1 pp_expr e2 | Mc.PEpow(e,n) -> Printf.fprintf o "(%a)^(%a)" pp_expr e pp_n n in pp_expr o e let dump_expr typ dump_z e = let rec dump_expr e = match e with | Mc.PEX n -> mkApp(Lazy.force coq_PEX,[| typ; dump_var n |]) | Mc.PEc z -> mkApp(Lazy.force coq_PEc,[| typ ; dump_z z |]) | Mc.PEadd(e1,e2) -> mkApp(Lazy.force coq_PEadd, [| typ; dump_expr e1;dump_expr e2|]) | Mc.PEsub(e1,e2) -> mkApp(Lazy.force coq_PEsub, [| typ; dump_expr e1;dump_expr e2|]) | Mc.PEopp e -> mkApp(Lazy.force coq_PEopp, [| typ; dump_expr e|]) | Mc.PEmul(e1,e2) -> mkApp(Lazy.force coq_PEmul, [| typ; dump_expr e1;dump_expr e2|]) | Mc.PEpow(e,n) -> mkApp(Lazy.force coq_PEpow, [| typ; dump_expr e; dump_n n|]) in dump_expr e let dump_pol typ dump_c e = let rec dump_pol e = match e with | Mc.Pc n -> mkApp(Lazy.force coq_Pc, [|typ ; dump_c n|]) | Mc.Pinj(p,pol) -> mkApp(Lazy.force coq_Pinj , [| typ ; dump_positive p ; dump_pol pol|]) | Mc.PX(pol1,p,pol2) -> mkApp(Lazy.force coq_PX, [| typ ; dump_pol pol1 ; dump_positive p ; dump_pol pol2|]) in dump_pol e let pp_pol pp_c o e = let rec pp_pol o e = match e with | Mc.Pc n -> Printf.fprintf o "Pc %a" pp_c n | Mc.Pinj(p,pol) -> Printf.fprintf o "Pinj(%a,%a)" pp_positive p pp_pol pol | Mc.PX(pol1,p,pol2) -> Printf.fprintf o "PX(%a,%a,%a)" pp_pol pol1 pp_positive p pp_pol pol2 in pp_pol o e let pp_cnf pp_c o f = let pp_clause o l = List.iter (fun ((p,_),t) -> Printf.fprintf o "(%a @%a)" (pp_pol pp_c) p Tag.pp t) l in List.iter (fun l -> Printf.fprintf o "[%a]" pp_clause l) f let dump_psatz typ dump_z e = let z = Lazy.force typ in let rec dump_cone e = match e with | Mc.PsatzIn n -> mkApp(Lazy.force coq_PsatzIn,[| z; dump_nat n |]) | Mc.PsatzMulC(e,c) -> mkApp(Lazy.force coq_PsatzMultC, [| z; dump_pol z dump_z e ; dump_cone c |]) | Mc.PsatzSquare e -> mkApp(Lazy.force coq_PsatzSquare, [| z;dump_pol z dump_z e|]) | Mc.PsatzAdd(e1,e2) -> mkApp(Lazy.force coq_PsatzAdd, [| z; dump_cone e1; dump_cone e2|]) | Mc.PsatzMulE(e1,e2) -> mkApp(Lazy.force coq_PsatzMulE, [| z; dump_cone e1; dump_cone e2|]) | Mc.PsatzC p -> mkApp(Lazy.force coq_PsatzC,[| z; dump_z p|]) | Mc.PsatzZ -> mkApp( Lazy.force coq_PsatzZ,[| z|]) in dump_cone e let pp_psatz pp_z o e = let rec pp_cone o e = match e with | Mc.PsatzIn n -> Printf.fprintf o "(In %a)%%nat" pp_nat n | Mc.PsatzMulC(e,c) -> Printf.fprintf o "( %a [*] %a)" (pp_pol pp_z) e pp_cone c | Mc.PsatzSquare e -> Printf.fprintf o "(%a^2)" (pp_pol pp_z) e | Mc.PsatzAdd(e1,e2) -> Printf.fprintf o "(%a [+] %a)" pp_cone e1 pp_cone e2 | Mc.PsatzMulE(e1,e2) -> Printf.fprintf o "(%a [*] %a)" pp_cone e1 pp_cone e2 | Mc.PsatzC p -> Printf.fprintf o "(%a)%%positive" pp_z p | Mc.PsatzZ -> Printf.fprintf o "0" in pp_cone o e let dump_op = function | Mc.OpEq-> Lazy.force coq_OpEq | Mc.OpNEq-> Lazy.force coq_OpNEq | Mc.OpLe -> Lazy.force coq_OpLe | Mc.OpGe -> Lazy.force coq_OpGe | Mc.OpGt-> Lazy.force coq_OpGt | Mc.OpLt-> Lazy.force coq_OpLt let pp_op o e= match e with | Mc.OpEq-> Printf.fprintf o "=" | Mc.OpNEq-> Printf.fprintf o "<>" | Mc.OpLe -> Printf.fprintf o "=<" | Mc.OpGe -> Printf.fprintf o ">=" | Mc.OpGt-> Printf.fprintf o ">" | Mc.OpLt-> Printf.fprintf o "<" let pp_cstr pp_z o {Mc.flhs = l ; Mc.fop = op ; Mc.frhs = r } = Printf.fprintf o"(%a %a %a)" (pp_expr pp_z) l pp_op op (pp_expr pp_z) r let dump_cstr typ dump_constant {Mc.flhs = e1 ; Mc.fop = o ; Mc.frhs = e2} = Term.mkApp(Lazy.force coq_Build, [| typ; dump_expr typ dump_constant e1 ; dump_op o ; dump_expr typ dump_constant e2|]) let assoc_const x l = try snd (List.find (fun (x',y) -> x = Lazy.force x') l) with Not_found -> raise ParseError let zop_table = [ coq_Zgt, Mc.OpGt ; coq_Zge, Mc.OpGe ; coq_Zlt, Mc.OpLt ; coq_Zle, Mc.OpLe ] let rop_table = [ coq_Rgt, Mc.OpGt ; coq_Rge, Mc.OpGe ; coq_Rlt, Mc.OpLt ; coq_Rle, Mc.OpLe ] let qop_table = [ coq_Qlt, Mc.OpLt ; coq_Qle, Mc.OpLe ; coq_Qeq, Mc.OpEq ] let parse_zop (op,args) = match kind_of_term op with | Const x -> (assoc_const op zop_table, args.(0) , args.(1)) | Ind(n,0) -> if op = Lazy.force coq_Eq && args.(0) = Lazy.force coq_Z then (Mc.OpEq, args.(1), args.(2)) else raise ParseError | _ -> failwith "parse_zop" let parse_rop (op,args) = match kind_of_term op with | Const x -> (assoc_const op rop_table, args.(0) , args.(1)) | Ind(n,0) -> if op = Lazy.force coq_Eq && args.(0) = Lazy.force coq_R then (Mc.OpEq, args.(1), args.(2)) else raise ParseError | _ -> failwith "parse_zop" let parse_qop (op,args) = (assoc_const op qop_table, args.(0) , args.(1)) let is_constant t = (* This is an approx *) match kind_of_term t with | Construct(i,_) -> true | _ -> false type 'a op = | Binop of ('a Mc.pExpr -> 'a Mc.pExpr -> 'a Mc.pExpr) | Opp | Power | Ukn of string let assoc_ops x l = try snd (List.find (fun (x',y) -> x = Lazy.force x') l) with Not_found -> Ukn "Oups" (** * MODULE: Env is for environment. *) module Env = struct type t = constr list let compute_rank_add env v = let rec _add env n v = match env with | [] -> ([v],n) | e::l -> if eq_constr e v then (env,n) else let (env,n) = _add l ( n+1) v in (e::env,n) in let (env, n) = _add env 1 v in (env, CamlToCoq.idx n) let empty = [] let elements env = env end (* MODULE END: Env *) (** * This is the big generic function for expression parsers. *) let parse_expr parse_constant parse_exp ops_spec env term = if debug then Pp.msg_debug (Pp.str "parse_expr: " ++ Printer.prterm term); (* let constant_or_variable env term = try ( Mc.PEc (parse_constant term) , env) with ParseError -> let (env,n) = Env.compute_rank_add env term in (Mc.PEX n , env) in *) let parse_variable env term = let (env,n) = Env.compute_rank_add env term in (Mc.PEX n , env) in let rec parse_expr env term = let combine env op (t1,t2) = let (expr1,env) = parse_expr env t1 in let (expr2,env) = parse_expr env t2 in (op expr1 expr2,env) in try (Mc.PEc (parse_constant term) , env) with ParseError -> match kind_of_term term with | App(t,args) -> ( match kind_of_term t with | Const c -> ( match assoc_ops t ops_spec with | Binop f -> combine env f (args.(0),args.(1)) | Opp -> let (expr,env) = parse_expr env args.(0) in (Mc.PEopp expr, env) | Power -> begin try let (expr,env) = parse_expr env args.(0) in let power = (parse_exp expr args.(1)) in (power , env) with e when Errors.noncritical e -> (* if the exponent is a variable *) let (env,n) = Env.compute_rank_add env term in (Mc.PEX n, env) end | Ukn s -> if debug then (Printf.printf "unknown op: %s\n" s; flush stdout;); let (env,n) = Env.compute_rank_add env term in (Mc.PEX n, env) ) | _ -> parse_variable env term ) | _ -> parse_variable env term in parse_expr env term let zop_spec = [ coq_Zplus , Binop (fun x y -> Mc.PEadd(x,y)) ; coq_Zminus , Binop (fun x y -> Mc.PEsub(x,y)) ; coq_Zmult , Binop (fun x y -> Mc.PEmul (x,y)) ; coq_Zopp , Opp ; coq_Zpower , Power] let qop_spec = [ coq_Qplus , Binop (fun x y -> Mc.PEadd(x,y)) ; coq_Qminus , Binop (fun x y -> Mc.PEsub(x,y)) ; coq_Qmult , Binop (fun x y -> Mc.PEmul (x,y)) ; coq_Qopp , Opp ; coq_Qpower , Power] let rop_spec = [ coq_Rplus , Binop (fun x y -> Mc.PEadd(x,y)) ; coq_Rminus , Binop (fun x y -> Mc.PEsub(x,y)) ; coq_Rmult , Binop (fun x y -> Mc.PEmul (x,y)) ; coq_Ropp , Opp ; coq_Rpower , Power] let zconstant = parse_z let qconstant = parse_q let rconst_assoc = [ coq_Rplus , (fun x y -> Mc.CPlus(x,y)) ; coq_Rminus , (fun x y -> Mc.CMinus(x,y)) ; coq_Rmult , (fun x y -> Mc.CMult(x,y)) ; coq_Rdiv , (fun x y -> Mc.CMult(x,Mc.CInv y)) ; ] let rec rconstant term = match Term.kind_of_term term with | Const x -> if term = Lazy.force coq_R0 then Mc.C0 else if term = Lazy.force coq_R1 then Mc.C1 else raise ParseError | App(op,args) -> begin try (* the evaluation order is important in the following *) let f = assoc_const op rconst_assoc in let a = rconstant args.(0) in let b = rconstant args.(1) in f a b with ParseError -> match op with | op when op = Lazy.force coq_Rinv -> Mc.CInv(rconstant args.(0)) | op when op = Lazy.force coq_IQR -> Mc.CQ (parse_q args.(0)) (* | op when op = Lazy.force coq_IZR -> Mc.CZ (parse_z args.(0))*) | _ -> raise ParseError end | _ -> raise ParseError let rconstant term = if debug then Pp.msg_debug (Pp.str "rconstant: " ++ Printer.prterm term ++ fnl ()); let res = rconstant term in if debug then (Printf.printf "rconstant -> %a\n" pp_Rcst res ; flush stdout) ; res let parse_zexpr = parse_expr zconstant (fun expr x -> let exp = (parse_z x) in match exp with | Mc.Zneg _ -> Mc.PEc Mc.Z0 | _ -> Mc.PEpow(expr, Mc.Z.to_N exp)) zop_spec let parse_qexpr = parse_expr qconstant (fun expr x -> let exp = parse_z x in match exp with | Mc.Zneg _ -> begin match expr with | Mc.PEc q -> Mc.PEc (Mc.qpower q exp) | _ -> print_string "parse_qexpr parse error" ; flush stdout ; raise ParseError end | _ -> let exp = Mc.Z.to_N exp in Mc.PEpow(expr,exp)) qop_spec let parse_rexpr = parse_expr rconstant (fun expr x -> let exp = Mc.N.of_nat (parse_nat x) in Mc.PEpow(expr,exp)) rop_spec let parse_arith parse_op parse_expr env cstr = if debug then Pp.msg_debug (Pp.str "parse_arith: " ++ Printer.prterm cstr ++ fnl ()); match kind_of_term cstr with | App(op,args) -> let (op,lhs,rhs) = parse_op (op,args) in let (e1,env) = parse_expr env lhs in let (e2,env) = parse_expr env rhs in ({Mc.flhs = e1; Mc.fop = op;Mc.frhs = e2},env) | _ -> failwith "error : parse_arith(2)" let parse_zarith = parse_arith parse_zop parse_zexpr let parse_qarith = parse_arith parse_qop parse_qexpr let parse_rarith = parse_arith parse_rop parse_rexpr (* generic parsing of arithmetic expressions *) let rec f2f = function | TT -> Mc.TT | FF -> Mc.FF | X _ -> Mc.X | A (x,_,_) -> Mc.A x | C (a,b) -> Mc.Cj(f2f a,f2f b) | D (a,b) -> Mc.D(f2f a,f2f b) | N (a) -> Mc.N(f2f a) | I(a,_,b) -> Mc.I(f2f a,f2f b) let is_prop t = match t with | Names.Anonymous -> true (* Not quite right *) | Names.Name x -> false let mkC f1 f2 = C(f1,f2) let mkD f1 f2 = D(f1,f2) let mkIff f1 f2 = C(I(f1,None,f2),I(f2,None,f1)) let mkI f1 f2 = I(f1,None,f2) let mkformula_binary g term f1 f2 = match f1 , f2 with | X _ , X _ -> X(term) | _ -> g f1 f2 (** * This is the big generic function for formula parsers. *) let parse_formula parse_atom env tg term = let parse_atom env tg t = try let (at,env) = parse_atom env t in (A(at,tg,t), env,Tag.next tg) with e when Errors.noncritical e -> (X(t),env,tg) in let rec xparse_formula env tg term = match kind_of_term term with | App(l,rst) -> (match rst with | [|a;b|] when eq_constr l (Lazy.force coq_and) -> let f,env,tg = xparse_formula env tg a in let g,env, tg = xparse_formula env tg b in mkformula_binary mkC term f g,env,tg | [|a;b|] when eq_constr l (Lazy.force coq_or) -> let f,env,tg = xparse_formula env tg a in let g,env,tg = xparse_formula env tg b in mkformula_binary mkD term f g,env,tg | [|a|] when eq_constr l (Lazy.force coq_not) -> let (f,env,tg) = xparse_formula env tg a in (N(f), env,tg) | [|a;b|] when eq_constr l (Lazy.force coq_iff) -> let f,env,tg = xparse_formula env tg a in let g,env,tg = xparse_formula env tg b in mkformula_binary mkIff term f g,env,tg | _ -> parse_atom env tg term) | Prod(typ,a,b) when not (Termops.dependent (mkRel 1) b) -> let f,env,tg = xparse_formula env tg a in let g,env,tg = xparse_formula env tg b in mkformula_binary mkI term f g,env,tg | _ when eq_constr term (Lazy.force coq_True) -> (TT,env,tg) | _ when eq_constr term (Lazy.force coq_False) -> (FF,env,tg) | _ -> X(term),env,tg in xparse_formula env tg ((*Reductionops.whd_zeta*) term) let dump_formula typ dump_atom f = let rec xdump f = match f with | TT -> mkApp(Lazy.force coq_TT,[|typ|]) | FF -> mkApp(Lazy.force coq_FF,[|typ|]) | C(x,y) -> mkApp(Lazy.force coq_And,[|typ ; xdump x ; xdump y|]) | D(x,y) -> mkApp(Lazy.force coq_Or,[|typ ; xdump x ; xdump y|]) | I(x,_,y) -> mkApp(Lazy.force coq_Impl,[|typ ; xdump x ; xdump y|]) | N(x) -> mkApp(Lazy.force coq_Neg,[|typ ; xdump x|]) | A(x,_,_) -> mkApp(Lazy.force coq_Atom,[|typ ; dump_atom x|]) | X(t) -> mkApp(Lazy.force coq_X,[|typ ; t|]) in xdump f (** * Given a conclusion and a list of affectations, rebuild a term prefixed by * the appropriate letins. * TODO: reverse the list of bindings! *) let set l concl = let rec xset acc = function | [] -> acc | (e::l) -> let (name,expr,typ) = e in xset (Term.mkNamedLetIn (Names.Id.of_string name) expr typ acc) l in xset concl l end (** * MODULE END: M *) open M let rec sig_of_cone = function | Mc.PsatzIn n -> [CoqToCaml.nat n] | Mc.PsatzMulE(w1,w2) -> (sig_of_cone w1)@(sig_of_cone w2) | Mc.PsatzMulC(w1,w2) -> (sig_of_cone w2) | Mc.PsatzAdd(w1,w2) -> (sig_of_cone w1)@(sig_of_cone w2) | _ -> [] let same_proof sg cl1 cl2 = let rec xsame_proof sg = match sg with | [] -> true | n::sg -> (try List.nth cl1 n = List.nth cl2 n with Invalid_argument _ -> false) && (xsame_proof sg ) in xsame_proof sg let tags_of_clause tgs wit clause = let rec xtags tgs = function | Mc.PsatzIn n -> Names.Id.Set.union tgs (snd (List.nth clause (CoqToCaml.nat n) )) | Mc.PsatzMulC(e,w) -> xtags tgs w | Mc.PsatzMulE (w1,w2) | Mc.PsatzAdd(w1,w2) -> xtags (xtags tgs w1) w2 | _ -> tgs in xtags tgs wit (*let tags_of_cnf wits cnf = List.fold_left2 (fun acc w cl -> tags_of_clause acc w cl) Names.Id.Set.empty wits cnf *) let find_witness prover polys1 = try_any prover polys1 let rec witness prover l1 l2 = match l2 with | [] -> Some [] | e :: l2 -> match find_witness prover (e::l1) with | None -> None | Some w -> (match witness prover l1 l2 with | None -> None | Some l -> Some (w::l) ) let rec apply_ids t ids = match ids with | [] -> t | i::ids -> apply_ids (Term.mkApp(t,[| Term.mkVar i |])) ids let coq_Node = lazy (Coqlib.gen_constant_in_modules "VarMap" [["Coq" ; "micromega" ; "VarMap"];["VarMap"]] "Node") let coq_Leaf = lazy (Coqlib.gen_constant_in_modules "VarMap" [["Coq" ; "micromega" ; "VarMap"];["VarMap"]] "Leaf") let coq_Empty = lazy (Coqlib.gen_constant_in_modules "VarMap" [["Coq" ; "micromega" ;"VarMap"];["VarMap"]] "Empty") let btree_of_array typ a = let size_of_a = Array.length a in let semi_size_of_a = size_of_a lsr 1 in let node = Lazy.force coq_Node and leaf = Lazy.force coq_Leaf and empty = Term.mkApp (Lazy.force coq_Empty, [| typ |]) in let rec aux n = if n > size_of_a then empty else if n > semi_size_of_a then Term.mkApp (leaf, [| typ; a.(n-1) |]) else Term.mkApp (node, [| typ; aux (2*n); a.(n-1); aux (2*n+1) |]) in aux 1 let btree_of_array typ a = try btree_of_array typ a with x when Errors.noncritical x -> failwith (Printf.sprintf "btree of array : %s" (Printexc.to_string x)) let dump_varmap typ env = btree_of_array typ (Array.of_list env) let rec pp_varmap o vm = match vm with | Mc.Empty -> output_string o "[]" | Mc.Leaf z -> Printf.fprintf o "[%a]" pp_z z | Mc.Node(l,z,r) -> Printf.fprintf o "[%a, %a, %a]" pp_varmap l pp_z z pp_varmap r let rec dump_proof_term = function | Micromega.DoneProof -> Lazy.force coq_doneProof | Micromega.RatProof(cone,rst) -> Term.mkApp(Lazy.force coq_ratProof, [| dump_psatz coq_Z dump_z cone; dump_proof_term rst|]) | Micromega.CutProof(cone,prf) -> Term.mkApp(Lazy.force coq_cutProof, [| dump_psatz coq_Z dump_z cone ; dump_proof_term prf|]) | Micromega.EnumProof(c1,c2,prfs) -> Term.mkApp (Lazy.force coq_enumProof, [| dump_psatz coq_Z dump_z c1 ; dump_psatz coq_Z dump_z c2 ; dump_list (Lazy.force coq_proofTerm) dump_proof_term prfs |]) let rec size_of_psatz = function | Micromega.PsatzIn _ -> 1 | Micromega.PsatzSquare _ -> 1 | Micromega.PsatzMulC(_,p) -> 1 + (size_of_psatz p) | Micromega.PsatzMulE(p1,p2) | Micromega.PsatzAdd(p1,p2) -> size_of_psatz p1 + size_of_psatz p2 | Micromega.PsatzC _ -> 1 | Micromega.PsatzZ -> 1 let rec size_of_pf = function | Micromega.DoneProof -> 1 | Micromega.RatProof(p,a) -> (size_of_pf a) + (size_of_psatz p) | Micromega.CutProof(p,a) -> (size_of_pf a) + (size_of_psatz p) | Micromega.EnumProof(p1,p2,l) -> (size_of_psatz p1) + (size_of_psatz p2) + (List.fold_left (fun acc p -> size_of_pf p + acc) 0 l) let dump_proof_term t = if debug then Printf.printf "dump_proof_term %i\n" (size_of_pf t) ; dump_proof_term t let pp_q o q = Printf.fprintf o "%a/%a" pp_z q.Micromega.qnum pp_positive q.Micromega.qden let rec pp_proof_term o = function | Micromega.DoneProof -> Printf.fprintf o "D" | Micromega.RatProof(cone,rst) -> Printf.fprintf o "R[%a,%a]" (pp_psatz pp_z) cone pp_proof_term rst | Micromega.CutProof(cone,rst) -> Printf.fprintf o "C[%a,%a]" (pp_psatz pp_z) cone pp_proof_term rst | Micromega.EnumProof(c1,c2,rst) -> Printf.fprintf o "EP[%a,%a,%a]" (pp_psatz pp_z) c1 (pp_psatz pp_z) c2 (pp_list "[" "]" pp_proof_term) rst let rec parse_hyps parse_arith env tg hyps = match hyps with | [] -> ([],env,tg) | (i,t)::l -> let (lhyps,env,tg) = parse_hyps parse_arith env tg l in try let (c,env,tg) = parse_formula parse_arith env tg t in ((i,c)::lhyps, env,tg) with e when Errors.noncritical e -> (lhyps,env,tg) (*(if debug then Printf.printf "parse_arith : %s\n" x);*) (*exception ParseError*) let parse_goal parse_arith env hyps term = (* try*) let (f,env,tg) = parse_formula parse_arith env (Tag.from 0) term in let (lhyps,env,tg) = parse_hyps parse_arith env tg hyps in (lhyps,f,env) (* with Failure x -> raise ParseError*) (** * The datastructures that aggregate theory-dependent proof values. *) type ('synt_c, 'prf) domain_spec = { typ : Term.constr; (* is the type of the interpretation domain - Z, Q, R*) coeff : Term.constr ; (* is the type of the syntactic coeffs - Z , Q , Rcst *) dump_coeff : 'synt_c -> Term.constr ; proof_typ : Term.constr ; dump_proof : 'prf -> Term.constr } let zz_domain_spec = lazy { typ = Lazy.force coq_Z; coeff = Lazy.force coq_Z; dump_coeff = dump_z ; proof_typ = Lazy.force coq_proofTerm ; dump_proof = dump_proof_term } let qq_domain_spec = lazy { typ = Lazy.force coq_Q; coeff = Lazy.force coq_Q; dump_coeff = dump_q ; proof_typ = Lazy.force coq_QWitness ; dump_proof = dump_psatz coq_Q dump_q } let rcst_domain_spec = lazy { typ = Lazy.force coq_R; coeff = Lazy.force coq_Rcst; dump_coeff = dump_Rcst; proof_typ = Lazy.force coq_QWitness ; dump_proof = dump_psatz coq_Q dump_q } (** * Instanciate the current Coq goal with a Micromega formula, a varmap, and a * witness. *) let micromega_order_change spec cert cert_typ env ff gl = let formula_typ = (Term.mkApp (Lazy.force coq_Cstr,[|spec.coeff|])) in let ff = dump_formula formula_typ (dump_cstr spec.coeff spec.dump_coeff) ff in let vm = dump_varmap (spec.typ) env in Tactics.change_in_concl None (set [ ("__ff", ff, Term.mkApp(Lazy.force coq_Formula, [|formula_typ |])); ("__varmap", vm, Term.mkApp (Coqlib.gen_constant_in_modules "VarMap" [["Coq" ; "micromega" ; "VarMap"] ; ["VarMap"]] "t", [|spec.typ|])); ("__wit", cert, cert_typ) ] (Tacmach.pf_concl gl) ) gl (** * The datastructures that aggregate prover attributes. *) type ('a,'prf) prover = { name : string ; (* name of the prover *) prover : 'a list -> 'prf option ; (* the prover itself *) hyps : 'prf -> ISet.t ; (* extract the indexes of the hypotheses really used in the proof *) compact : 'prf -> (int -> int) -> 'prf ; (* remap the hyp indexes according to function *) pp_prf : out_channel -> 'prf -> unit ;(* pretting printing of proof *) pp_f : out_channel -> 'a -> unit (* pretty printing of the formulas (polynomials)*) } (** * Given a list of provers and a disjunction of atoms, find a proof of any of * the atoms. Returns an (optional) pair of a proof and a prover * datastructure. *) let find_witness provers polys1 = let provers = List.map (fun p -> (fun l -> match p.prover l with | None -> None | Some prf -> Some(prf,p)) , p.name) provers in try_any provers (List.map fst polys1) (** * Given a list of provers and a CNF, find a proof for each of the clauses. * Return the proofs as a list. *) let witness_list prover l = let rec xwitness_list l = match l with | [] -> Some [] | e :: l -> match find_witness prover e with | None -> None | Some w -> (match xwitness_list l with | None -> None | Some l -> Some (w :: l) ) in xwitness_list l let witness_list_tags = witness_list (* *Deprecated* let is_singleton = function [] -> true | [e] -> true | _ -> false *) let pp_ml_list pp_elt o l = output_string o "[" ; List.iter (fun x -> Printf.fprintf o "%a ;" pp_elt x) l ; output_string o "]" (** * Prune the proof object, according to the 'diff' between two cnf formulas. *) let compact_proofs (cnf_ff: 'cst cnf) res (cnf_ff': 'cst cnf) = let compact_proof (old_cl:'cst clause) (prf,prover) (new_cl:'cst clause) = let new_cl = Mutils.mapi (fun (f,_) i -> (f,i)) new_cl in let remap i = let formula = try fst (List.nth old_cl i) with Failure _ -> failwith "bad old index" in List.assoc formula new_cl in (* if debug then begin Printf.printf "\ncompact_proof : %a %a %a" (pp_ml_list prover.pp_f) (List.map fst old_cl) prover.pp_prf prf (pp_ml_list prover.pp_f) (List.map fst new_cl) ; flush stdout end ; *) let res = try prover.compact prf remap with x when Errors.noncritical x -> if debug then Printf.fprintf stdout "Proof compaction %s" (Printexc.to_string x) ; (* This should not happen -- this is the recovery plan... *) match prover.prover (List.map fst new_cl) with | None -> failwith "proof compaction error" | Some p -> p in if debug then begin Printf.printf " -> %a\n" prover.pp_prf res ; flush stdout end ; res in let is_proof_compatible (old_cl:'cst clause) (prf,prover) (new_cl:'cst clause) = let hyps_idx = prover.hyps prf in let hyps = selecti hyps_idx old_cl in is_sublist hyps new_cl in let cnf_res = List.combine cnf_ff res in (* we get pairs clause * proof *) List.map (fun x -> let (o,p) = List.find (fun (l,p) -> is_proof_compatible l p x) cnf_res in compact_proof o p x) cnf_ff' (** * "Hide out" tagged atoms of a formula by transforming them into generic * variables. See the Tag module in mutils.ml for more. *) let abstract_formula hyps f = let rec xabs f = match f with | X c -> X c | A(a,t,term) -> if TagSet.mem t hyps then A(a,t,term) else X(term) | C(f1,f2) -> (match xabs f1 , xabs f2 with | X a1 , X a2 -> X (Term.mkApp(Lazy.force coq_and, [|a1;a2|])) | f1 , f2 -> C(f1,f2) ) | D(f1,f2) -> (match xabs f1 , xabs f2 with | X a1 , X a2 -> X (Term.mkApp(Lazy.force coq_or, [|a1;a2|])) | f1 , f2 -> D(f1,f2) ) | N(f) -> (match xabs f with | X a -> X (Term.mkApp(Lazy.force coq_not, [|a|])) | f -> N f) | I(f1,hyp,f2) -> (match xabs f1 , hyp, xabs f2 with | X a1 , Some _ , af2 -> af2 | X a1 , None , X a2 -> X (Term.mkArrow a1 a2) | af1 , _ , af2 -> I(af1,hyp,af2) ) | FF -> FF | TT -> TT in xabs f (* [abstract_wrt_formula] is used in contexts whre f1 is already an abstraction of f2 *) let rec abstract_wrt_formula f1 f2 = match f1 , f2 with | X c , _ -> X c | A _ , A _ -> f2 | C(a,b) , C(a',b') -> C(abstract_wrt_formula a a', abstract_wrt_formula b b') | D(a,b) , D(a',b') -> D(abstract_wrt_formula a a', abstract_wrt_formula b b') | I(a,_,b) , I(a',x,b') -> I(abstract_wrt_formula a a',x, abstract_wrt_formula b b') | FF , FF -> FF | TT , TT -> TT | N x , N y -> N(abstract_wrt_formula x y) | _ -> failwith "abstract_wrt_formula" (** * This exception is raised by really_call_csdpcert if Coq's configure didn't * find a CSDP executable. *) exception CsdpNotFound (** * This is the core of Micromega: apply the prover, analyze the result and * prune unused fomulas, and finally modify the proof state. *) let formula_hyps_concl hyps concl = List.fold_right (fun (id,f) (cc,ids) -> match f with X _ -> (cc,ids) | _ -> (I(f,Some id,cc), id::ids)) hyps (concl,[]) let micromega_tauto negate normalise unsat deduce spec prover env polys1 polys2 gl = (* Express the goal as one big implication *) let (ff,ids) = formula_hyps_concl polys1 polys2 in (* Convert the aplpication into a (mc_)cnf (a list of lists of formulas) *) let cnf_ff,cnf_ff_tags = cnf negate normalise unsat deduce ff in if debug then begin Pp.pp (Pp.str "Formula....\n") ; let formula_typ = (Term.mkApp(Lazy.force coq_Cstr, [|spec.coeff|])) in let ff = dump_formula formula_typ (dump_cstr spec.typ spec.dump_coeff) ff in Pp.pp (Printer.prterm ff) ; Pp.pp_flush (); Printf.fprintf stdout "cnf : %a\n" (pp_cnf (fun o _ -> ())) cnf_ff end; match witness_list_tags prover cnf_ff with | None -> None | Some res -> (*Printf.printf "\nList %i" (List.length `res); *) let hyps = List.fold_left (fun s (cl,(prf,p)) -> let tags = ISet.fold (fun i s -> let t = snd (List.nth cl i) in if debug then (Printf.fprintf stdout "T : %i -> %a" i Tag.pp t) ; (*try*) TagSet.add t s (* with Invalid_argument _ -> s*)) (p.hyps prf) TagSet.empty in TagSet.union s tags) (List.fold_left (fun s i -> TagSet.add i s) TagSet.empty cnf_ff_tags) (List.combine cnf_ff res) in if debug then (Printf.printf "TForm : %a\n" pp_formula ff ; flush stdout; Printf.printf "Hyps : %a\n" (fun o s -> TagSet.fold (fun i _ -> Printf.fprintf o "%a " Tag.pp i) s ()) hyps) ; let ff' = abstract_formula hyps ff in let cnf_ff',_ = cnf negate normalise unsat deduce ff' in if debug then begin Pp.pp (Pp.str "\nAFormula\n") ; let formula_typ = (Term.mkApp( Lazy.force coq_Cstr,[| spec.coeff|])) in let ff' = dump_formula formula_typ (dump_cstr spec.typ spec.dump_coeff) ff' in Pp.pp (Printer.prterm ff') ; Pp.pp_flush (); Printf.fprintf stdout "cnf : %a\n" (pp_cnf (fun o _ -> ())) cnf_ff' end; (* Even if it does not work, this does not mean it is not provable -- the prover is REALLY incomplete *) (* if debug then begin (* recompute the proofs *) match witness_list_tags prover cnf_ff' with | None -> failwith "abstraction is wrong" | Some res -> () end ; *) let res' = compact_proofs cnf_ff res cnf_ff' in let (ff',res',ids) = (ff',res', ids_of_formula ff') in let res' = dump_list (spec.proof_typ) spec.dump_proof res' in Some (ids,ff',res') (** * Parse the proof environment, and call micromega_tauto *) let micromega_gen parse_arith (negate:'cst atom -> 'cst mc_cnf) (normalise:'cst atom -> 'cst mc_cnf) unsat deduce spec prover gl = let concl = Tacmach.pf_concl gl in let hyps = Tacmach.pf_hyps_types gl in try let (hyps,concl,env) = parse_goal parse_arith Env.empty hyps concl in let env = Env.elements env in let spec = Lazy.force spec in match micromega_tauto negate normalise unsat deduce spec prover env hyps concl gl with | None -> Tacticals.tclFAIL 0 (Pp.str " Cannot find witness") gl | Some (ids,ff',res') -> (Tacticals.tclTHENSEQ [ Tactics.generalize (List.map Term.mkVar ids) ; micromega_order_change spec res' (Term.mkApp(Lazy.force coq_list, [|spec.proof_typ|])) env ff' ]) gl with | ParseError -> Tacticals.tclFAIL 0 (Pp.str "Bad logical fragment") gl | CsdpNotFound -> flush stdout ; Pp.pp_flush () ; Tacticals.tclFAIL 0 (Pp.str (" Skipping what remains of this tactic: the complexity of the goal requires " ^ "the use of a specialized external tool called csdp. \n\n" ^ "Unfortunately Coq isn't aware of the presence of any \"csdp\" executable in the path. \n\n" ^ "Csdp packages are provided by some OS distributions; binaries and source code can be downloaded from https://projects.coin-or.org/Csdp")) gl let micromega_order_changer cert env ff gl = let coeff = Lazy.force coq_Rcst in let dump_coeff = dump_Rcst in let typ = Lazy.force coq_R in let cert_typ = (Term.mkApp(Lazy.force coq_list, [|Lazy.force coq_QWitness |])) in let formula_typ = (Term.mkApp (Lazy.force coq_Cstr,[| coeff|])) in let ff = dump_formula formula_typ (dump_cstr coeff dump_coeff) ff in let vm = dump_varmap (typ) env in Tactics.change_in_concl None (set [ ("__ff", ff, Term.mkApp(Lazy.force coq_Formula, [|formula_typ |])); ("__varmap", vm, Term.mkApp (Coqlib.gen_constant_in_modules "VarMap" [["Coq" ; "micromega" ; "VarMap"] ; ["VarMap"]] "t", [|typ|])); ("__wit", cert, cert_typ) ] (Tacmach.pf_concl gl) ) gl let micromega_genr prover gl = let parse_arith = parse_rarith in let negate = Mc.rnegate in let normalise = Mc.rnormalise in let unsat = Mc.runsat in let deduce = Mc.rdeduce in let spec = lazy { typ = Lazy.force coq_R; coeff = Lazy.force coq_Rcst; dump_coeff = dump_q; proof_typ = Lazy.force coq_QWitness ; dump_proof = dump_psatz coq_Q dump_q } in let concl = Tacmach.pf_concl gl in let hyps = Tacmach.pf_hyps_types gl in try let (hyps,concl,env) = parse_goal parse_arith Env.empty hyps concl in let env = Env.elements env in let spec = Lazy.force spec in let hyps' = List.map (fun (n,f) -> (n, map_atoms (Micromega.map_Formula Micromega.q_of_Rcst) f)) hyps in let concl' = map_atoms (Micromega.map_Formula Micromega.q_of_Rcst) concl in match micromega_tauto negate normalise unsat deduce spec prover env hyps' concl' gl with | None -> Tacticals.tclFAIL 0 (Pp.str " Cannot find witness") gl | Some (ids,ff',res') -> let (ff,ids') = formula_hyps_concl (List.filter (fun (n,_) -> List.mem n ids) hyps) concl in (Tacticals.tclTHENSEQ [ Tactics.generalize (List.map Term.mkVar ids) ; micromega_order_changer res' env (abstract_wrt_formula ff' ff) ]) gl with | ParseError -> Tacticals.tclFAIL 0 (Pp.str "Bad logical fragment") gl | CsdpNotFound -> flush stdout ; Pp.pp_flush () ; Tacticals.tclFAIL 0 (Pp.str (" Skipping what remains of this tactic: the complexity of the goal requires " ^ "the use of a specialized external tool called csdp. \n\n" ^ "Unfortunately Coq isn't aware of the presence of any \"csdp\" executable in the path. \n\n" ^ "Csdp packages are provided by some OS distributions; binaries and source code can be downloaded from https://projects.coin-or.org/Csdp")) gl let lift_ratproof prover l = match prover l with | None -> None | Some c -> Some (Mc.RatProof( c,Mc.DoneProof)) type micromega_polys = (Micromega.q Mc.pol * Mc.op1) list type csdp_certificate = S of Sos_types.positivstellensatz option | F of string type provername = string * int option (** * The caching mechanism. *) open Persistent_cache module Cache = PHashtable(struct type t = (provername * micromega_polys) let equal = (=) let hash = Hashtbl.hash end) let csdp_cache = "csdp.cache" (** * Build the command to call csdpcert, and launch it. This in turn will call * the sos driver to the csdp executable. * Throw CsdpNotFound if Coq isn't aware of any csdp executable. *) let require_csdp = if System.is_in_system_path "csdp" then lazy () else lazy (raise CsdpNotFound) let really_call_csdpcert : provername -> micromega_polys -> Sos_types.positivstellensatz option = fun provername poly -> Lazy.force require_csdp; let cmdname = List.fold_left Filename.concat (Envars.coqlib ()) ["plugins"; "micromega"; "csdpcert" ^ Coq_config.exec_extension] in match ((command cmdname [|cmdname|] (provername,poly)) : csdp_certificate) with | F str -> failwith str | S res -> res (** * Check the cache before calling the prover. *) let xcall_csdpcert = Cache.memo csdp_cache (fun (prover,pb) -> really_call_csdpcert prover pb) (** * Prover callback functions. *) let call_csdpcert prover pb = xcall_csdpcert (prover,pb) let rec z_to_q_pol e = match e with | Mc.Pc z -> Mc.Pc {Mc.qnum = z ; Mc.qden = Mc.XH} | Mc.Pinj(p,pol) -> Mc.Pinj(p,z_to_q_pol pol) | Mc.PX(pol1,p,pol2) -> Mc.PX(z_to_q_pol pol1, p, z_to_q_pol pol2) let call_csdpcert_q provername poly = match call_csdpcert provername poly with | None -> None | Some cert -> let cert = Certificate.q_cert_of_pos cert in if Mc.qWeakChecker poly cert then Some cert else ((print_string "buggy certificate" ; flush stdout) ;None) let call_csdpcert_z provername poly = let l = List.map (fun (e,o) -> (z_to_q_pol e,o)) poly in match call_csdpcert provername l with | None -> None | Some cert -> let cert = Certificate.z_cert_of_pos cert in if Mc.zWeakChecker poly cert then Some cert else ((print_string "buggy certificate" ; flush stdout) ;None) let xhyps_of_cone base acc prf = let rec xtract e acc = match e with | Mc.PsatzC _ | Mc.PsatzZ | Mc.PsatzSquare _ -> acc | Mc.PsatzIn n -> let n = (CoqToCaml.nat n) in if n >= base then ISet.add (n-base) acc else acc | Mc.PsatzMulC(_,c) -> xtract c acc | Mc.PsatzAdd(e1,e2) | Mc.PsatzMulE(e1,e2) -> xtract e1 (xtract e2 acc) in xtract prf acc let hyps_of_cone prf = xhyps_of_cone 0 ISet.empty prf let compact_cone prf f = let np n = CamlToCoq.nat (f (CoqToCaml.nat n)) in let rec xinterp prf = match prf with | Mc.PsatzC _ | Mc.PsatzZ | Mc.PsatzSquare _ -> prf | Mc.PsatzIn n -> Mc.PsatzIn (np n) | Mc.PsatzMulC(e,c) -> Mc.PsatzMulC(e,xinterp c) | Mc.PsatzAdd(e1,e2) -> Mc.PsatzAdd(xinterp e1,xinterp e2) | Mc.PsatzMulE(e1,e2) -> Mc.PsatzMulE(xinterp e1,xinterp e2) in xinterp prf let hyps_of_pt pt = let rec xhyps base pt acc = match pt with | Mc.DoneProof -> acc | Mc.RatProof(c,pt) -> xhyps (base+1) pt (xhyps_of_cone base acc c) | Mc.CutProof(c,pt) -> xhyps (base+1) pt (xhyps_of_cone base acc c) | Mc.EnumProof(c1,c2,l) -> let s = xhyps_of_cone base (xhyps_of_cone base acc c2) c1 in List.fold_left (fun s x -> xhyps (base + 1) x s) s l in xhyps 0 pt ISet.empty let hyps_of_pt pt = let res = hyps_of_pt pt in if debug then (Printf.fprintf stdout "\nhyps_of_pt : %a -> " pp_proof_term pt ; ISet.iter (fun i -> Printf.printf "%i " i) res); res let compact_pt pt f = let translate ofset x = if x < ofset then x else (f (x-ofset) + ofset) in let rec compact_pt ofset pt = match pt with | Mc.DoneProof -> Mc.DoneProof | Mc.RatProof(c,pt) -> Mc.RatProof(compact_cone c (translate (ofset)), compact_pt (ofset+1) pt ) | Mc.CutProof(c,pt) -> Mc.CutProof(compact_cone c (translate (ofset)), compact_pt (ofset+1) pt ) | Mc.EnumProof(c1,c2,l) -> Mc.EnumProof(compact_cone c1 (translate (ofset)), compact_cone c2 (translate (ofset)), Mc.map (fun x -> compact_pt (ofset+1) x) l) in compact_pt 0 pt (** * Definition of provers. * Instantiates the type ('a,'prf) prover defined above. *) let lift_pexpr_prover p l = p (List.map (fun (e,o) -> Mc.denorm e , o) l) let linear_prover_Z = { name = "linear prover" ; prover = lift_ratproof (lift_pexpr_prover (Certificate.linear_prover_with_cert Certificate.z_spec)) ; hyps = hyps_of_pt ; compact = compact_pt ; pp_prf = pp_proof_term; pp_f = fun o x -> pp_pol pp_z o (fst x) } let linear_prover_Q = { name = "linear prover"; prover = lift_pexpr_prover (Certificate.linear_prover_with_cert Certificate.q_spec) ; hyps = hyps_of_cone ; compact = compact_cone ; pp_prf = pp_psatz pp_q ; pp_f = fun o x -> pp_pol pp_q o (fst x) } let linear_prover_R = { name = "linear prover"; prover = lift_pexpr_prover (Certificate.linear_prover_with_cert Certificate.q_spec) ; hyps = hyps_of_cone ; compact = compact_cone ; pp_prf = pp_psatz pp_q ; pp_f = fun o x -> pp_pol pp_q o (fst x) } let non_linear_prover_Q str o = { name = "real nonlinear prover"; prover = call_csdpcert_q (str, o); hyps = hyps_of_cone; compact = compact_cone ; pp_prf = pp_psatz pp_q ; pp_f = fun o x -> pp_pol pp_q o (fst x) } let non_linear_prover_R str o = { name = "real nonlinear prover"; prover = call_csdpcert_q (str, o); hyps = hyps_of_cone; compact = compact_cone; pp_prf = pp_psatz pp_q; pp_f = fun o x -> pp_pol pp_q o (fst x) } let non_linear_prover_Z str o = { name = "real nonlinear prover"; prover = lift_ratproof (call_csdpcert_z (str, o)); hyps = hyps_of_pt; compact = compact_pt; pp_prf = pp_proof_term; pp_f = fun o x -> pp_pol pp_z o (fst x) } module CacheZ = PHashtable(struct type t = (Mc.z Mc.pol * Mc.op1) list let equal = (=) let hash = Hashtbl.hash end) let memo_zlinear_prover = CacheZ.memo "lia.cache" (lift_pexpr_prover Certificate.lia) let memo_nlia = CacheZ.memo "nlia.cache" (lift_pexpr_prover Certificate.nlia) (*let memo_zlinear_prover = (lift_pexpr_prover Lia.lia)*) (*let memo_zlinear_prover = CacheZ.memo "lia.cache" (lift_pexpr_prover Certificate.zlinear_prover)*) let linear_Z = { name = "lia"; prover = memo_zlinear_prover ; hyps = hyps_of_pt; compact = compact_pt; pp_prf = pp_proof_term; pp_f = fun o x -> pp_pol pp_z o (fst x) } let nlinear_Z = { name = "nlia"; prover = memo_nlia ; hyps = hyps_of_pt; compact = compact_pt; pp_prf = pp_proof_term; pp_f = fun o x -> pp_pol pp_z o (fst x) } let tauto_lia ff = let prover = linear_Z in let cnf_ff,_ = cnf Mc.negate Mc.normalise Mc.zunsat Mc.zdeduce ff in match witness_list_tags [prover] cnf_ff with | None -> None | Some l -> Some (List.map fst l) (** * Functions instantiating micromega_gen with the appropriate theories and * solvers *) let psatzl_Z gl = micromega_gen parse_zarith Mc.negate Mc.normalise Mc.zunsat Mc.zdeduce zz_domain_spec [ linear_prover_Z ] gl let psatzl_Q gl = micromega_gen parse_qarith Mc.qnegate Mc.qnormalise Mc.qunsat Mc.qdeduce qq_domain_spec [ linear_prover_Q ] gl let psatz_Q i gl = micromega_gen parse_qarith Mc.qnegate Mc.qnormalise Mc.qunsat Mc.qdeduce qq_domain_spec [ non_linear_prover_Q "real_nonlinear_prover" (Some i) ] gl let psatzl_R gl = micromega_genr [ linear_prover_R ] gl let psatz_R i gl = micromega_genr [ non_linear_prover_R "real_nonlinear_prover" (Some i) ] gl let psatz_Z i gl = micromega_gen parse_zarith Mc.negate Mc.normalise Mc.zunsat Mc.zdeduce zz_domain_spec [ non_linear_prover_Z "real_nonlinear_prover" (Some i) ] gl let sos_Z gl = micromega_gen parse_zarith Mc.negate Mc.normalise Mc.zunsat Mc.zdeduce zz_domain_spec [ non_linear_prover_Z "pure_sos" None ] gl let sos_Q gl = micromega_gen parse_qarith Mc.qnegate Mc.qnormalise Mc.qunsat Mc.qdeduce qq_domain_spec [ non_linear_prover_Q "pure_sos" None ] gl let sos_R gl = micromega_genr [ non_linear_prover_R "pure_sos" None ] gl let xlia gl = try micromega_gen parse_zarith Mc.negate Mc.normalise Mc.zunsat Mc.zdeduce zz_domain_spec [ linear_Z ] gl with reraise -> (*Printexc.print_backtrace stdout ;*) raise reraise let xnlia gl = try micromega_gen parse_zarith Mc.negate Mc.normalise Mc.zunsat Mc.zdeduce zz_domain_spec [ nlinear_Z ] gl with reraise -> (*Printexc.print_backtrace stdout ;*) raise reraise (* Local Variables: *) (* coding: utf-8 *) (* End: *)